Download citation
Download citation
link to html
The 1:1 adduct of [SnCl2(C2H4COOCH3)2] and 1,10-phenanthroline, (C12H8N2), which was set aside for 25 years, when recrystallized from ethanol was found to be the salt [C12H9N2]+·[SnCl2(C2H4COO)(C2H4COOH)]. The SnIV atom in the anion has pseudo-octahedral coordination with two cis Cl atoms, two C atoms and two O atoms trans to the Cl atoms. The possibility of alternative stacking of layers perpendicular to c* offers an explanation for observed twinning and polytypism. An ordered, untwinned, Z = 2 crystal structure was determined. Pairs of adjacent anions are linked together by strong intermolecular O—H...O hydrogen bonds, and the cation contains a strong intramol­ecular N—H...N hydrogen bond between its two N atoms. The protonated ring of the cation exhibits increased Lewis acidity and is linked into a network with the anions using a strong N—H...O and weak C—H...O and C—H...Cl interactions. The remaining rings of the cation form weaker C—H...O and C—H...Cl interactions. The cations stack in columns along a with an interplanar spacing of 3.24 Å for separations between cations inversion-related about (1, 1\over2, 1\over2) and 3.34 Å for separations between cations inversion-related about (1\over2, 1\over2, 1\over2).

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108768106002461/bs5018sup1.cif
Contains datablock kh02d

CCDC reference: 605622

Computing details top

Data collection: Collect (Nonius BV, 1997-2000); cell refinement: DENZO/SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO/SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR97 (Altomare, et al., 1999); program(s) used to refine structure: SHELXTL (Bruker AXS Inc. 1998); molecular graphics: ORTEP (Burnett & Johnson 1996; Farrugia 1997).

Figures top
[Figure 1]
[Figure 2]
[Figure 3]
[Figure 4]
[Figure 5]
[Figure 6]
1,10-Phenanthrolin-1-ium (2-Carboxyethyl)(2-carboxylatoethyl)dichlorostannate(IV) top
Crystal data top
C12H9N2+·C6H9Cl2O4SnZ = 2
Mr = 515.94F(000) = 512
Triclinic, P1Dx = 1.760 Mg m3
a = 7.1204 (1) ÅMo Kα radiation, λ = 0.71073 Å
b = 12.5017 (2) ÅCell parameters from 25992 reflections
c = 12.5780 (2) Åθ = 2.9–29.6°
α = 114.4242 (11)°µ = 1.61 mm1
β = 92.5620 (11)°T = 200 K
γ = 104.3542 (12)°Needle, transparent colorless
V = 973.78 (3) Å30.17 × 0.14 × 0.12 mm
Data collection top
Bruker Nonius KappaCCD
diffractometer
5019 independent reflections
Radiation source: fine-focus sealed X-ray tube4174 reflections with I > 2σ(I)
Horizonatlly mounted graphite crystal monochromatorRint = 0.035
Detector resolution: 9 pixels mm-1θmax = 28.7°, θmin = 3.0°
ϕ scan plus ω scans with κ offsetsh = 99
Absorption correction: multi-scan
SORTAV, (Blessing, 1995)
k = 1616
Tmin = 0.798, Tmax = 0.824l = 1616
28062 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.029H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.059 w = 1/[σ2(Fo2) + (0.P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.97(Δ/σ)max = 0.003
5019 reflectionsΔρmax = 1.31 e Å3
251 parametersΔρmin = 0.68 e Å3
0 restraints
Crystal data top
C12H9N2+·C6H9Cl2O4Snγ = 104.3542 (12)°
Mr = 515.94V = 973.78 (3) Å3
Triclinic, P1Z = 2
a = 7.1204 (1) ÅMo Kα radiation
b = 12.5017 (2) ŵ = 1.61 mm1
c = 12.5780 (2) ÅT = 200 K
α = 114.4242 (11)°0.17 × 0.14 × 0.12 mm
β = 92.5620 (11)°
Data collection top
Bruker Nonius KappaCCD
diffractometer
5019 independent reflections
Absorption correction: multi-scan
SORTAV, (Blessing, 1995)
4174 reflections with I > 2σ(I)
Tmin = 0.798, Tmax = 0.824Rint = 0.035
28062 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0290 restraints
wR(F2) = 0.059H atoms treated by a mixture of independent and constrained refinement
S = 0.97Δρmax = 1.31 e Å3
5019 reflectionsΔρmin = 0.68 e Å3
251 parameters
Special details top

Experimental. The data crsytal was cut from a larger needle shaped crystal by cleaving along an obvious twin plane (reentrant angles), followed by cutting approximately perpendicular to the twin plane. The crystal was difficult to cut, and fragmented giving a somewhat irregular shaped data crystal.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

TABLE of Least Squares Planes (x,y,z in crystal coordinates) and deviations of individual atoms from the planes. Atoms used to define the planes are preceded with *. (Perpendicular contact distances are calculated to the 14 atom phenanthroline plane for the C—H···π bonds. The phenanthrolinium ions related by the centers at (0, 1/2, 1/2) overlap at the edges of the N containing rings, while the phenanthrolinium ions related by the centers at (1/2, 1/2, 1/2) overlap the faces of the N containing rings.

Plane 1: 14 Atom Phenanthronine Plane 6.580 (1) x + 1.570 (6) y − 3.774 (5) z = 3.856 (2) * 0.019 (2) C31 * −0.002 (2) C32 * −0.011 (2) C33 * 0.009 (2) N34 * 0.017 (2) C35 * 0.014 (2) C36 * −0.034 (2) C37 * −0.036 (2) C38 * 0.017 (2) C39 * 0.014 (2) C40 * −0.026 (2) N41 * −0.031 (2) C42 * 0.015 (2) C43 * 0.036 (2) C44 Rms deviation of fitted atoms = 0.022 Deviation of the hydrogen bonded to C41 − 0.100 (0.028) H41N Deviation of the C–H···pi bonded hydrogen atoms of the pi-pi stacks centers at: (0, 1/2, 1/2) (1/2, 1/2, 1/2) 3.277 (3) H33 2_766 − 3.235 (8) H41N 2_666 3.345 (8) H41N 2_766 − 3.366 (2) H43 2_666 3.309 (3) H42 2_766 − 3.399 (2) H44 2_666

Plane 2: 6 Atom Middle Ring Plane 6.524 (3) x + 1.826 (11) y − 3.878 (11) z = 3.924 (7) * −0.007 (2) C35 * 0.015 (2) C36 * −0.007 (2) C37 * −0.009 (2) C38 * 0.018 (2) C39 * −0.010 (2) C40 0.020 (4) C31 − 0.026 (4) C32 − 0.059 (4) C33 − 0.040 (3) N34 − 0.074 (3) N41 − 0.080 (4) C42 − 0.010 (4) C43 0.036 (4) C44 Rms deviation of fitted atoms = 0.012

Plane 3: 6 Atom Unprotonated Ring Plane 6.604 (3) x + 1.480 (12) y − 3.669 (12) z = 3.899 (8) * 0.007 (2) C31 * −0.001 (2) C32 * −0.006 (2) C33 * 0.005 (2) N34 * 0.001 (2) C35 * −0.007 (2) C36 − 0.069 (4) C37 − 0.079 (5) C38 − 0.022 (4) C39 − 0.011 (4) C40 − 0.047 (4) N41 − 0.059 (5) C42 − 0.027 (6) C43 − 0.011 (6) C44 Rms deviation of fitted atoms = 0.005

Plane 4: 6 Atom Protonated Ring Plane 6.640 (2) x + 1.288 (12) y − 3.627 (12) z = 3.821 (5) * −0.013 (2) C39 * 0.013 (2) C40 * −0.002 (2) N41 * −0.009 (2) C42 * 0.008 (2) C43 * 0.003 (2) C44 0.001 (5) C31 0.010 (6) C32 0.026 (5) C33 0.042 (4) N34 0.021 (4) C35 − 0.009 (4) C36 − 0.086 (4) C37 − 0.092 (4) C38 − 0.059 (9) H41N Rms deviation of fitted atoms = 0.009

Interplanar Angles: Phenanthroline Unprotonated Protonated Middle Ring 1.18 (8) 1.65 (10) 2.50 (10) Protonated Ring 1.32 (8) 0.90 (10) Unprotonated Ring 0.55 (8)

Refinement. Refinement on F2 for ALL reflections. Weighted R-factors wR and all goodness of fit values S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating _R_factor_obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger. xyz and U were refined for the OH and NH hydrogen atoms. The CH2 and CH hydrogen atoms were included in the refinement as riding atom contributions with idealized geometry, and CH distances set at the temperature adjusted values of 0.99 Angstroms for the CH2 H atoms and 0.95 Angstroms for the CH distances as defined within SHELXTL.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Sn10.40500 (2)0.111904 (14)0.817654 (13)0.02452 (6)
Cl110.24231 (10)0.04003 (6)0.94939 (6)0.04213 (16)
Cl120.40291 (10)0.32885 (5)0.92664 (5)0.03442 (14)
O110.6070 (2)0.17256 (16)0.68119 (14)0.0326 (4)
C110.7736 (3)0.2339 (2)0.7372 (2)0.0264 (5)
O120.9075 (3)0.29248 (17)0.69688 (16)0.0330 (4)
H12O0.870 (5)0.276 (3)0.636 (3)0.049 (7)*
C120.8357 (3)0.2489 (2)0.8595 (2)0.0314 (5)
H12A0.82930.32970.91860.038*
H12B0.97370.24730.86830.038*
C130.7052 (3)0.1477 (2)0.8840 (2)0.0305 (5)
H13A0.72200.17300.97040.037*
H13B0.74510.07180.84580.037*
O130.3818 (3)0.08906 (15)0.69251 (14)0.0316 (4)
C140.2685 (3)0.1283 (2)0.5948 (2)0.0254 (5)
O140.2180 (2)0.23959 (14)0.51962 (14)0.0293 (4)
C150.1926 (3)0.0373 (2)0.5686 (2)0.0266 (5)
H15A0.06400.08070.51530.032*
H15B0.28530.00180.52720.032*
C160.1690 (3)0.0657 (2)0.6813 (2)0.0263 (5)
H16A0.04180.03870.70500.032*
H16B0.17090.13840.66760.032*
C310.8463 (4)0.7657 (3)0.7673 (3)0.0414 (7)
H310.85370.84980.81050.050*
C320.8916 (4)0.7009 (3)0.8249 (3)0.0428 (7)
H320.92920.73940.90850.051*
C330.8819 (4)0.5779 (2)0.7591 (2)0.0353 (6)
H330.91280.53420.80050.042*
N340.8320 (3)0.51821 (18)0.64223 (17)0.0294 (4)
C350.7857 (3)0.5827 (2)0.5861 (2)0.0262 (5)
C360.7889 (3)0.7064 (2)0.6440 (2)0.0333 (6)
C370.7293 (4)0.7645 (2)0.5768 (3)0.0400 (7)
H370.72780.84740.61680.048*
C380.6753 (4)0.7045 (2)0.4584 (3)0.0385 (6)
H380.63580.74550.41640.046*
C390.6767 (3)0.5798 (2)0.3949 (2)0.0317 (6)
C400.7274 (3)0.5197 (2)0.4592 (2)0.0260 (5)
N410.7171 (3)0.39916 (19)0.40163 (18)0.0259 (4)
H41N0.735 (4)0.360 (3)0.435 (3)0.049 (7)*
C420.6642 (4)0.3356 (2)0.2841 (2)0.0329 (6)
H420.65770.25110.24680.039*
C430.6189 (4)0.3925 (3)0.2167 (2)0.0390 (6)
H430.58400.34770.13310.047*
C440.6244 (4)0.5134 (3)0.2712 (2)0.0378 (6)
H440.59290.55270.22530.045*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sn10.02707 (9)0.02620 (9)0.02103 (9)0.00771 (7)0.00218 (6)0.01127 (7)
Cl110.0500 (4)0.0443 (4)0.0345 (3)0.0064 (3)0.0137 (3)0.0231 (3)
Cl120.0443 (4)0.0259 (3)0.0296 (3)0.0112 (3)0.0016 (3)0.0091 (3)
O110.0277 (9)0.0439 (10)0.0232 (9)0.0010 (8)0.0010 (7)0.0177 (8)
C110.0275 (12)0.0285 (13)0.0237 (12)0.0094 (10)0.0045 (10)0.0112 (10)
O120.0305 (10)0.0394 (11)0.0269 (10)0.0017 (8)0.0009 (8)0.0176 (9)
C120.0257 (12)0.0414 (15)0.0256 (12)0.0051 (11)0.0006 (10)0.0163 (11)
C130.0289 (13)0.0406 (14)0.0271 (13)0.0111 (11)0.0022 (10)0.0196 (12)
O130.0379 (10)0.0278 (9)0.0247 (9)0.0137 (8)0.0032 (7)0.0060 (7)
C140.0268 (12)0.0277 (12)0.0232 (12)0.0083 (10)0.0054 (9)0.0123 (10)
O140.0394 (10)0.0243 (9)0.0226 (8)0.0101 (7)0.0021 (7)0.0087 (7)
C150.0311 (13)0.0266 (12)0.0219 (11)0.0087 (10)0.0008 (10)0.0109 (10)
C160.0261 (12)0.0259 (12)0.0268 (12)0.0077 (9)0.0012 (10)0.0119 (10)
C310.0332 (14)0.0330 (14)0.0455 (17)0.0066 (11)0.0061 (12)0.0069 (13)
C320.0359 (15)0.0448 (17)0.0314 (14)0.0063 (13)0.0015 (12)0.0051 (13)
C330.0308 (14)0.0424 (15)0.0297 (14)0.0079 (11)0.0001 (11)0.0151 (12)
N340.0254 (10)0.0331 (11)0.0289 (11)0.0067 (9)0.0020 (8)0.0141 (9)
C350.0206 (11)0.0279 (12)0.0309 (13)0.0053 (9)0.0057 (9)0.0144 (11)
C360.0239 (12)0.0317 (13)0.0437 (15)0.0065 (10)0.0095 (11)0.0165 (12)
C370.0330 (14)0.0326 (14)0.0625 (19)0.0106 (11)0.0153 (13)0.0273 (14)
C380.0289 (13)0.0434 (16)0.0621 (19)0.0140 (12)0.0148 (13)0.0385 (15)
C390.0204 (12)0.0425 (15)0.0448 (15)0.0084 (10)0.0091 (11)0.0312 (13)
C400.0184 (11)0.0319 (13)0.0338 (13)0.0062 (9)0.0067 (9)0.0205 (11)
N410.0264 (10)0.0318 (11)0.0269 (11)0.0092 (9)0.0049 (8)0.0194 (9)
C420.0327 (14)0.0388 (14)0.0248 (12)0.0054 (11)0.0020 (10)0.0151 (11)
C430.0361 (15)0.0550 (18)0.0293 (13)0.0067 (13)0.0015 (11)0.0259 (13)
C440.0299 (13)0.0571 (18)0.0422 (16)0.0120 (12)0.0078 (12)0.0370 (15)
Geometric parameters (Å, º) top
Sn1—C132.127 (2)C31—C361.401 (4)
Sn1—C162.131 (2)C32—C331.395 (4)
Sn1—O132.3060 (17)C33—N341.326 (3)
Sn1—Cl112.4045 (6)N34—C351.356 (3)
Sn1—Cl122.4864 (6)C35—C361.404 (3)
Sn1—O112.5192 (18)C35—C401.442 (3)
O11—C111.232 (3)C36—C371.431 (4)
C11—O121.307 (3)C37—C381.346 (4)
C11—C121.502 (3)C38—C391.431 (4)
O12—H12O0.72 (3)C39—C401.400 (3)
C12—C131.524 (3)C39—C441.405 (4)
O13—C141.272 (3)C40—N411.356 (3)
C14—O141.262 (3)N41—C421.337 (3)
C14—C151.515 (3)N41—H41N0.79 (3)
C15—C161.521 (3)C42—C431.384 (3)
C31—C321.370 (4)C43—C441.366 (4)
C13—Sn1—C16153.22 (9)C14—C15—C16111.6 (2)
C13—Sn1—O1391.47 (8)C15—C16—Sn1108.65 (14)
C16—Sn1—O1377.42 (7)C32—C31—C36119.3 (3)
C13—Sn1—Cl11101.30 (7)C31—C32—C33119.1 (3)
C16—Sn1—Cl11102.65 (7)N34—C33—C32123.9 (2)
O13—Sn1—Cl1188.45 (5)C33—N34—C35116.5 (2)
C13—Sn1—Cl1294.67 (7)N34—C35—C36124.1 (2)
C16—Sn1—Cl1294.47 (6)N34—C35—C40117.8 (2)
O13—Sn1—Cl12171.40 (4)C36—C35—C40118.1 (2)
Cl11—Sn1—Cl1296.24 (2)C31—C36—C35117.0 (2)
C13—Sn1—O1172.78 (7)C31—C36—C37123.4 (2)
C16—Sn1—O1182.30 (7)C35—C36—C37119.6 (2)
O13—Sn1—O1187.19 (6)C38—C37—C36121.6 (3)
Cl11—Sn1—O11172.54 (4)C37—C38—C39120.8 (2)
Cl12—Sn1—O1188.87 (4)C40—C39—C44118.2 (2)
C11—O11—Sn1107.83 (14)C40—C39—C38118.5 (2)
O11—C11—O12123.2 (2)C44—C39—C38123.2 (2)
O11—C11—C12121.8 (2)N41—C40—C39119.5 (2)
O12—C11—C12115.0 (2)N41—C40—C35119.2 (2)
C11—O12—H12O108 (3)C39—C40—C35121.3 (2)
C11—C12—C13111.7 (2)C42—N41—C40122.1 (2)
C12—C13—Sn1110.5 (2)C42—N41—H41N115 (2)
C14—O13—Sn1112.33 (14)C40—N41—H41N123 (2)
O14—C14—O13122.4 (2)N41—C42—C43120.2 (2)
O14—C14—C15119.3 (2)C44—C43—C42119.6 (2)
O13—C14—C15118.4 (2)C43—C44—C39120.2 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O12—H12O···O14i0.72 (3)1.86 (3)2.579 (2)177 (3)
N41—H41N···O14i0.79 (3)1.91 (3)2.688 (2)166 (3)
N41—H41N···N340.79 (3)2.46 (3)2.737 (3)102 (2)
C42—H42···O13i0.952.403.154 (3)136
C43—H43···Cl12ii0.952.743.578 (3)148
C44—H44···Cl12iii0.952.863.785 (3)165
C37—H37···O13iv0.952.863.458 (3)123
C38—H38···O11iii0.952.703.596 (3)158
C31—H31···Cl11v0.952.953.578 (3)125
C31—H31···Cl11vi0.953.043.619 (3)121
C32—H32···Cl11v0.953.183.691 (3)116
C33—H33···O120.952.743.377 (3)125
Symmetry codes: (i) x+1, y, z+1; (ii) x, y, z1; (iii) x+1, y+1, z+1; (iv) x, y+1, z; (v) x+1, y+1, z+2; (vi) x+1, y+1, z.

Experimental details

Crystal data
Chemical formulaC12H9N2+·C6H9Cl2O4Sn
Mr515.94
Crystal system, space groupTriclinic, P1
Temperature (K)200
a, b, c (Å)7.1204 (1), 12.5017 (2), 12.5780 (2)
α, β, γ (°)114.4242 (11), 92.5620 (11), 104.3542 (12)
V3)973.78 (3)
Z2
Radiation typeMo Kα
µ (mm1)1.61
Crystal size (mm)0.17 × 0.14 × 0.12
Data collection
DiffractometerBruker Nonius KappaCCD
diffractometer
Absorption correctionMulti-scan
SORTAV, (Blessing, 1995)
Tmin, Tmax0.798, 0.824
No. of measured, independent and
observed [I > 2σ(I)] reflections
28062, 5019, 4174
Rint0.035
(sin θ/λ)max1)0.675
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.029, 0.059, 0.97
No. of reflections5019
No. of parameters251
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)1.31, 0.68

Computer programs: Collect (Nonius BV, 1997-2000), DENZO/SCALEPACK (Otwinowski & Minor, 1997), SIR97 (Altomare, et al., 1999), SHELXTL (Bruker AXS Inc. 1998), ORTEP (Burnett & Johnson 1996; Farrugia 1997).

Selected geometric parameters (Å, º) top
Sn1—C132.127 (2)C31—C361.401 (4)
Sn1—C162.131 (2)C32—C331.395 (4)
Sn1—O132.3060 (17)C33—N341.326 (3)
Sn1—Cl112.4045 (6)N34—C351.356 (3)
Sn1—Cl122.4864 (6)C35—C361.404 (3)
Sn1—O112.5192 (18)C35—C401.442 (3)
O11—C111.232 (3)C36—C371.431 (4)
C11—O121.307 (3)C37—C381.346 (4)
C11—C121.502 (3)C38—C391.431 (4)
O12—H12O0.72 (3)C39—C401.400 (3)
C12—C131.524 (3)C39—C441.405 (4)
O13—C141.272 (3)C40—N411.356 (3)
C14—O141.262 (3)N41—C421.337 (3)
C14—C151.515 (3)N41—H41N0.79 (3)
C15—C161.521 (3)C42—C431.384 (3)
C31—C321.370 (4)C43—C441.366 (4)
C13—Sn1—C16153.22 (9)C14—C15—C16111.6 (2)
C13—Sn1—O1391.47 (8)C15—C16—Sn1108.65 (14)
C16—Sn1—O1377.42 (7)C32—C31—C36119.3 (3)
C13—Sn1—Cl11101.30 (7)C31—C32—C33119.1 (3)
C16—Sn1—Cl11102.65 (7)N34—C33—C32123.9 (2)
O13—Sn1—Cl1188.45 (5)C33—N34—C35116.5 (2)
C13—Sn1—Cl1294.67 (7)N34—C35—C36124.1 (2)
C16—Sn1—Cl1294.47 (6)N34—C35—C40117.8 (2)
O13—Sn1—Cl12171.40 (4)C36—C35—C40118.1 (2)
Cl11—Sn1—Cl1296.24 (2)C31—C36—C35117.0 (2)
C13—Sn1—O1172.78 (7)C31—C36—C37123.4 (2)
C16—Sn1—O1182.30 (7)C35—C36—C37119.6 (2)
O13—Sn1—O1187.19 (6)C38—C37—C36121.6 (3)
Cl11—Sn1—O11172.54 (4)C37—C38—C39120.8 (2)
Cl12—Sn1—O1188.87 (4)C40—C39—C44118.2 (2)
C11—O11—Sn1107.83 (14)C40—C39—C38118.5 (2)
O11—C11—O12123.2 (2)C44—C39—C38123.2 (2)
O11—C11—C12121.8 (2)N41—C40—C39119.5 (2)
O12—C11—C12115.0 (2)N41—C40—C35119.2 (2)
C11—O12—H12O108 (3)C39—C40—C35121.3 (2)
C11—C12—C13111.7 (2)C42—N41—C40122.1 (2)
C12—C13—Sn1110.5 (2)C42—N41—H41N115 (2)
C14—O13—Sn1112.33 (14)C40—N41—H41N123 (2)
O14—C14—O13122.4 (2)N41—C42—C43120.2 (2)
O14—C14—C15119.3 (2)C44—C43—C42119.6 (2)
O13—C14—C15118.4 (2)C43—C44—C39120.2 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O12—H12O···O14i0.72 (3)1.86 (3)2.579 (2)177.3 (33)
N41—H41N···O14i0.79 (3)1.91 (3)2.688 (2)166.3 (30)
N41—H41N···N340.79 (3)2.46 (3)2.737 (3)101.9 (24)
C42—H42···O13i0.952.403.154 (3)136.0
C43—H43···Cl12ii0.952.743.578 (3)147.8
C44—H44···Cl12iii0.952.863.785 (3)165.4
C37—H37···O13iv0.952.863.458 (3)122.5
C38—H38···O11iii0.952.703.596 (3)158.4
C31—H31···Cl11v0.952.953.578 (3)125.1
C31—H31···Cl11vi0.953.043.619 (3)121.2
C32—H32···Cl11v0.953.183.691 (3)116.4
C33—H33···O120.952.743.377 (3)125.3
Symmetry codes: (i) x+1, y, z+1; (ii) x, y, z1; (iii) x+1, y+1, z+1; (iv) x, y+1, z; (v) x+1, y+1, z+2; (vi) x+1, y+1, z.
 

Follow Acta Cryst. B
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds