Download citation
Download citation
link to html
The tin(IV) atom in the salt, (C7H11N2)2[SnBr2(CH3)2Cl2], lies on a center of inversion in a tetra­gonally compressed octa­hedron; the bromine atoms are disordered with the chlorine atoms, so that they appear to share the same site. The crystal structure is stabilized by N—H...Br hydrogen bonds.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536808013561/bt2709sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536808013561/bt2709Isup2.hkl
Contains datablock I

CCDC reference: 690841

Key indicators

  • Single-crystal X-ray study
  • T = 100 K
  • Mean [sigma](C-C) = 0.009 Å
  • Disorder in main residue
  • R factor = 0.046
  • wR factor = 0.124
  • Data-to-parameter ratio = 22.6

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT301_ALERT_3_C Main Residue Disorder ......................... 17.00 Perc. PLAT342_ALERT_3_C Low Bond Precision on C-C Bonds (x 1000) Ang ... 9 PLAT021_ALERT_1_C Ratio Unique / Expected Reflections too High ... 1.02 PLAT042_ALERT_1_C Calc. and Rep. MoietyFormula Strings Differ .... ? PLAT062_ALERT_4_C Rescale T(min) & T(max) by ..................... 0.92
Alert level G FORMU01_ALERT_1_G There is a discrepancy between the atom counts in the _chemical_formula_sum and _chemical_formula_moiety. This is usually due to the moiety formula being in the wrong format. Atom count from _chemical_formula_sum: C16 H28 Br2 Cl2 N4 Sn1 Atom count from _chemical_formula_moiety:C14 H22 N4 ABSTM02_ALERT_3_G When printed, the submitted absorption T values will be replaced by the scaled T values. Since the ratio of scaled T's is identical to the ratio of reported T values, the scaling does not imply a change to the absorption corrections used in the study. Ratio of Tmax expected/reported 0.916 Tmax scaled 0.493 Tmin scaled 0.353 PLAT860_ALERT_3_G Note: Number of Least-Squares Restraints ....... 4
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 5 ALERT level C = Check and explain 3 ALERT level G = General alerts; check 3 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 0 ALERT type 2 Indicator that the structure model may be wrong or deficient 4 ALERT type 3 Indicator that the structure quality may be low 1 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

Bis(4-methylaminopyridinium) tetrabromidodiphenylstannate is produced from the cleavage of the mixed alkyl/triarylstannate, cyclopentyltriphenyltin, by 4-dimethylaminopyridine hydrobromide perbromide (Yap et al., 2008). In principle, the salt can be synthesized from the reaction of 4-dimethylaminopyridine hydrobromide perbromide and diphenyltin dibromide. The possibility is borne out by reacting the organic reagent with dimethyltin dichloride to yield the title salt (Scheme I, Fig. 1). The SnIV atom of the stannate lies on a center-of-inversion in tetragonally compressed octahedron; the two indepedent bromine atom share the sames site as the two independent chlorine atoms.

Related literature top

For the structure of bis(4-dimethylaminopyridinium) tetrabromidodiphenylstannate, see: Yap et al. (2008).

Experimental top

Dimethyltin dichoride (2.20 g, 1 mmol) and 4-dimethylaminopyridine hydrobromide perbromide (3.62 g, 1 mmol) were heated in ethanol in an attempt to synthesize the bromodichloridodimethylstannate salt. Colorless crystals separated from it after a few days.

Refinement top

Carbon-bound H-atoms were placed in calculated positions (C—H 0.95 to 0.98 Å) and were included in the refinement in the riding model approximation, with U(H) set to 1.2 to 1.5Ueq(C). The ammonium H atom was similarly treated (N–H 0.88 Å; U(H) = 1.2 Ueq(N)).

The chlorine atoms are disordered with respect to the bromine atoms, so that the halogen site is occupied by both a chlorine and a bromine. Constraints were applied so that at each site, the atoms had the same coordinates and the same anisotropic displacement parameters. The occupancies refined to 0.4551 (15) for the Br1/Cl2 pair, and to 0.5449 (15) for the Br2/Cl1 pair. The final difference Fourier map had a large peak at 1 Å from Sn1.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2008).

Figures top
[Figure 1] Fig. 1. Thermal ellipsoid plot (Barbour, 2001) plot of [C7H11N]2 [SnBr2Cl2(CH3)2] at the 70% probability level. Hydrogen atoms are drawn as spheres of arbitrary radius. The disorder is not shown.
Bis[4-(dimethylamino)pyridinium] dibromidodichloridodimethylstannate(IV) top
Crystal data top
(C7H11N2)2[SnBr2(CH3)2Cl2]Z = 1
Mr = 625.83F(000) = 306
Triclinic, P1Dx = 1.767 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.3573 (3) ÅCell parameters from 1302 reflections
b = 8.7717 (3) Åθ = 2.3–23.1°
c = 9.6644 (4) ŵ = 4.72 mm1
α = 97.183 (3)°T = 100 K
β = 107.990 (3)°Prism, colorless
γ = 90.052 (2)°0.25 × 0.20 × 0.15 mm
V = 588.04 (4) Å3
Data collection top
Bruker SMART APEX
diffractometer
2756 independent reflections
Radiation source: fine-focus sealed tube1656 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.045
ω scansθmax = 27.5°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS;Sheldrick, 1996)
h = 99
Tmin = 0.385, Tmax = 0.538k = 1111
4965 measured reflectionsl = 1012
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.123H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.051P)2]
where P = (Fo2 + 2Fc2)/3
2756 reflections(Δ/σ)max = 0.001
122 parametersΔρmax = 0.82 e Å3
4 restraintsΔρmin = 1.14 e Å3
Crystal data top
(C7H11N2)2[SnBr2(CH3)2Cl2]γ = 90.052 (2)°
Mr = 625.83V = 588.04 (4) Å3
Triclinic, P1Z = 1
a = 7.3573 (3) ÅMo Kα radiation
b = 8.7717 (3) ŵ = 4.72 mm1
c = 9.6644 (4) ÅT = 100 K
α = 97.183 (3)°0.25 × 0.20 × 0.15 mm
β = 107.990 (3)°
Data collection top
Bruker SMART APEX
diffractometer
2756 independent reflections
Absorption correction: multi-scan
(SADABS;Sheldrick, 1996)
1656 reflections with I > 2σ(I)
Tmin = 0.385, Tmax = 0.538Rint = 0.045
4965 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0464 restraints
wR(F2) = 0.123H-atom parameters constrained
S = 1.04Δρmax = 0.82 e Å3
2756 reflectionsΔρmin = 1.14 e Å3
122 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Sn10.50000.50000.50000.0414 (2)
Br10.50474 (16)0.50403 (11)0.77987 (11)0.0610 (3)0.4551 (15)
Br20.36593 (14)0.78543 (10)0.49452 (10)0.0588 (3)0.5449 (15)
Cl10.50474 (16)0.50403 (11)0.77987 (11)0.0610 (3)0.5449 (15)
Cl20.36593 (14)0.78543 (10)0.49452 (10)0.0588 (3)0.4551 (15)
N10.6576 (7)0.1602 (6)0.8588 (6)0.0552 (14)
H10.62050.22480.79380.066*
N20.8414 (7)0.1391 (6)1.1635 (6)0.0557 (14)
C10.2014 (7)0.4016 (6)0.4157 (6)0.0344 (12)
H1A0.20230.29040.41920.052*
H1B0.14320.42140.31420.052*
H1C0.12710.44950.47670.052*
C20.6816 (9)0.2092 (8)1.0006 (8)0.0581 (18)
H20.65710.31281.02900.070*
C30.7413 (9)0.1116 (7)1.1061 (7)0.0545 (16)
H30.75700.14801.20600.065*
C40.7793 (8)0.0433 (7)1.0650 (7)0.0443 (15)
C50.7486 (8)0.0875 (7)0.9140 (7)0.0488 (15)
H50.76980.19040.88050.059*
C60.6890 (9)0.0144 (8)0.8144 (7)0.0536 (16)
H60.66980.01830.71320.064*
C70.8687 (11)0.0920 (10)1.3200 (8)0.084 (3)
H7A0.98860.03051.36390.127*
H7B0.87400.18361.36950.127*
H7C0.76160.03051.33100.127*
C80.8809 (10)0.2972 (8)1.1236 (9)0.071 (2)
H8A0.76020.35601.07360.106*
H8B0.94980.34171.21240.106*
H8C0.95940.30081.05790.106*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sn10.0437 (4)0.0408 (3)0.0388 (4)0.0028 (3)0.0122 (3)0.0040 (3)
Br10.0938 (9)0.0501 (6)0.0460 (6)0.0082 (5)0.0319 (6)0.0062 (5)
Br20.0809 (7)0.0458 (5)0.0461 (6)0.0187 (5)0.0144 (5)0.0062 (4)
Cl10.0938 (9)0.0501 (6)0.0460 (6)0.0082 (5)0.0319 (6)0.0062 (5)
Cl20.0809 (7)0.0458 (5)0.0461 (6)0.0187 (5)0.0144 (5)0.0062 (4)
N10.050 (3)0.064 (4)0.052 (4)0.001 (3)0.012 (3)0.020 (3)
N20.048 (3)0.070 (4)0.050 (3)0.004 (3)0.012 (3)0.017 (3)
C10.032 (3)0.039 (3)0.040 (3)0.009 (2)0.019 (3)0.012 (3)
C20.050 (4)0.058 (4)0.064 (5)0.007 (3)0.016 (4)0.004 (4)
C30.048 (4)0.065 (4)0.048 (4)0.001 (3)0.016 (3)0.006 (3)
C40.031 (3)0.063 (4)0.037 (3)0.005 (3)0.008 (3)0.009 (3)
C50.047 (4)0.050 (3)0.047 (4)0.003 (3)0.013 (3)0.002 (3)
C60.054 (4)0.064 (4)0.042 (4)0.013 (3)0.016 (3)0.001 (3)
C70.075 (5)0.136 (7)0.043 (4)0.025 (5)0.013 (4)0.028 (5)
C80.071 (5)0.063 (5)0.079 (6)0.002 (4)0.016 (4)0.026 (4)
Geometric parameters (Å, º) top
Sn1—C1i2.225 (5)C1—H1C0.9800
Sn1—C12.225 (5)C2—C31.381 (8)
Sn1—Br12.690 (1)C2—H20.9500
Sn1—Cl1i2.690 (1)C3—C41.420 (9)
Sn1—Br1i2.690 (1)C3—H30.9500
Sn1—Br2i2.6926 (8)C4—C51.409 (9)
Sn1—Br22.6926 (8)C5—C61.369 (8)
Sn1—Cl2i2.6926 (8)C5—H50.9500
N1—C21.341 (9)C6—H60.9500
N1—C61.341 (9)C7—H7A0.9800
N1—H10.8800C7—H7B0.9800
N2—C41.324 (7)C7—H7C0.9800
N2—C81.446 (9)C8—H8A0.9800
N2—C71.467 (9)C8—H8B0.9800
C1—H1A0.9800C8—H8C0.9800
C1—H1B0.9800
C1i—Sn1—C1180.0Sn1—C1—H1A109.5
C1i—Sn1—Br188.38 (14)Sn1—C1—H1B109.5
C1—Sn1—Br191.62 (14)H1A—C1—H1B109.5
C1i—Sn1—Cl1i91.62 (14)Sn1—C1—H1C109.5
C1—Sn1—Cl1i88.38 (14)H1A—C1—H1C109.5
Br1—Sn1—Cl1i180.0H1B—C1—H1C109.5
C1i—Sn1—Br1i91.62 (14)N1—C2—C3121.1 (6)
C1—Sn1—Br1i88.38 (14)N1—C2—H2119.5
Br1—Sn1—Br1i180.0C3—C2—H2119.5
Cl1i—Sn1—Br1i0.0C2—C3—C4120.0 (6)
C1i—Sn1—Br2i89.83 (13)C2—C3—H3120.0
C1—Sn1—Br2i90.17 (13)C4—C3—H3120.0
Br1—Sn1—Br2i89.12 (3)N2—C4—C5122.5 (6)
Cl1i—Sn1—Br2i90.88 (3)N2—C4—C3121.6 (6)
Br1i—Sn1—Br2i90.88 (3)C5—C4—C3115.9 (6)
C1i—Sn1—Br290.17 (13)C6—C5—C4121.5 (6)
C1—Sn1—Br289.83 (13)C6—C5—H5119.2
Br1—Sn1—Br290.88 (3)C4—C5—H5119.2
Cl1i—Sn1—Br289.12 (3)N1—C6—C5120.4 (6)
Br1i—Sn1—Br289.12 (3)N1—C6—H6119.8
Br2i—Sn1—Br2180.0C5—C6—H6119.8
C1i—Sn1—Cl2i89.83 (13)N2—C7—H7A109.5
C1—Sn1—Cl2i90.17 (13)N2—C7—H7B109.5
Br1—Sn1—Cl2i89.12 (3)H7A—C7—H7B109.5
Cl1i—Sn1—Cl2i90.88 (3)N2—C7—H7C109.5
Br1i—Sn1—Cl2i90.88 (3)H7A—C7—H7C109.5
Br2i—Sn1—Cl2i0.000 (13)H7B—C7—H7C109.5
Br2—Sn1—Cl2i180.0N2—C8—H8A109.5
C2—N1—C6121.1 (6)N2—C8—H8B109.5
C2—N1—H1119.4H8A—C8—H8B109.5
C6—N1—H1119.4N2—C8—H8C109.5
C4—N2—C8122.3 (6)H8A—C8—H8C109.5
C4—N2—C7121.8 (6)H8B—C8—H8C109.5
C8—N2—C7115.9 (6)
C6—N1—C2—C30.6 (9)C2—C3—C4—N2178.3 (5)
N1—C2—C3—C40.3 (10)C2—C3—C4—C51.1 (8)
C8—N2—C4—C50.6 (9)N2—C4—C5—C6178.3 (6)
C7—N2—C4—C5178.7 (6)C3—C4—C5—C61.1 (9)
C8—N2—C4—C3180.0 (5)C2—N1—C6—C50.7 (9)
C7—N2—C4—C31.9 (9)C4—C5—C6—N10.2 (9)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···Br10.882.603.316 (5)139
N1—H1···Br2i0.882.813.458 (6)132
Symmetry code: (i) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formula(C7H11N2)2[SnBr2(CH3)2Cl2]
Mr625.83
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)7.3573 (3), 8.7717 (3), 9.6644 (4)
α, β, γ (°)97.183 (3), 107.990 (3), 90.052 (2)
V3)588.04 (4)
Z1
Radiation typeMo Kα
µ (mm1)4.72
Crystal size (mm)0.25 × 0.20 × 0.15
Data collection
DiffractometerBruker SMART APEX
diffractometer
Absorption correctionMulti-scan
(SADABS;Sheldrick, 1996)
Tmin, Tmax0.385, 0.538
No. of measured, independent and
observed [I > 2σ(I)] reflections
4965, 2756, 1656
Rint0.045
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.123, 1.04
No. of reflections2756
No. of parameters122
No. of restraints4
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.82, 1.14

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2008).

Selected bond lengths (Å) top
Sn1—C12.225 (5)Sn1—Br22.6926 (8)
Sn1—Br12.690 (1)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···Br10.882.603.316 (5)139
N1—H1···Br2i0.882.813.458 (6)132
Symmetry code: (i) x+1, y+1, z+1.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds