Download citation
Download citation
link to html
In the title complex, [Cu2(CN)(NCS)(C12H8N2)2], which was synthesized under hydro­thermal conditions, both CuI atoms have a slightly distorted tetra­hedral geometry. They are coordinated by two N atoms of one 1,10-phenanthroline ligand, one bridging thio­cyanate anion and one bridging cyanide anion. In the crystal structure, infinite helical {Cu–CN–Cu–SCN}n chains are formed along [{\overline 1}01].

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536808037744/bt2813sup1.cif
Contains datablocks I, New_Global_Publ_Block

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536808037744/bt2813Isup2.hkl
Contains datablock I

CCDC reference: 712322

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](C-C) = 0.005 Å
  • R factor = 0.061
  • wR factor = 0.164
  • Data-to-parameter ratio = 15.7

checkCIF/PLATON results

No syntax errors found



Alert level C Value of measurement temperature given = 293.000 Value of melting point given = 0.000 REFLT03_ALERT_3_C Reflection count < 95% complete From the CIF: _diffrn_reflns_theta_max 27.45 From the CIF: _diffrn_reflns_theta_full 27.45 From the CIF: _reflns_number_total 4959 TEST2: Reflns within _diffrn_reflns_theta_max Count of symmetry unique reflns 5433 Completeness (_total/calc) 91.28% PLAT022_ALERT_3_C Ratio Unique / Expected Reflections too Low .... 0.91 PLAT230_ALERT_2_C Hirshfeld Test Diff for N1 -- C1 .. 5.63 su PLAT232_ALERT_2_C Hirshfeld Test Diff (M-X) Cu1 -- S1_a .. 8.19 su PLAT153_ALERT_1_C The su's on the Cell Axes are Equal (x 100000) 700 Ang. PLAT234_ALERT_4_C Large Hirshfeld Difference C3 -- C4 .. 0.10 Ang. PLAT234_ALERT_4_C Large Hirshfeld Difference C16 -- C17 .. 0.11 Ang.
Alert level G PLAT333_ALERT_2_G Check Large Av C6-Ring C-C Dist. C6 -C14 1.42 Ang. PLAT333_ALERT_2_G Check Large Av C6-Ring C-C Dist. C18 -C26 1.41 Ang. PLAT199_ALERT_1_G Check the Reported _cell_measurement_temperature 293 K PLAT200_ALERT_1_G Check the Reported _diffrn_ambient_temperature . 293 K PLAT710_ALERT_4_G Delete 1-2-3 or 2-3-4 Linear Torsion Angle ... # 1 N2 -CU2 -C1 -N1 -122.00 11.00 1.555 1.555 1.555 1.555 PLAT710_ALERT_4_G Delete 1-2-3 or 2-3-4 Linear Torsion Angle ... # 2 N6 -CU2 -C1 -N1 107.00 11.00 1.555 1.555 1.555 1.555 PLAT710_ALERT_4_G Delete 1-2-3 or 2-3-4 Linear Torsion Angle ... # 3 N5 -CU2 -C1 -N1 11.00 11.00 1.555 1.555 1.555 1.555 PLAT710_ALERT_4_G Delete 1-2-3 or 2-3-4 Linear Torsion Angle ... # 4 C1 -CU2 -N2 -C2 18.00 0.00 1.555 1.555 1.555 1.555 PLAT710_ALERT_4_G Delete 1-2-3 or 2-3-4 Linear Torsion Angle ... # 5 N6 -CU2 -N2 -C2 -41.00 13.00 1.555 1.555 1.555 1.555 PLAT710_ALERT_4_G Delete 1-2-3 or 2-3-4 Linear Torsion Angle ... # 6 N5 -CU2 -N2 -C2 40.00 13.00 1.555 1.555 1.555 1.555 PLAT710_ALERT_4_G Delete 1-2-3 or 2-3-4 Linear Torsion Angle ... # 31 CU2 -C1 -N1 -CU1 -39.00 13.00 1.555 1.555 1.555 1.555 PLAT710_ALERT_4_G Delete 1-2-3 or 2-3-4 Linear Torsion Angle ... # 32 N3 -CU1 -N1 -C1 -177.00 2.00 1.555 1.555 1.555 1.555 PLAT710_ALERT_4_G Delete 1-2-3 or 2-3-4 Linear Torsion Angle ... # 33 N4 -CU1 -N1 -C1 85.00 2.00 1.555 1.555 1.555 1.555 PLAT710_ALERT_4_G Delete 1-2-3 or 2-3-4 Linear Torsion Angle ... # 34 S1 -CU1 -N1 -C1 -49.00 2.00 4.576 1.555 1.555 1.555 PLAT710_ALERT_4_G Delete 1-2-3 or 2-3-4 Linear Torsion Angle ... # 35 CU2 -N2 -C2 -S1 -66.00 17.00 1.555 1.555 1.555 1.555 PLAT710_ALERT_4_G Delete 1-2-3 or 2-3-4 Linear Torsion Angle ... # 110 N2 -C2 -S1 -CU1 163.00 6.00 1.555 1.555 1.555 4.675
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 7 ALERT level C = Check and explain 16 ALERT level G = General alerts; check 3 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 4 ALERT type 2 Indicator that the structure model may be wrong or deficient 2 ALERT type 3 Indicator that the structure quality may be low 14 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

Self-assembly processes that lead to helical structures are common throughout biology and chemistry (Luan et al., 2006; Piguet et al., 2005). Protein α-helices and the DNA double helix are well known biological examples which have inspired the work of synthetic chemists aiming to create chemical analogs of these complex structures (Greig et al., 2001). However, there is a little known about meso-helical self-assembling systems within this very active field of helical structure research in supramolecular chemistry (Cheng et al., 2006).

The crystal structure of the title complex contains two 1,10-Phen ligands, one CuSCN and one CuCN co-existing in the asymmetric unit, as illustrated in Fig. 1. The coordianation geometry of the four-coordinated Cu(1) is slightly distorted tetrahedral with two N donors of the chelating 1,10-Phen and another N donor [N(1)] of the CN- occupying the basal sites and a S donor of SCN- occupying the vertex site. The Cu(2) also has a slightly distorted tetrahedral geometry and is coordinated by two N atoms of one 1,10-Phen ligand, one bridging thiocyanate anion N atom [N(2)] and one bridging cyanide C atom [C(1)]. It is noteworthy that the Cu(I)atoms are linked by CN- and SCN- anions into infinite helical {CuCN-CuSCN}n chains along a 21 screw axis, furthermore, the Cu2(CN)(SCN) chains run around and cross two parallel axes forming meso-helices as showed in Fig. 2.

Related literature top

For related literature, see: Cheng, et al. (2006); Greig & Philp (2001); Luan et al. (2006); Piguet et al. (2005).

Experimental top

All chemicals were of reagent grade quality obtained from commercial sources and used without further purification. A mixture of CuSCN (0.60 mmol, 0.07 g), NaCN (1 mmol, 0.05 g),1,10-Phen (0.40 mmol, 0.07 g) and water (10 ml) in a 25 ml Teflon-lined stainless steel reactor was heated from 298 to 453 K in 2 h and maintained at 453 K for 72 h. After the mixture wascooled to 298 K, red crystals of the title compound were obtained (yield 43%).

Refinement top

All H atoms were positioned geometrically (C—H = 0.93 Å) and allowed to ride on their parent atoms, with Uiso(H) values equal to 1.2Ueq(C).

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of the title compound, with displacement ellipsoids for the non-hydrogen atoms drawn at the 30% probability level.
[Figure 2] Fig. 2. Left: presentation of the location of the copper centres of coordination polymer; Right: View of the meso-helical arrangement.
catena-Poly[[(1,10-phenanthroline-κ2N,N')copper(I)]-µ-thiocyanato-κ2N:S- [(1,10-phenanthroline-κ2N,N')copper(I)]-µ-cyanido-κ2N:C] top
Crystal data top
[Cu2(CN)(NCS)(C12H8N2)2]F(000) = 1152
Mr = 571.59Dx = 1.596 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 2103 reflections
a = 13.046 (7) Åθ = 2.2–27.5°
b = 13.470 (7) ŵ = 1.90 mm1
c = 13.538 (7) ÅT = 293 K
β = 90.044 (9)°Prism, red
V = 2379 (2) Å30.30 × 0.15 × 0.12 mm
Z = 4
Data collection top
Bruker SMART CCD
diffractometer
4959 independent reflections
Radiation source: fine-focus sealed tube3662 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.081
Detector resolution: 13.6612 pixels mm-1θmax = 27.5°, θmin = 2.2°
CCD Profile fitting scansh = 1516
Absorption correction: multi-scan
SADABS (Sheldrick, 1996)
k = 1715
Tmin = 0.599, Tmax = 0.804l = 1717
15496 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.061Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.164H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0669P)2 + 0.4979P]
where P = (Fo2 + 2Fc2)/3
4959 reflections(Δ/σ)max = 0.001
316 parametersΔρmax = 0.47 e Å3
0 restraintsΔρmin = 0.57 e Å3
Crystal data top
[Cu2(CN)(NCS)(C12H8N2)2]V = 2379 (2) Å3
Mr = 571.59Z = 4
Monoclinic, P21/nMo Kα radiation
a = 13.046 (7) ŵ = 1.90 mm1
b = 13.470 (7) ÅT = 293 K
c = 13.538 (7) Å0.30 × 0.15 × 0.12 mm
β = 90.044 (9)°
Data collection top
Bruker SMART CCD
diffractometer
4959 independent reflections
Absorption correction: multi-scan
SADABS (Sheldrick, 1996)
3662 reflections with I > 2σ(I)
Tmin = 0.599, Tmax = 0.804Rint = 0.081
15496 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0610 restraints
wR(F2) = 0.164H-atom parameters constrained
S = 1.00Δρmax = 0.47 e Å3
4959 reflectionsΔρmin = 0.57 e Å3
316 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.08441 (4)0.73813 (3)0.04132 (4)0.06012 (19)
Cu20.45032 (3)0.76203 (3)0.04863 (3)0.05589 (18)
C10.3089 (3)0.7520 (2)0.0233 (3)0.0502 (8)
N20.5019 (2)0.8164 (2)0.1747 (2)0.0623 (7)
N30.0405 (2)0.73312 (19)0.0551 (2)0.0557 (7)
N40.0024 (2)0.86301 (19)0.0898 (2)0.0524 (6)
N50.54334 (18)0.8232 (2)0.06500 (19)0.0501 (6)
N60.5591 (2)0.64667 (19)0.02813 (19)0.0515 (6)
N10.2232 (2)0.74724 (19)0.0059 (2)0.0619 (8)
C20.5338 (2)0.8478 (2)0.2473 (2)0.0505 (7)
C30.0636 (3)0.6686 (3)0.1262 (3)0.0712 (10)
H3A0.02260.61250.13250.085*
C40.1433 (4)0.6793 (3)0.1905 (4)0.0901 (14)
H4A0.15490.63240.23970.108*
C50.2064 (4)0.7608 (3)0.1815 (4)0.0854 (15)
H5A0.26100.76970.22480.103*
C60.1878 (2)0.8295 (2)0.1071 (3)0.0609 (9)
C70.2500 (3)0.9176 (3)0.0924 (3)0.0709 (10)
H7A0.30600.92960.13330.085*
C80.2269 (3)0.9819 (3)0.0200 (3)0.0662 (10)
H8A0.26751.03800.01190.079*
C90.1417 (2)0.9670 (2)0.0451 (3)0.0523 (7)
C100.1156 (3)1.0327 (2)0.1207 (3)0.0597 (9)
H10A0.15451.08960.13110.072*
C110.0333 (3)1.0133 (3)0.1790 (3)0.0682 (10)
H11A0.01551.05630.22990.082*
C120.0254 (3)0.9263 (3)0.1610 (2)0.0625 (9)
H12A0.08200.91350.20080.075*
C130.0798 (2)0.8824 (2)0.0330 (2)0.0473 (7)
C140.1038 (2)0.8128 (2)0.0458 (2)0.0502 (7)
C150.5371 (3)0.9102 (3)0.1122 (3)0.0639 (9)
H15A0.48490.95360.09430.077*
C160.6044 (3)0.9392 (3)0.1865 (3)0.0747 (10)
H16A0.59681.00080.21670.090*
C170.6812 (3)0.8776 (3)0.2149 (3)0.0733 (10)
H17A0.72530.89540.26590.088*
C180.6929 (3)0.7856 (3)0.1653 (3)0.0559 (8)
C190.7759 (3)0.7185 (3)0.1877 (3)0.0692 (10)
H19A0.82190.73320.23820.083*
C200.7865 (3)0.6345 (3)0.1351 (3)0.0696 (10)
H20A0.84240.59370.14780.084*
C210.7157 (2)0.6058 (2)0.0611 (3)0.0581 (8)
C220.7226 (3)0.5174 (3)0.0063 (3)0.0743 (12)
H22A0.77700.47400.01680.089*
C230.6491 (3)0.4955 (3)0.0622 (3)0.0783 (12)
H23A0.65300.43700.09850.094*
C240.5680 (3)0.5616 (3)0.0775 (3)0.0641 (9)
H24A0.51820.54550.12400.077*
C250.6313 (2)0.6691 (2)0.0399 (2)0.0471 (7)
C260.6224 (3)0.7617 (2)0.0929 (2)0.0468 (7)
S10.58145 (8)0.89734 (6)0.34839 (7)0.0644 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0442 (3)0.0592 (3)0.0770 (4)0.01178 (17)0.0058 (2)0.00483 (19)
Cu20.0407 (3)0.0623 (3)0.0646 (3)0.00543 (17)0.0032 (2)0.00538 (18)
C10.0387 (17)0.0418 (15)0.070 (2)0.0058 (12)0.0049 (15)0.0057 (13)
N20.0498 (15)0.0711 (19)0.0659 (18)0.0020 (14)0.0025 (13)0.0112 (15)
N30.0468 (16)0.0429 (14)0.077 (2)0.0043 (11)0.0045 (15)0.0008 (12)
N40.0538 (14)0.0452 (13)0.0582 (15)0.0046 (12)0.0092 (12)0.0053 (12)
N50.0421 (13)0.0504 (14)0.0577 (15)0.0087 (11)0.0024 (11)0.0010 (12)
N60.0503 (14)0.0457 (14)0.0584 (15)0.0028 (11)0.0049 (12)0.0001 (12)
N10.0516 (19)0.0502 (16)0.084 (2)0.0083 (12)0.0027 (16)0.0065 (14)
C20.0389 (14)0.0447 (16)0.068 (2)0.0002 (13)0.0035 (14)0.0008 (14)
C30.061 (2)0.056 (2)0.097 (3)0.0088 (17)0.003 (2)0.023 (2)
C40.084 (3)0.067 (3)0.119 (4)0.008 (2)0.017 (3)0.036 (3)
C50.060 (3)0.069 (3)0.127 (4)0.0007 (19)0.027 (3)0.022 (2)
C60.0396 (15)0.0487 (17)0.094 (3)0.0007 (14)0.0049 (16)0.0069 (17)
C70.0495 (18)0.0507 (19)0.113 (3)0.0065 (16)0.0176 (19)0.005 (2)
C80.0518 (19)0.0413 (17)0.106 (3)0.0098 (15)0.0004 (19)0.0024 (18)
C90.0471 (16)0.0394 (15)0.071 (2)0.0027 (13)0.0081 (15)0.0049 (14)
C100.067 (2)0.0431 (17)0.069 (2)0.0091 (15)0.0118 (18)0.0027 (15)
C110.089 (3)0.056 (2)0.060 (2)0.006 (2)0.004 (2)0.0001 (16)
C120.071 (2)0.060 (2)0.0563 (19)0.0092 (18)0.0005 (16)0.0008 (16)
C130.0384 (14)0.0383 (15)0.0653 (18)0.0014 (12)0.0091 (13)0.0044 (13)
C140.0395 (14)0.0389 (15)0.072 (2)0.0000 (12)0.0074 (14)0.0024 (14)
C150.0590 (19)0.060 (2)0.072 (2)0.0170 (17)0.0047 (17)0.0110 (17)
C160.078 (2)0.074 (2)0.072 (2)0.011 (2)0.001 (2)0.023 (2)
C170.071 (2)0.085 (3)0.065 (2)0.006 (2)0.0035 (18)0.016 (2)
C180.0430 (17)0.066 (2)0.0590 (19)0.0033 (16)0.0031 (14)0.0115 (17)
C190.049 (2)0.086 (3)0.072 (2)0.003 (2)0.0150 (17)0.017 (2)
C200.0497 (18)0.073 (2)0.086 (3)0.0160 (18)0.0044 (18)0.030 (2)
C210.0468 (17)0.0500 (18)0.077 (2)0.0118 (14)0.0091 (16)0.0149 (16)
C220.072 (3)0.052 (2)0.099 (3)0.0215 (19)0.020 (2)0.013 (2)
C230.092 (3)0.047 (2)0.097 (3)0.012 (2)0.021 (3)0.005 (2)
C240.075 (2)0.0519 (18)0.065 (2)0.0020 (17)0.0054 (17)0.0055 (16)
C250.0397 (14)0.0446 (15)0.0570 (17)0.0076 (12)0.0079 (13)0.0080 (13)
C260.0429 (17)0.0476 (16)0.0500 (17)0.0051 (12)0.0054 (14)0.0045 (12)
S10.0725 (6)0.0491 (5)0.0717 (6)0.0137 (4)0.0150 (5)0.0022 (4)
Geometric parameters (Å, º) top
Cu1—N11.924 (3)C8—H8A0.9300
Cu1—N32.089 (3)C9—C101.395 (5)
Cu1—N42.099 (3)C9—C131.406 (4)
Cu1—S1i2.3581 (13)C10—C111.358 (5)
Cu2—C11.882 (3)C10—H10A0.9300
Cu2—N21.976 (3)C11—C121.420 (5)
Cu2—N62.123 (3)C11—H11A0.9300
Cu2—N52.125 (3)C12—H12A0.9300
C1—N11.145 (5)C13—C141.454 (5)
N2—C21.148 (4)C15—C161.391 (5)
N3—C31.331 (5)C15—H15A0.9300
N3—C141.360 (4)C16—C171.356 (6)
N4—C121.322 (4)C16—H16A0.9300
N4—C131.345 (4)C17—C181.417 (5)
N5—C151.336 (4)C17—H17A0.9300
N5—C261.376 (4)C18—C261.382 (5)
N6—C241.331 (4)C18—C191.443 (5)
N6—C251.351 (4)C19—C201.343 (6)
C2—S11.645 (3)C19—H19A0.9300
C3—C41.363 (6)C20—C211.416 (5)
C3—H3A0.9300C20—H20A0.9300
C4—C51.377 (6)C21—C221.406 (5)
C4—H4A0.9300C21—C251.421 (4)
C5—C61.390 (6)C22—C231.366 (6)
C5—H5A0.9300C22—H22A0.9300
C6—C141.392 (5)C23—C241.399 (5)
C6—C71.452 (5)C23—H23A0.9300
C7—C81.341 (5)C24—H24A0.9300
C7—H7A0.9300C25—C261.444 (4)
C8—C91.433 (5)S1—Cu1ii2.3581 (13)
N1—Cu1—N3121.90 (14)C9—C10—H10A120.1
N1—Cu1—N4122.18 (11)C10—C11—C12119.1 (3)
N3—Cu1—N479.83 (11)C10—C11—H11A120.5
N1—Cu1—S1i105.99 (9)C12—C11—H11A120.5
N3—Cu1—S1i110.96 (8)N4—C12—C11122.4 (3)
N4—Cu1—S1i114.43 (8)N4—C12—H12A118.8
C1—Cu2—N2121.25 (14)C11—C12—H12A118.8
C1—Cu2—N6125.39 (12)N4—C13—C9123.2 (3)
N2—Cu2—N698.99 (11)N4—C13—C14117.7 (3)
C1—Cu2—N5117.10 (13)C9—C13—C14119.0 (3)
N2—Cu2—N5106.65 (12)N3—C14—C6123.4 (3)
N6—Cu2—N578.93 (11)N3—C14—C13116.6 (3)
N1—C1—Cu2178.3 (4)C6—C14—C13120.1 (3)
C2—N2—Cu2178.7 (3)N5—C15—C16123.6 (3)
C3—N3—C14116.5 (3)N5—C15—H15A118.2
C3—N3—Cu1130.5 (2)C16—C15—H15A118.2
C14—N3—Cu1112.9 (2)C17—C16—C15119.9 (4)
C12—N4—C13118.2 (3)C17—C16—H16A120.1
C12—N4—Cu1129.0 (2)C15—C16—H16A120.1
C13—N4—Cu1112.6 (2)C16—C17—C18118.8 (4)
C15—N5—C26116.2 (3)C16—C17—H17A120.6
C15—N5—Cu2130.6 (2)C18—C17—H17A120.6
C26—N5—Cu2113.1 (2)C26—C18—C17117.9 (3)
C24—N6—C25118.3 (3)C26—C18—C19120.1 (4)
C24—N6—Cu2128.5 (3)C17—C18—C19122.0 (4)
C25—N6—Cu2113.0 (2)C20—C19—C18119.6 (4)
C1—N1—Cu1172.5 (4)C20—C19—H19A120.2
N2—C2—S1177.3 (3)C18—C19—H19A120.2
N3—C3—C4124.4 (4)C19—C20—C21122.5 (3)
N3—C3—H3A117.8C19—C20—H20A118.7
C4—C3—H3A117.8C21—C20—H20A118.7
C3—C4—C5118.9 (4)C22—C21—C20124.2 (3)
C3—C4—H4A120.5C22—C21—C25116.8 (4)
C5—C4—H4A120.5C20—C21—C25118.9 (3)
C4—C5—C6119.4 (4)C23—C22—C21119.7 (3)
C4—C5—H5A120.3C23—C22—H22A120.1
C6—C5—H5A120.3C21—C22—H22A120.1
C14—C6—C5117.5 (3)C22—C23—C24119.5 (4)
C14—C6—C7119.4 (3)C22—C23—H23A120.2
C5—C6—C7123.1 (4)C24—C23—H23A120.2
C8—C7—C6120.1 (3)N6—C24—C23122.7 (4)
C8—C7—H7A119.9N6—C24—H24A118.7
C6—C7—H7A119.9C23—C24—H24A118.7
C7—C8—C9122.2 (3)N6—C25—C21122.9 (3)
C7—C8—H8A118.9N6—C25—C26118.4 (3)
C9—C8—H8A118.9C21—C25—C26118.7 (3)
C10—C9—C13117.4 (3)N5—C26—C18123.6 (3)
C10—C9—C8123.4 (3)N5—C26—C25116.4 (3)
C13—C9—C8119.1 (3)C18—C26—C25120.0 (3)
C11—C10—C9119.7 (3)C2—S1—Cu1ii102.69 (12)
C11—C10—H10A120.1
N2—Cu2—C1—N1122 (11)Cu1—N4—C13—C144.5 (3)
N6—Cu2—C1—N1107 (11)C10—C9—C13—N40.5 (4)
N5—Cu2—C1—N111 (11)C8—C9—C13—N4179.1 (3)
C1—Cu2—N2—C2178 (100)C10—C9—C13—C14179.2 (3)
N6—Cu2—N2—C241 (13)C8—C9—C13—C140.3 (4)
N5—Cu2—N2—C240 (13)C3—N3—C14—C61.2 (5)
N1—Cu1—N3—C359.4 (4)Cu1—N3—C14—C6175.1 (3)
N4—Cu1—N3—C3178.9 (3)C3—N3—C14—C13178.9 (3)
S1i—Cu1—N3—C366.5 (3)Cu1—N3—C14—C134.8 (4)
N1—Cu1—N3—C14116.3 (2)C5—C6—C14—N30.3 (5)
N4—Cu1—N3—C145.5 (2)C7—C6—C14—N3179.0 (3)
S1i—Cu1—N3—C14117.9 (2)C5—C6—C14—C13179.6 (4)
N1—Cu1—N4—C1258.1 (3)C7—C6—C14—C130.9 (5)
N3—Cu1—N4—C12179.6 (3)N4—C13—C14—N30.2 (4)
S1i—Cu1—N4—C1271.9 (3)C9—C13—C14—N3179.0 (3)
N1—Cu1—N4—C13116.1 (2)N4—C13—C14—C6179.7 (3)
N3—Cu1—N4—C135.3 (2)C9—C13—C14—C60.9 (4)
S1i—Cu1—N4—C13113.87 (19)C26—N5—C15—C160.8 (5)
C1—Cu2—N5—C1555.7 (3)Cu2—N5—C15—C16179.4 (3)
N2—Cu2—N5—C1583.8 (3)N5—C15—C16—C170.3 (6)
N6—Cu2—N5—C15180.0 (3)C15—C16—C17—C182.0 (6)
C1—Cu2—N5—C26124.4 (2)C16—C17—C18—C262.6 (5)
N2—Cu2—N5—C2696.0 (2)C16—C17—C18—C19176.6 (4)
N6—Cu2—N5—C260.2 (2)C26—C18—C19—C202.5 (5)
C1—Cu2—N6—C2467.3 (3)C17—C18—C19—C20176.7 (4)
N2—Cu2—N6—C2471.8 (3)C18—C19—C20—C213.5 (6)
N5—Cu2—N6—C24177.2 (3)C19—C20—C21—C22178.3 (4)
C1—Cu2—N6—C25117.6 (2)C19—C20—C21—C251.4 (5)
N2—Cu2—N6—C25103.2 (2)C20—C21—C22—C23178.7 (3)
N5—Cu2—N6—C252.1 (2)C25—C21—C22—C230.9 (5)
Cu2—C1—N1—Cu139 (13)C21—C22—C23—C240.3 (6)
N3—Cu1—N1—C1177 (2)C25—N6—C24—C230.6 (5)
N4—Cu1—N1—C185 (2)Cu2—N6—C24—C23174.2 (3)
S1i—Cu1—N1—C149 (2)C22—C23—C24—N60.5 (6)
Cu2—N2—C2—S166 (17)C24—N6—C25—C210.2 (4)
C14—N3—C3—C42.1 (6)Cu2—N6—C25—C21175.7 (2)
Cu1—N3—C3—C4173.4 (3)C24—N6—C25—C26179.4 (3)
N3—C3—C4—C51.3 (8)Cu2—N6—C25—C263.9 (3)
C3—C4—C5—C60.3 (8)C22—C21—C25—N60.9 (5)
C4—C5—C6—C141.1 (7)C20—C21—C25—N6178.7 (3)
C4—C5—C6—C7179.7 (4)C22—C21—C25—C26178.7 (3)
C14—C6—C7—C80.4 (6)C20—C21—C25—C261.7 (4)
C5—C6—C7—C8179.0 (4)C15—N5—C26—C180.1 (5)
C6—C7—C8—C90.2 (6)Cu2—N5—C26—C18180.0 (2)
C7—C8—C9—C10179.7 (4)C15—N5—C26—C25178.1 (3)
C7—C8—C9—C130.2 (5)Cu2—N5—C26—C251.8 (3)
C13—C9—C10—C110.1 (5)C17—C18—C26—N51.6 (5)
C8—C9—C10—C11179.7 (3)C19—C18—C26—N5177.7 (3)
C9—C10—C11—C120.6 (5)C17—C18—C26—C25179.7 (3)
C13—N4—C12—C110.2 (5)C19—C18—C26—C250.5 (5)
Cu1—N4—C12—C11173.8 (2)N6—C25—C26—N53.8 (4)
C10—C11—C12—N40.4 (5)C21—C25—C26—N5175.8 (3)
C12—N4—C13—C90.6 (4)N6—C25—C26—C18177.9 (3)
Cu1—N4—C13—C9174.3 (2)C21—C25—C26—C182.5 (4)
C12—N4—C13—C14179.4 (3)N2—C2—S1—Cu1ii163 (6)
Symmetry codes: (i) x1/2, y+3/2, z+1/2; (ii) x+1/2, y+3/2, z1/2.

Experimental details

Crystal data
Chemical formula[Cu2(CN)(NCS)(C12H8N2)2]
Mr571.59
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)13.046 (7), 13.470 (7), 13.538 (7)
β (°) 90.044 (9)
V3)2379 (2)
Z4
Radiation typeMo Kα
µ (mm1)1.90
Crystal size (mm)0.30 × 0.15 × 0.12
Data collection
DiffractometerBruker SMART CCD
diffractometer
Absorption correctionMulti-scan
SADABS (Sheldrick, 1996)
Tmin, Tmax0.599, 0.804
No. of measured, independent and
observed [I > 2σ(I)] reflections
15496, 4959, 3662
Rint0.081
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.061, 0.164, 1.00
No. of reflections4959
No. of parameters316
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.47, 0.57

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds