Download citation
Download citation
link to html
Three inorganic-organic layered perovskite-type hybrids of the general formula [(CnH2n + 1NH3)2PbI4], n = 4, 5 and 6, display a number of reversible first-order phase transitions in the temperature range from 256 to 393 K. [(C4H9NH3)2PbI4] has a single phase transition, [(C5H11NH3)2PbI4] has two phase transitions and [(C6H13NH3)2PbI4] has three phase transitions. In all three cases, the lowest-temperature phase transition is thermochromic and the crystals change colour from yellow in their lowest-temperature phase to orange in their higher-temperature phase for [(C4H9NH3)2PbI4] and [(C6H13NH3)2PbI4], and from orange to red for [(C5H11NH3)2PbI4]. The structural details associated with this phase transition have been investigated via single-crystal X-ray diffraction, SC-XRD, for all three compounds.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108768107031758/bs5044sup1.cif
Contains datablocks 1a, 1b, 2a, 2b, 2c, 3a, 3b

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108768107031758/bs50441asup2.hkl
Contains datablock 5as114l_a

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108768107031758/bs50441bsup3.hkl
Contains datablock 5as114a_a

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108768107031758/bs50442asup4.hkl
Contains datablock new

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108768107031758/bs50442bsup5.hkl
Contains datablock new

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108768107031758/bs50442csup6.hkl
Contains datablock 5as19ht_a

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108768107031758/bs50443asup7.hkl
Contains datablock new

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108768107031758/bs50443bsup8.hkl
Contains datablock 5as40rt5cm_a

CCDC references: 665689; 665690; 665691; 665692; 665693; 665694; 665695

Computing details top

For all compounds, data collection: APEX2 (Bruker, 2005); cell refinement: SAINT-Plus (Bruker, 2004); data reduction: SAINT-Plus and XPREP (Bruker 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997a); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997b); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and DIAMOND (Brandenburg, 1999); software used to prepare material for publication: WinGX publication routines (Farrugia, 1999) and PLATON (Spek, 2003).

(1a) bis(butylammonium)tetraiodoplumbate(II) top
Crystal data top
2(C4H12N)·I4PbF(000) = 1520
Mr = 863.08Dx = 2.886 Mg m3
Dm = 0 Mg m3
Dm measured by not measured
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 3361 reflections
a = 8.4280 (19) Åθ = 3.1–28.2°
b = 8.986 (2) ŵ = 14.69 mm1
c = 26.233 (6) ÅT = 223 K
V = 1986.7 (8) Å3Cube, yellow
Z = 40.14 × 0.13 × 0.08 mm
Data collection top
Bruker APEX II CCD area detector
diffractometer
1745 independent reflections
Radiation source: fine-focus sealed tube1500 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.083
ω scansθmax = 25°, θmin = 2.9°
Absorption correction: integration
Bruker XPREP (Bruker, 2004)
h = 109
Tmin = 0.165, Tmax = 0.339k = 1010
7581 measured reflectionsl = 3129
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.101Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.27H-atom parameters constrained
S = 1.38 w = 1/[σ2(Fo2) + (0.P)2 + 573.3984P]
where P = (Fo2 + 2Fc2)/3
1745 reflections(Δ/σ)max < 0.001
70 parametersΔρmax = 3.92 e Å3
31 restraintsΔρmin = 5.68 e Å3
Special details top

Experimental. Numerical integration absorption corrections based on indexed crystal faces were applied using the XPREP routine (Bruker, 2004)

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.925 (5)0.440 (4)0.8573 (17)0.033 (7)
H1D0.81150.43250.86570.04*
H1E0.95080.35740.83420.04*
C20.957 (5)0.587 (5)0.8307 (17)0.038 (7)
H2A1.06710.58850.81880.045*
H2B0.94480.66820.85550.045*
C30.846 (6)0.618 (5)0.7849 (17)0.042 (8)
H3A0.85270.53450.76090.051*
H3B0.73630.62460.79690.051*
C40.889 (6)0.756 (5)0.7586 (19)0.046 (10)
H4A0.8170.7720.73030.069*
H4B0.99680.74840.74590.069*
H4C0.88150.83870.78220.069*
N11.016 (4)0.427 (3)0.9025 (13)0.030 (7)
H1A0.99570.33910.91750.045*
H1B0.99050.50150.92390.045*
H1C1.11980.43260.89470.045*
I11.0779 (3)1.0298 (3)0.88221 (10)0.0314 (7)
I20.6987 (3)1.2042 (3)0.97709 (11)0.0311 (7)
Pb11110.0237 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.027 (15)0.023 (13)0.050 (16)0.015 (13)0.004 (12)0.003 (11)
C20.031 (15)0.034 (14)0.049 (15)0.012 (13)0.002 (13)0.005 (11)
C30.039 (17)0.040 (16)0.048 (17)0.016 (15)0.000 (14)0.002 (13)
C40.05 (2)0.039 (18)0.05 (2)0.019 (18)0.009 (19)0.006 (15)
N10.036 (18)0.009 (13)0.046 (16)0.000 (13)0.001 (13)0.004 (11)
I10.0287 (14)0.0282 (13)0.0374 (15)0.0022 (11)0.0016 (12)0.0010 (11)
I20.0217 (12)0.0268 (13)0.0448 (15)0.0116 (10)0.0014 (11)0.0009 (12)
Pb10.0196 (10)0.0180 (9)0.0334 (11)0.0001 (8)0.0006 (9)0.0019 (9)
Geometric parameters (Å, º) top
C1—N11.42 (5)C4—H4C0.97
C1—C21.53 (6)N1—H1A0.9
C1—H1D0.98N1—H1B0.9
C1—H1E0.98N1—H1C0.9
C2—C31.55 (6)I1—Pb13.170 (3)
C2—H2A0.98I2—Pb13.190 (2)
C2—H2B0.98I2—Pb1i3.199 (2)
C3—C41.46 (6)Pb1—I1ii3.170 (3)
C3—H3A0.98Pb1—I2ii3.190 (2)
C3—H3B0.98Pb1—I2iii3.199 (2)
C4—H4A0.97Pb1—I2iv3.199 (2)
C4—H4B0.97
N1—C1—C2111 (4)H4B—C4—H4C109.5
N1—C1—H1D109.5C1—N1—H1A109.5
C2—C1—H1D109.5C1—N1—H1B109.5
N1—C1—H1E109.5H1A—N1—H1B109.5
C2—C1—H1E109.5C1—N1—H1C109.5
H1D—C1—H1E108.1H1A—N1—H1C109.5
C1—C2—C3114 (4)H1B—N1—H1C109.5
C1—C2—H2A108.8Pb1—I2—Pb1i149.24 (10)
C3—C2—H2A108.8I1ii—Pb1—I1180.0000 (10)
C1—C2—H2B108.8I1ii—Pb1—I2ii86.15 (7)
C3—C2—H2B108.8I1—Pb1—I2ii93.85 (7)
H2A—C2—H2B107.7I1ii—Pb1—I293.85 (7)
C4—C3—C2111 (4)I1—Pb1—I286.15 (7)
C4—C3—H3A109.3I2ii—Pb1—I2180.0000 (10)
C2—C3—H3A109.3I1ii—Pb1—I2iii90.26 (7)
C4—C3—H3B109.3I1—Pb1—I2iii89.74 (7)
C2—C3—H3B109.3I2ii—Pb1—I2iii88.52 (3)
H3A—C3—H3B108I2—Pb1—I2iii91.48 (3)
C3—C4—H4A109.5I1ii—Pb1—I2iv89.74 (7)
C3—C4—H4B109.5I1—Pb1—I2iv90.26 (7)
H4A—C4—H4B109.5I2ii—Pb1—I2iv91.48 (3)
C3—C4—H4C109.5I2—Pb1—I2iv88.52 (3)
H4A—C4—H4C109.5I2iii—Pb1—I2iv180
N1—C1—C2—C3173 (3)Pb1i—I2—Pb1—I1123.18 (19)
C1—C2—C3—C4176 (4)Pb1i—I2—Pb1—I2iii147.18 (15)
Pb1i—I2—Pb1—I1ii56.82 (19)Pb1i—I2—Pb1—I2iv32.82 (15)
Symmetry codes: (i) x1/2, y+5/2, z+2; (ii) x+2, y+2, z+2; (iii) x+3/2, y1/2, z; (iv) x+1/2, y+5/2, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···I1v0.93.013.65 (3)129
N1—H1B···I2iii0.92.793.65 (3)159
N1—H1C···I1vi0.92.713.58 (3)163
Symmetry codes: (iii) x+3/2, y1/2, z; (v) x, y1, z; (vi) x+5/2, y1/2, z.
(1b) bis(butylammonium)tetraiodoplumbate(II) top
Crystal data top
2(C4H12N)·I4PbF(000) = 1520
Mr = 863.08Dx = 2.692 Mg m3
Dm = 0 Mg m3
Dm measured by not measured
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 4303 reflections
a = 8.8764 (1) Åθ = 2.7–28.0°
b = 8.6925 (1) ŵ = 13.71 mm1
c = 27.6014 (5) ÅT = 293 K
V = 2129.67 (5) Å3Cube, orange
Z = 40.15 × 0.14 × 0.08 mm
Data collection top
Bruker APEX II CCD area detector
diffractometer
1981 independent reflections
Radiation source: fine-focus sealed tube1541 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.079
ω scansθmax = 25.5°, θmin = 2.7°
Absorption correction: integration
Bruker XPREP (Bruker, 2004)
h = 1010
Tmin = 0.160, Tmax = 0.359k = 1010
15579 measured reflectionsl = 3332
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.037H-atom parameters constrained
wR(F2) = 0.076 w = 1/[σ2(Fo2) + (0.0196P)2 + 10.8314P]
where P = (Fo2 + 2Fc2)/3
S = 1.09(Δ/σ)max = 0.001
1981 reflectionsΔρmax = 0.82 e Å3
71 parametersΔρmin = 1.15 e Å3
36 restraintsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.00341 (14)
Special details top

Experimental. Numerical integration absorption corrections based on indexed crystal faces were applied using the XPREP routine (Bruker, 2004)

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.9692 (19)0.4748 (18)0.8819 (5)0.150 (5)
H1D0.86790.50250.89180.18*
H1E0.98710.36910.89160.18*
C20.9822 (18)0.4879 (19)0.8282 (5)0.176 (6)
H2A1.08270.45790.8180.212*
H2B0.96590.59380.81840.212*
C30.866 (2)0.384 (2)0.8039 (6)0.210 (7)
H3A0.87490.28080.81670.252*
H3B0.76550.42150.81140.252*
C40.886 (3)0.380 (3)0.7509 (6)0.283 (11)
H4A0.81040.31430.73680.424*
H4B0.98390.3410.74330.424*
H4C0.87510.48210.7380.424*
N11.0761 (10)0.5741 (11)0.9059 (4)0.094 (3)
H1A1.05940.57260.93770.141*
H1B1.06570.66970.89490.141*
H1C1.16920.54120.89990.141*
I11.03349 (8)0.98557 (8)0.88455 (3)0.0782 (3)
I20.69648 (7)1.19465 (7)0.99571 (3)0.0711 (3)
Pb11110.04801 (18)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.139 (11)0.157 (13)0.155 (9)0.035 (9)0.010 (10)0.033 (10)
C20.174 (13)0.206 (14)0.149 (8)0.008 (11)0.032 (10)0.044 (11)
C30.199 (15)0.258 (17)0.172 (11)0.028 (13)0.041 (12)0.062 (13)
C40.29 (3)0.39 (3)0.166 (12)0.04 (3)0.051 (17)0.08 (2)
N10.074 (6)0.095 (7)0.113 (7)0.010 (5)0.005 (5)0.004 (5)
I10.0784 (5)0.0804 (5)0.0756 (5)0.0008 (4)0.0086 (3)0.0035 (4)
I20.0482 (3)0.0474 (3)0.1176 (6)0.0195 (3)0.0124 (3)0.0075 (4)
Pb10.0338 (2)0.0347 (2)0.0755 (3)0.00014 (16)0.00003 (19)0.0008 (2)
Geometric parameters (Å, º) top
C1—N11.443 (16)C4—H4C0.96
C1—C21.493 (9)N1—H1A0.89
C1—H1D0.97N1—H1B0.89
C1—H1E0.97N1—H1C0.89
C2—C31.526 (9)I1—Pb13.2029 (7)
C2—H2A0.97I2—Pb1i3.1781 (5)
C2—H2B0.97I2—Pb13.1836 (5)
C3—C41.475 (10)Pb1—I2ii3.1781 (5)
C3—H3A0.97Pb1—I2iii3.1781 (5)
C3—H3B0.97Pb1—I2iv3.1836 (5)
C4—H4A0.96Pb1—I1iv3.2029 (7)
C4—H4B0.96
N1—C1—C2111.1 (12)H4B—C4—H4C109.5
N1—C1—H1D109.4C1—N1—H1A109.5
C2—C1—H1D109.4C1—N1—H1B109.5
N1—C1—H1E109.4H1A—N1—H1B109.5
C2—C1—H1E109.4C1—N1—H1C109.5
H1D—C1—H1E108H1A—N1—H1C109.5
C1—C2—C3109.8 (11)H1B—N1—H1C109.5
C1—C2—H2A109.7Pb1i—I2—Pb1155.08 (2)
C3—C2—H2A109.7I2ii—Pb1—I2iii180
C1—C2—H2B109.7I2ii—Pb1—I291.256 (4)
C3—C2—H2B109.7I2iii—Pb1—I288.744 (4)
H2A—C2—H2B108.2I2ii—Pb1—I2iv88.744 (4)
C4—C3—C2111.7 (12)I2iii—Pb1—I2iv91.256 (4)
C4—C3—H3A109.3I2—Pb1—I2iv180
C2—C3—H3A109.3I2ii—Pb1—I191.077 (18)
C4—C3—H3B109.3I2iii—Pb1—I188.922 (18)
C2—C3—H3B109.3I2—Pb1—I193.576 (19)
H3A—C3—H3B107.9I2iv—Pb1—I186.424 (19)
C3—C4—H4A109.5I2ii—Pb1—I1iv88.923 (18)
C3—C4—H4B109.5I2iii—Pb1—I1iv91.078 (18)
H4A—C4—H4B109.5I2—Pb1—I1iv86.424 (19)
C3—C4—H4C109.5I2iv—Pb1—I1iv93.576 (19)
H4A—C4—H4C109.5I1—Pb1—I1iv180
N1—C1—C2—C3178.9 (15)Pb1i—I2—Pb1—I2iii172.39 (5)
C1—C2—C3—C4173.6 (19)Pb1i—I2—Pb1—I198.77 (6)
Pb1i—I2—Pb1—I2ii7.61 (5)Pb1i—I2—Pb1—I1iv81.23 (6)
Symmetry codes: (i) x1/2, y+5/2, z+2; (ii) x+1/2, y+5/2, z+2; (iii) x+3/2, y1/2, z; (iv) x+2, y+2, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···I2iii0.892.973.619 (9)131
N1—H1B···I10.892.773.645 (9)166
N1—H1C···I1v0.892.723.598 (9)171
Symmetry codes: (iii) x+3/2, y1/2, z; (v) x+5/2, y1/2, z.
(2a) bis(pentylammonium)tetraiodoplumbate(II) top
Crystal data top
2(C5H14N)·I4PbF(000) = 792
Mr = 891.13Dx = 2.671 Mg m3
Monoclinic, P21/aMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2yabCell parameters from 843 reflections
a = 8.4716 (18) Åθ = 3.4–28.3°
b = 9.007 (2) ŵ = 13.18 mm1
c = 14.784 (3) ÅT = 173 K
β = 100.881 (4)°Rectangular, yellow
V = 1107.8 (4) Å30.58 × 0.32 × 0.11 mm
Z = 2
Data collection top
Bruker APEX II CCD area detector
diffractometer
2649 independent reflections
Radiation source: fine-focus sealed tube2334 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.080
ω scansθmax = 28°, θmin = 2.7°
Absorption correction: integration
Bruker XPREP (Bruker, 2004)
h = 1111
Tmin = 0.035, Tmax = 0.241k = 1111
7043 measured reflectionsl = 1319
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.105H-atom parameters constrained
S = 1.15 w = 1/[σ2(Fo2) + (0.0375P)2 + 8.7673P]
where P = (Fo2 + 2Fc2)/3
2649 reflections(Δ/σ)max = 0.001
79 parametersΔρmax = 1.50 e Å3
0 restraintsΔρmin = 2.67 e Å3
Special details top

Experimental. Numerical integration absorption corrections based on indexed crystal faces were applied using the XPREP routine (Bruker, 2004)

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.9329 (13)0.5152 (11)0.7377 (8)0.037 (2)
H1D1.05110.52520.74530.045*
H1E0.88340.59380.69470.045*
C20.8840 (14)0.3669 (12)0.6962 (7)0.041 (2)
H2A0.76830.35040.69570.05*
H2B0.94540.28790.7340.05*
C30.9160 (17)0.3578 (13)0.5954 (9)0.053 (3)
H3A0.84430.42930.55670.063*
H3B1.02820.38890.59570.063*
C40.8908 (18)0.2087 (14)0.5526 (8)0.052 (3)
H4A0.78060.17440.5550.063*
H4B0.96740.13780.58850.063*
C50.9136 (16)0.2087 (17)0.4539 (8)0.057 (3)
H5A0.89560.10840.42840.086*
H5B1.02330.24040.45130.086*
H5C0.83660.27730.41780.086*
N10.8865 (11)0.5381 (9)0.8266 (6)0.0353 (17)
H1A0.91750.63040.8480.053*
H1B0.9350.46870.86730.053*
H1C0.77790.52960.82020.053*
I10.95279 (8)0.92483 (6)0.78682 (4)0.03160 (16)
I20.68969 (6)1.20798 (6)0.95764 (4)0.02885 (15)
Pb11110.01954 (12)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.040 (5)0.032 (5)0.042 (5)0.000 (4)0.014 (5)0.001 (4)
C20.043 (5)0.034 (5)0.046 (6)0.007 (4)0.006 (5)0.012 (5)
C30.060 (7)0.040 (6)0.061 (7)0.001 (5)0.020 (6)0.001 (6)
C40.068 (8)0.048 (6)0.040 (6)0.010 (6)0.009 (6)0.007 (5)
C50.056 (7)0.077 (9)0.039 (6)0.003 (7)0.011 (5)0.018 (6)
N10.043 (5)0.029 (4)0.032 (4)0.005 (3)0.003 (4)0.006 (3)
I10.0394 (3)0.0272 (3)0.0276 (3)0.0040 (2)0.0048 (2)0.0025 (2)
I20.0226 (3)0.0234 (3)0.0406 (3)0.00983 (19)0.0060 (2)0.0005 (2)
Pb10.01671 (19)0.01495 (18)0.0271 (2)0.00023 (13)0.00451 (15)0.00109 (15)
Geometric parameters (Å, º) top
C1—N11.457 (13)C5—H5A0.98
C1—C21.496 (14)C5—H5B0.98
C1—H1D0.99C5—H5C0.98
C1—H1E0.99N1—H1A0.91
C2—C31.565 (16)N1—H1B0.91
C2—H2A0.99N1—H1C0.91
C2—H2B0.99I1—Pb13.1743 (9)
C3—C41.483 (16)I2—Pb13.1923 (7)
C3—H3A0.99I2—Pb1i3.2052 (7)
C3—H3B0.99Pb1—I1ii3.1743 (9)
C4—C51.508 (15)Pb1—I2ii3.1923 (7)
C4—H4A0.99Pb1—I2iii3.2052 (7)
C4—H4B0.99Pb1—I2iv3.2052 (7)
N1—C1—C2113.3 (9)H5A—C5—H5B109.5
N1—C1—H1D108.9C4—C5—H5C109.5
C2—C1—H1D108.9H5A—C5—H5C109.5
N1—C1—H1E108.9H5B—C5—H5C109.5
C2—C1—H1E108.9C1—N1—H1A109.5
H1D—C1—H1E107.7C1—N1—H1B109.5
C1—C2—C3110.7 (9)H1A—N1—H1B109.5
C1—C2—H2A109.5C1—N1—H1C109.5
C3—C2—H2A109.5H1A—N1—H1C109.5
C1—C2—H2B109.5H1B—N1—H1C109.5
C3—C2—H2B109.5Pb1—I2—Pb1i150.22 (2)
H2A—C2—H2B108.1I1—Pb1—I1ii180
C4—C3—C2114.6 (10)I1—Pb1—I289.177 (16)
C4—C3—H3A108.6I1ii—Pb1—I290.823 (16)
C2—C3—H3A108.6I1—Pb1—I2ii90.823 (16)
C4—C3—H3B108.6I1ii—Pb1—I2ii89.177 (16)
C2—C3—H3B108.6I2—Pb1—I2ii180
H3A—C3—H3B107.6I1—Pb1—I2iii87.415 (17)
C3—C4—C5112.2 (11)I1ii—Pb1—I2iii92.585 (17)
C3—C4—H4A109.2I2—Pb1—I2iii84.535 (17)
C5—C4—H4A109.2I2ii—Pb1—I2iii95.465 (17)
C3—C4—H4B109.2I1—Pb1—I2iv92.585 (17)
C5—C4—H4B109.2I1ii—Pb1—I2iv87.415 (17)
H4A—C4—H4B107.9I2—Pb1—I2iv95.465 (17)
C4—C5—H5A109.5I2ii—Pb1—I2iv84.535 (17)
C4—C5—H5B109.5I2iii—Pb1—I2iv180
N1—C1—C2—C3172.2 (10)Pb1i—I2—Pb1—I1ii34.83 (4)
C1—C2—C3—C4172.6 (11)Pb1i—I2—Pb1—I2iii57.69 (5)
C2—C3—C4—C5176.6 (11)Pb1i—I2—Pb1—I2iv122.31 (5)
Pb1i—I2—Pb1—I1145.17 (4)
Symmetry codes: (i) x+3/2, y+1/2, z+2; (ii) x+2, y+2, z+2; (iii) x+1/2, y+5/2, z; (iv) x+3/2, y1/2, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···I10.912.843.594 (9)142
N1—H1B···I2v0.912.813.658 (9)156
N1—H1C···I1vi0.912.743.625 (9)166
Symmetry codes: (v) x+1/2, y+3/2, z; (vi) x1/2, y+3/2, z.
(2b) bis(pentylammonium)tetraiodoplumbate(II) top
Crystal data top
2(C5H14N)·I4PbF(000) = 792
Mr = 891.13Dx = 2.61 Mg m3
Dm = 0 Mg m3
Dm measured by not measured
Monoclinic, P21/aMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2yabCell parameters from 4406 reflections
a = 8.6716 (7) Åθ = 2.5–30.8°
b = 8.9297 (6) ŵ = 12.87 mm1
c = 14.8805 (13) ÅT = 293 K
β = 100.212 (2)°Plate, orange
V = 1134.01 (15) Å30.5 × 0.46 × 0.14 mm
Z = 2
Data collection top
Bruker APEX II CCD area detector
diffractometer
2734 independent reflections
Radiation source: fine-focus sealed tube2259 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.055
ω scansθmax = 28°, θmin = 1.4°
Absorption correction: integration
Bruker XPREP (Bruker, 2004)
h = 1011
Tmin = 0.020, Tmax = 0.179k = 711
8718 measured reflectionsl = 1919
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.121H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0576P)2 + 5.635P]
where P = (Fo2 + 2Fc2)/3
2734 reflections(Δ/σ)max = 0.001
79 parametersΔρmax = 1.90 e Å3
46 restraintsΔρmin = 2.07 e Å3
Special details top

Experimental. Numerical integration absorption corrections based on indexed crystal faces were applied using the XPREP routine (Bruker, 2004)

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.939 (3)0.5104 (17)0.7438 (12)0.127 (5)
H1D1.05220.5170.75070.152*
H1E0.89510.59090.70350.152*
C20.888 (3)0.3643 (18)0.6987 (10)0.133 (5)
H2A0.77590.35180.69690.159*
H2B0.94120.2830.73470.159*
C30.921 (3)0.355 (2)0.6026 (10)0.145 (6)
H3A0.8580.430.56570.174*
H3B1.03030.38160.60430.174*
C40.892 (3)0.207 (2)0.5561 (10)0.157 (7)
H4A0.7880.17180.56220.189*
H4B0.96740.13470.5860.189*
C50.902 (3)0.215 (3)0.4558 (9)0.146 (8)
H5A0.88530.11670.42920.22*
H5B1.00460.24960.44940.22*
H5C0.82440.28230.42530.22*
N10.8975 (18)0.5338 (13)0.8290 (8)0.097 (4)
H1A0.92850.62460.84930.145*
H1B0.94340.4650.86810.145*
H1C0.79390.52670.8240.145*
I10.95588 (11)0.92510 (9)0.78861 (5)0.0753 (2)
I20.70034 (8)1.21391 (8)0.96155 (6)0.0662 (2)
Pb11110.04330 (15)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.170 (14)0.114 (11)0.107 (9)0.028 (9)0.054 (10)0.006 (7)
C20.170 (13)0.130 (10)0.098 (8)0.036 (10)0.026 (9)0.021 (7)
C30.174 (14)0.157 (12)0.110 (9)0.013 (11)0.044 (10)0.027 (8)
C40.192 (16)0.178 (14)0.111 (9)0.004 (13)0.051 (12)0.043 (9)
C50.159 (17)0.183 (19)0.093 (9)0.046 (15)0.011 (11)0.030 (10)
N10.149 (11)0.067 (6)0.078 (6)0.016 (7)0.027 (7)0.008 (5)
I10.1002 (6)0.0647 (5)0.0592 (4)0.0064 (4)0.0094 (4)0.0039 (3)
I20.0552 (4)0.0540 (4)0.0922 (5)0.0267 (3)0.0212 (3)0.0083 (3)
Pb10.0364 (2)0.0325 (2)0.0622 (3)0.00046 (14)0.01189 (18)0.00206 (18)
Geometric parameters (Å, º) top
C1—N11.394 (19)C5—H5A0.96
C1—C21.499 (9)C5—H5B0.96
C1—H1D0.97C5—H5C0.96
C1—H1E0.97N1—H1A0.89
C2—C31.511 (9)N1—H1B0.89
C2—H2A0.97N1—H1C0.89
C2—H2B0.97I1—Pb13.1720 (8)
C3—C41.498 (9)I2—Pb13.1940 (6)
C3—H3A0.97I2—Pb1i3.1975 (6)
C3—H3B0.97Pb1—I1ii3.1720 (8)
C4—C51.513 (9)Pb1—I2ii3.1940 (6)
C4—H4A0.97Pb1—I2iii3.1975 (6)
C4—H4B0.97Pb1—I2iv3.1975 (6)
N1—C1—C2115.7 (14)H5A—C5—H5B109.5
N1—C1—H1D108.4C4—C5—H5C109.5
C2—C1—H1D108.4H5A—C5—H5C109.5
N1—C1—H1E108.4H5B—C5—H5C109.5
C2—C1—H1E108.4C1—N1—H1A109.5
H1D—C1—H1E107.4C1—N1—H1B109.5
C1—C2—C3112.2 (11)H1A—N1—H1B109.5
C1—C2—H2A109.2C1—N1—H1C109.5
C3—C2—H2A109.2H1A—N1—H1C109.5
C1—C2—H2B109.2H1B—N1—H1C109.5
C3—C2—H2B109.2Pb1—I2—Pb1i153.68 (3)
H2A—C2—H2B107.9I1—Pb1—I1ii180
C4—C3—C2116.0 (11)I1—Pb1—I2ii90.16 (2)
C4—C3—H3A108.3I1ii—Pb1—I2ii89.84 (2)
C2—C3—H3A108.3I1—Pb1—I289.84 (2)
C4—C3—H3B108.3I1ii—Pb1—I290.16 (2)
C2—C3—H3B108.3I2ii—Pb1—I2180
H3A—C3—H3B107.4I1—Pb1—I2iii87.99 (2)
C3—C4—C5112.3 (12)I1ii—Pb1—I2iii92.01 (2)
C3—C4—H4A109.1I2ii—Pb1—I2iii93.399 (8)
C5—C4—H4A109.1I2—Pb1—I2iii86.601 (8)
C3—C4—H4B109.1I1—Pb1—I2iv92.01 (2)
C5—C4—H4B109.1I1ii—Pb1—I2iv87.99 (2)
H4A—C4—H4B107.9I2ii—Pb1—I2iv86.601 (8)
C4—C5—H5A109.5I2—Pb1—I2iv93.399 (8)
C4—C5—H5B109.5I2iii—Pb1—I2iv180
N1—C1—C2—C3173.6 (19)Pb1i—I2—Pb1—I1ii32.34 (6)
C1—C2—C3—C4173 (2)Pb1i—I2—Pb1—I2iii59.67 (7)
C2—C3—C4—C5171 (2)Pb1i—I2—Pb1—I2iv120.33 (7)
Pb1i—I2—Pb1—I1147.66 (6)
Symmetry codes: (i) x+3/2, y+1/2, z+2; (ii) x+2, y+2, z+2; (iii) x+1/2, y+5/2, z; (iv) x+3/2, y1/2, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···I10.892.853.597 (12)142
N1—H1B···I2v0.892.893.721 (13)156
N1—H1C···I1vi0.892.923.787 (15)166
Symmetry codes: (v) x+1/2, y+3/2, z; (vi) x1/2, y+3/2, z.
(2c) bis(pentylammonium)tetraiodoplumbate(II) top
Crystal data top
2(C5H14N)·I4PbF(000) = 1584
Mr = 891.13Dx = 2.512 Mg m3
Dm = 0 Mg m3
Dm measured by not measured
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 4614 reflections
a = 9.0078 (10) Åθ = 2.6–28.9°
b = 8.731 (1) ŵ = 12.39 mm1
c = 29.956 (4) ÅT = 333 K
V = 2356.0 (5) Å3Plate, red
Z = 40.5 × 0.45 × 0.14 mm
Data collection top
Bruker APEX II CCD area detector
diffractometer
2194 independent reflections
Radiation source: fine-focus sealed tube1566 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.066
ω scansθmax = 25.5°, θmin = 2.6°
Absorption correction: integration
Bruker XPREP (Bruker, 2004)
h = 910
Tmin = 0.017, Tmax = 0.176k = 610
11216 measured reflectionsl = 3136
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.124Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.284H-atom parameters constrained
S = 1.32 w = 1/[σ2(Fo2) + (0.P)2 + 291.1164P]
where P = (Fo2 + 2Fc2)/3
2194 reflections(Δ/σ)max = 0.003
79 parametersΔρmax = 2.17 e Å3
48 restraintsΔρmin = 2.67 e Å3
Special details top

Experimental. Numerical integration absorption corrections based on indexed crystal faces were applied using the XPREP routine (Bruker, 2004)

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.973 (8)0.468 (9)0.894 (2)0.27 (2)
H1D0.87350.49940.90250.326*
H1E0.98940.36540.90520.326*
C20.986 (7)0.469 (11)0.843 (2)0.28 (2)
H2A1.0070.57210.83340.333*
H2B1.0690.40450.83480.333*
C30.847 (5)0.412 (10)0.820 (2)0.29 (2)
H3A0.78260.49840.8140.342*
H3B0.79410.34310.840.342*
C40.878 (9)0.328 (6)0.777 (3)0.29 (3)
H4A0.95550.25280.78160.347*
H4B0.78960.27450.76720.347*
C50.927 (11)0.435 (10)0.739 (2)0.30 (3)
H5A0.90980.38690.71090.45*
H5B1.03130.4570.74230.45*
H5C0.87180.52880.74090.45*
N11.080 (6)0.572 (7)0.914 (2)0.25 (3)
H1A1.06790.57350.94320.375*
H1B1.06720.66540.90270.375*
H1C1.17160.53950.90740.375*
I11.0425 (4)0.9841 (4)0.89404 (13)0.1034 (12)
I20.7090 (3)1.2066 (3)0.99199 (13)0.0927 (11)
Pb11110.0610 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.15 (4)0.20 (4)0.46 (7)0.05 (3)0.11 (4)0.03 (5)
C20.17 (4)0.20 (4)0.46 (7)0.05 (3)0.10 (5)0.02 (5)
C30.18 (4)0.21 (4)0.47 (7)0.05 (3)0.10 (5)0.03 (5)
C40.19 (4)0.21 (5)0.46 (7)0.05 (3)0.09 (5)0.03 (5)
C50.22 (5)0.21 (5)0.46 (7)0.06 (5)0.09 (5)0.02 (5)
N10.11 (4)0.19 (5)0.46 (7)0.02 (3)0.11 (4)0.02 (5)
I10.099 (2)0.104 (3)0.108 (3)0.019 (2)0.0040 (19)0.009 (2)
I20.0608 (15)0.0622 (16)0.155 (3)0.0314 (13)0.0187 (18)0.011 (2)
Pb10.0358 (8)0.0403 (9)0.1069 (17)0.0003 (8)0.0014 (10)0.0057 (13)
Geometric parameters (Å, º) top
C1—N11.449 (10)C5—H5A0.96
C1—C21.520 (10)C5—H5B0.96
C1—H1D0.97C5—H5C0.96
C1—H1E0.97N1—H1A0.89
C2—C31.518 (10)N1—H1B0.89
C2—H2A0.97N1—H1C0.89
C2—H2B0.97I1—Pb13.200 (4)
C3—C41.520 (10)I2—Pb1i3.188 (2)
C3—H3A0.97I2—Pb13.191 (2)
C3—H3B0.97Pb1—I2ii3.188 (2)
C4—C51.519 (10)Pb1—I2iii3.188 (2)
C4—H4A0.97Pb1—I2iv3.191 (2)
C4—H4B0.97Pb1—I1iv3.200 (4)
N1—C1—C2110.7 (16)H5A—C5—H5B109.5
N1—C1—H1D109.5C4—C5—H5C109.5
C2—C1—H1D109.5H5A—C5—H5C109.5
N1—C1—H1E109.5H5B—C5—H5C109.5
C2—C1—H1E109.5C1—N1—H1A109.5
H1D—C1—H1E108.1C1—N1—H1B109.5
C3—C2—C1113.2 (16)H1A—N1—H1B109.5
C3—C2—H2A108.9C1—N1—H1C109.5
C1—C2—H2A108.9H1A—N1—H1C109.5
C3—C2—H2B108.9H1B—N1—H1C109.5
C1—C2—H2B108.9Pb1i—I2—Pb1159.01 (11)
H2A—C2—H2B107.8I2ii—Pb1—I2iii180
C2—C3—C4113.4 (16)I2ii—Pb1—I2iv92.095 (19)
C2—C3—H3A108.9I2iii—Pb1—I2iv87.91 (2)
C4—C3—H3A108.9I2ii—Pb1—I287.91 (2)
C2—C3—H3B108.9I2iii—Pb1—I292.095 (19)
C4—C3—H3B108.9I2iv—Pb1—I2180.00 (14)
H3A—C3—H3B107.7I2ii—Pb1—I1iv92.23 (10)
C5—C4—C3113.1 (16)I2iii—Pb1—I1iv87.77 (10)
C5—C4—H4A109I2iv—Pb1—I1iv92.76 (9)
C3—C4—H4A109I2—Pb1—I1iv87.24 (9)
C5—C4—H4B109I2ii—Pb1—I187.77 (10)
C3—C4—H4B109I2iii—Pb1—I192.23 (10)
H4A—C4—H4B107.8I2iv—Pb1—I187.24 (9)
C4—C5—H5A109.5I2—Pb1—I192.76 (9)
C4—C5—H5B109.5I1iv—Pb1—I1180.0000 (10)
N1—C1—C2—C3159 (7)Pb1i—I2—Pb1—I2iii19.9 (3)
C1—C2—C3—C4148 (7)Pb1i—I2—Pb1—I1iv67.8 (4)
C2—C3—C4—C572 (8)Pb1i—I2—Pb1—I1112.2 (4)
Pb1i—I2—Pb1—I2ii160.1 (3)
Symmetry codes: (i) x1/2, y+5/2, z+2; (ii) x+3/2, y1/2, z; (iii) x+1/2, y+5/2, z+2; (iv) x+2, y+2, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···I2ii0.893.123.70 (5)125
N1—H1B···I10.892.83.66 (7)163
N1—H1C···I1v0.892.653.53 (5)171
Symmetry codes: (ii) x+3/2, y1/2, z; (v) x+5/2, y1/2, z.
(3a) bis(hexylammonium)tetraiodoplumbate(II) top
Crystal data top
2(C6H16N)·I4PbF(000) = 824
Mr = 919.19Dx = 2.489 Mg m3
Monoclinic, P21/aMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2yabCell parameters from 866 reflections
a = 8.643 (4) Åθ = 6.6–56.4°
b = 8.845 (4) ŵ = 11.91 mm1
c = 16.052 (7) ÅT = 173 K
β = 91.985 (8)°Plate, yellow
V = 1226.4 (10) Å30.32 × 0.16 × 0.02 mm
Z = 2
Data collection top
Bruker APEX II CCD area detector
diffractometer
2984 independent reflections
Radiation source: fine-focus sealed tube2563 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.092
ω scansθmax = 28°, θmin = 1.3°
Absorption correction: integration
Bruker XPREP (Bruker, 2004)
h = 1111
Tmin = 0.147, Tmax = 0.784k = 1111
11777 measured reflectionsl = 1821
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.059Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.143H-atom parameters constrained
S = 1.21 w = 1/[σ2(Fo2) + (0.0221P)2 + 49.3157P]
where P = (Fo2 + 2Fc2)/3
2984 reflections(Δ/σ)max = 0.002
89 parametersΔρmax = 4.93 e Å3
0 restraintsΔρmin = 2.77 e Å3
Special details top

Experimental. Numerical integration absorption corrections based on indexed crystal faces were applied using the XPREP routine (Bruker, 2004)

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.9621 (18)0.4637 (18)0.8019 (11)0.035 (4)
H1D0.86160.47280.82930.041*
H1E1.00150.35980.81150.041*
C20.939 (2)0.490 (2)0.7102 (11)0.042 (4)
H2A1.04030.48710.68360.05*
H2B0.89460.59260.70110.05*
C30.831 (2)0.3738 (18)0.6686 (10)0.035 (4)
H3A0.88220.27350.66980.042*
H3B0.7350.3660.70.042*
C40.791 (2)0.417 (2)0.5793 (11)0.043 (4)
H4A0.88740.42250.54790.051*
H4B0.74270.51810.57830.051*
C50.681 (3)0.305 (2)0.5363 (12)0.049 (5)
H5A0.58480.29860.56770.059*
H5B0.72950.20310.53740.059*
C60.640 (3)0.347 (3)0.4462 (13)0.066 (7)
H6A0.56890.27240.42170.098*
H6B0.73490.35040.41420.098*
H6C0.59110.44730.44470.098*
N11.0710 (16)0.5717 (15)0.8387 (10)0.037 (3)
H1A1.08320.55340.89430.056*
H1B1.03420.66710.83060.056*
H1C1.16390.56220.81420.056*
I10.97165 (12)0.96748 (11)0.80108 (6)0.0293 (2)
I20.69394 (10)1.19584 (10)0.99643 (6)0.0250 (2)
Pb11110.01592 (17)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.020 (7)0.032 (8)0.051 (10)0.012 (6)0.007 (7)0.003 (7)
C20.057 (12)0.036 (9)0.032 (9)0.008 (8)0.006 (8)0.008 (7)
C30.045 (9)0.028 (8)0.032 (8)0.004 (7)0.006 (7)0.004 (6)
C40.056 (11)0.042 (9)0.030 (9)0.009 (8)0.003 (8)0.007 (7)
C50.065 (13)0.046 (11)0.035 (10)0.003 (9)0.009 (9)0.002 (8)
C60.093 (19)0.065 (14)0.036 (11)0.012 (13)0.018 (11)0.012 (10)
N10.032 (7)0.028 (7)0.050 (9)0.004 (6)0.014 (6)0.013 (6)
I10.0374 (5)0.0256 (5)0.0248 (5)0.0015 (4)0.0011 (4)0.0039 (4)
I20.0176 (4)0.0197 (4)0.0376 (5)0.0079 (3)0.0024 (3)0.0052 (3)
Pb10.0119 (3)0.0118 (3)0.0240 (4)0.0003 (2)0.0002 (2)0.0001 (3)
Geometric parameters (Å, º) top
C1—N11.45 (2)C5—H5B0.99
C1—C21.50 (2)C6—H6A0.98
C1—H1D0.99C6—H6B0.98
C1—H1E0.99C6—H6C0.98
C2—C31.53 (2)N1—H1A0.91
C2—H2A0.99N1—H1B0.91
C2—H2B0.99N1—H1C0.91
C3—C41.51 (2)I1—Pb13.2069 (17)
C3—H3A0.99I2—Pb13.1608 (13)
C3—H3B0.99I2—Pb1i3.1712 (13)
C4—C51.52 (3)Pb1—I2ii3.1608 (13)
C4—H4A0.99Pb1—I2iii3.1712 (14)
C4—H4B0.99Pb1—I2iv3.1712 (14)
C5—C61.53 (3)Pb1—I1ii3.2069 (17)
C5—H5A0.99
N1—C1—C2111.1 (15)H5A—C5—H5B107.8
N1—C1—H1D109.4C5—C6—H6A109.5
C2—C1—H1D109.4C5—C6—H6B109.5
N1—C1—H1E109.4H6A—C6—H6B109.5
C2—C1—H1E109.4C5—C6—H6C109.5
H1D—C1—H1E108H6A—C6—H6C109.5
C1—C2—C3112.5 (14)H6B—C6—H6C109.5
C1—C2—H2A109.1C1—N1—H1A109.5
C3—C2—H2A109.1C1—N1—H1B109.5
C1—C2—H2B109.1H1A—N1—H1B109.5
C3—C2—H2B109.1C1—N1—H1C109.5
H2A—C2—H2B107.8H1A—N1—H1C109.5
C4—C3—C2111.2 (14)H1B—N1—H1C109.5
C4—C3—H3A109.4Pb1—I2—Pb1i155.11 (3)
C2—C3—H3A109.4I2ii—Pb1—I2180
C4—C3—H3B109.4I2ii—Pb1—I2iii88.70 (3)
C2—C3—H3B109.4I2—Pb1—I2iii91.30 (3)
H3A—C3—H3B108I2ii—Pb1—I2iv91.30 (3)
C3—C4—C5112.7 (15)I2—Pb1—I2iv88.70 (3)
C3—C4—H4A109I2iii—Pb1—I2iv180
C5—C4—H4A109I2ii—Pb1—I190.22 (3)
C3—C4—H4B109I2—Pb1—I189.78 (3)
C5—C4—H4B109I2iii—Pb1—I185.39 (3)
H4A—C4—H4B107.8I2iv—Pb1—I194.61 (3)
C4—C5—C6112.9 (18)I2ii—Pb1—I1ii89.78 (3)
C4—C5—H5A109I2—Pb1—I1ii90.22 (3)
C6—C5—H5A109I2iii—Pb1—I1ii94.61 (3)
C4—C5—H5B109I2iv—Pb1—I1ii85.39 (3)
C6—C5—H5B109I1—Pb1—I1ii180
N1—C1—C2—C3177.0 (15)Pb1i—I2—Pb1—I2iii174.29 (10)
C1—C2—C3—C4171.6 (16)Pb1i—I2—Pb1—I2iv5.71 (10)
C2—C3—C4—C5178.8 (17)Pb1i—I2—Pb1—I1100.32 (9)
C3—C4—C5—C6180.0 (18)Pb1i—I2—Pb1—I1ii79.68 (9)
Symmetry codes: (i) x+3/2, y+1/2, z+2; (ii) x+2, y+2, z+2; (iii) x+3/2, y1/2, z+2; (iv) x+1/2, y+5/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···I2v0.912.893.599 (13)136
N1—H1B···I10.912.753.650 (13)171
N1—H1C···I1v0.912.693.553 (15)159
Symmetry code: (v) x+1/2, y+3/2, z.
(3b) bis(hexylammonium)tetraiodoplumbate(II) top
Crystal data top
2(C6H16N)·I4PbF(000) = 1648
Mr = 919.19Dx = 2.403 Mg m3
Dm = 0 Mg m3
Dm measured by not measured
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 5270 reflections
a = 8.9413 (2) Åθ = 2.6–29.9°
b = 8.6874 (2) ŵ = 11.50 mm1
c = 32.7027 (10) ÅT = 293 K
V = 2540.24 (11) Å3Plate, orange
Z = 40.46 × 0.28 × 0.05 mm
Data collection top
Bruker APEX II CCD area detector
diffractometer
3056 independent reflections
Radiation source: fine-focus sealed tube2421 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.045
ω scansθmax = 28°, θmin = 2.6°
Absorption correction: integration
Bruker XPREP (Bruker, 2004)
h = 911
Tmin = 0.058, Tmax = 0.536k = 1011
12552 measured reflectionsl = 4243
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.081H-atom parameters constrained
wR(F2) = 0.168 w = 1/[σ2(Fo2) + (0.P)2 + 101.7161P]
where P = (Fo2 + 2Fc2)/3
S = 1.34(Δ/σ)max < 0.001
3056 reflectionsΔρmax = 1.65 e Å3
89 parametersΔρmin = 1.69 e Å3
56 restraintsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.00037 (4)
Special details top

Experimental. Numerical integration absorption corrections based on indexed crystal faces were applied using the XPREP routine (Bruker, 2004)

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.970 (4)0.463 (4)0.9038 (6)0.120 (8)
H1D0.86890.48450.9130.144*
H1E0.99570.3580.91110.144*
C20.985 (4)0.489 (4)0.8585 (6)0.136 (8)
H2A1.08820.46930.85080.163*
H2B0.96470.59670.85280.163*
C30.883 (4)0.391 (4)0.8320 (6)0.148 (8)
H3A0.77960.41450.83790.177*
H3B0.89990.28240.83790.177*
C40.917 (4)0.423 (4)0.7872 (6)0.164 (9)
H4A0.89350.52960.78130.197*
H4B1.02360.4090.78250.197*
C50.832 (4)0.321 (4)0.7578 (7)0.177 (10)
H5A0.72560.33510.7620.213*
H5B0.85610.21440.76320.213*
C60.871 (5)0.360 (5)0.7136 (7)0.202 (15)
H6A0.81470.2940.69560.303*
H6B0.97580.34350.70910.303*
H6C0.84630.46520.70810.303*
N11.078 (2)0.574 (2)0.9216 (7)0.086 (5)
H1A1.07490.56880.94880.129*
H1B1.0550.66910.91360.129*
H1C1.17030.55120.91310.129*
I11.03252 (17)0.98288 (17)0.90247 (5)0.0689 (4)
I20.69807 (13)1.19581 (14)0.99628 (5)0.0637 (4)
Pb11110.0443 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.112 (16)0.122 (17)0.127 (12)0.016 (13)0.005 (15)0.027 (16)
C20.137 (17)0.145 (18)0.126 (12)0.005 (15)0.008 (14)0.028 (15)
C30.149 (18)0.164 (19)0.130 (12)0.012 (17)0.022 (15)0.035 (16)
C40.17 (2)0.19 (2)0.129 (12)0.02 (2)0.022 (16)0.032 (17)
C50.18 (2)0.22 (2)0.132 (14)0.02 (2)0.029 (18)0.041 (19)
C60.22 (3)0.26 (4)0.126 (13)0.05 (3)0.03 (2)0.03 (2)
N10.057 (10)0.082 (13)0.120 (13)0.016 (9)0.003 (10)0.003 (11)
I10.0759 (9)0.0620 (8)0.0687 (9)0.0080 (8)0.0078 (7)0.0020 (7)
I20.0451 (6)0.0439 (6)0.1019 (11)0.0175 (5)0.0117 (7)0.0073 (7)
Pb10.0328 (4)0.0322 (4)0.0679 (6)0.0001 (3)0.0003 (4)0.0003 (5)
Geometric parameters (Å, º) top
C1—N11.49 (3)C5—H5B0.97
C1—C21.504 (10)C6—H6A0.96
C1—H1D0.97C6—H6B0.96
C1—H1E0.97C6—H6C0.96
C2—C31.522 (10)N1—H1A0.89
C2—H2A0.97N1—H1B0.89
C2—H2B0.97N1—H1C0.89
C3—C41.525 (10)I1—Pb13.2062 (15)
C3—H3A0.97I2—Pb1i3.1835 (11)
C3—H3B0.97I2—Pb13.1932 (11)
C4—C51.510 (10)Pb1—I2ii3.1835 (11)
C4—H4A0.97Pb1—I2iii3.1835 (11)
C4—H4B0.97Pb1—I2iv3.1932 (11)
C5—C61.523 (10)Pb1—I1iv3.2062 (15)
C5—H5A0.97
N1—C1—C2103 (2)H5A—C5—H5B108
N1—C1—H1D111.1C5—C6—H6A109.5
C2—C1—H1D111.1C5—C6—H6B109.5
N1—C1—H1E111.1H6A—C6—H6B109.5
C2—C1—H1E111.1C5—C6—H6C109.5
H1D—C1—H1E109.1H6A—C6—H6C109.5
C1—C2—C3114.9 (14)H6B—C6—H6C109.5
C1—C2—H2A108.5C1—N1—H1A109.5
C3—C2—H2A108.5C1—N1—H1B109.5
C1—C2—H2B108.5H1A—N1—H1B109.5
C3—C2—H2B108.5C1—N1—H1C109.5
H2A—C2—H2B107.5H1A—N1—H1C109.5
C2—C3—C4109.0 (13)H1B—N1—H1C109.5
C2—C3—H3A109.9Pb1i—I2—Pb1155.65 (5)
C4—C3—H3A109.9I2ii—Pb1—I2iii180
C2—C3—H3B109.9I2ii—Pb1—I2iv91.695 (9)
C4—C3—H3B109.9I2iii—Pb1—I2iv88.305 (9)
H3A—C3—H3B108.3I2ii—Pb1—I288.305 (9)
C5—C4—C3113.8 (14)I2iii—Pb1—I291.695 (9)
C5—C4—H4A108.8I2iv—Pb1—I2180.0000 (10)
C3—C4—H4A108.8I2ii—Pb1—I1iv91.50 (4)
C5—C4—H4B108.8I2iii—Pb1—I1iv88.50 (4)
C3—C4—H4B108.8I2iv—Pb1—I1iv93.64 (4)
H4A—C4—H4B107.7I2—Pb1—I1iv86.36 (4)
C4—C5—C6111.2 (14)I2ii—Pb1—I188.50 (4)
C4—C5—H5A109.4I2iii—Pb1—I191.50 (4)
C6—C5—H5A109.4I2iv—Pb1—I186.36 (4)
C4—C5—H5B109.4I2—Pb1—I193.64 (4)
C6—C5—H5B109.4I1iv—Pb1—I1180.0000 (10)
N1—C1—C2—C3179 (3)Pb1i—I2—Pb1—I2ii171.92 (11)
C1—C2—C3—C4177 (3)Pb1i—I2—Pb1—I2iii8.08 (11)
C2—C3—C4—C5175 (3)Pb1i—I2—Pb1—I1iv80.32 (14)
C3—C4—C5—C6180 (4)Pb1i—I2—Pb1—I199.68 (14)
Symmetry codes: (i) x1/2, y+5/2, z+2; (ii) x+3/2, y1/2, z; (iii) x+1/2, y+5/2, z+2; (iv) x+2, y+2, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···I2ii0.893.13.63 (2)121
N1—H1B···I10.892.763.63 (2)166
N1—H1C···I1v0.892.743.622 (18)169
Symmetry codes: (ii) x+3/2, y1/2, z; (v) x+5/2, y1/2, z.
 

Follow Acta Cryst. B
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds