



Supporting information
![]() | Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536809013075/bt2926sup1.cif |
![]() | Structure factor file (CIF format) https://doi.org/10.1107/S1600536809013075/bt2926Isup2.hkl |
CCDC reference: 731273
Key indicators
- Single-crystal X-ray study
- T = 299 K
- Mean
(C-C) = 0.005 Å
- R factor = 0.057
- wR factor = 0.151
- Data-to-parameter ratio = 17.4
checkCIF/PLATON results
No syntax errors found
Alert level B PLAT242_ALERT_2_B Check Low Ueq as Compared to Neighbors for C8
Alert level C Value of measurement temperature given = 299.000 Value of melting point given = 0.000 PLAT340_ALERT_3_C Low Bond Precision on C-C Bonds (x 1000) Ang ... 5
0 ALERT level A = In general: serious problem 1 ALERT level B = Potentially serious problem 1 ALERT level C = Check and explain 0 ALERT level G = General alerts; check 0 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 1 ALERT type 2 Indicator that the structure model may be wrong or deficient 1 ALERT type 3 Indicator that the structure quality may be low 0 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check
The title compound was prepared according to the literature method (Shilpa & Gowda, 2007). Single crystals were obtained from the slow evaporation of an ethanolic solution.
The H atoms were positioned with idealized geometry using a riding model with C—H = 0.93–0.96 Å, N—H = 0.86 Å, and were refined with isotropic displacement parameters set to 1.2 times of the Ueq of the parent atom.
Data collection: CrysAlis CCD (Oxford Diffraction, 2004); cell refinement: CrysAlis RED (Oxford Diffraction, 2007); data reduction: CrysAlis RED (Oxford Diffraction, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).
C10H10Cl3NO | F(000) = 544 |
Mr = 266.54 | Dx = 1.495 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 3672 reflections |
a = 5.9003 (8) Å | θ = 2.3–27.6° |
b = 20.843 (2) Å | µ = 0.75 mm−1 |
c = 9.996 (1) Å | T = 299 K |
β = 105.53 (1)° | Prism, colourless |
V = 1184.4 (2) Å3 | 0.46 × 0.40 × 0.30 mm |
Z = 4 |
Oxford Diffraction Xcalibur diffractometer with a Sapphire CCD detector | 2407 independent reflections |
Radiation source: fine-focus sealed tube | 1952 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.015 |
Rotation method data acquisition using ω and ϕ scans | θmax = 26.4°, θmin = 2.3° |
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2007) | h = −7→7 |
Tmin = 0.726, Tmax = 0.807 | k = −25→26 |
9395 measured reflections | l = −12→12 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.057 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.151 | H-atom parameters constrained |
S = 1.08 | w = 1/[σ2(Fo2) + (0.0592P)2 + 1.4852P] where P = (Fo2 + 2Fc2)/3 |
2407 reflections | (Δ/σ)max < 0.001 |
138 parameters | Δρmax = 0.96 e Å−3 |
0 restraints | Δρmin = −0.88 e Å−3 |
C10H10Cl3NO | V = 1184.4 (2) Å3 |
Mr = 266.54 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 5.9003 (8) Å | µ = 0.75 mm−1 |
b = 20.843 (2) Å | T = 299 K |
c = 9.996 (1) Å | 0.46 × 0.40 × 0.30 mm |
β = 105.53 (1)° |
Oxford Diffraction Xcalibur diffractometer with a Sapphire CCD detector | 2407 independent reflections |
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2007) | 1952 reflections with I > 2σ(I) |
Tmin = 0.726, Tmax = 0.807 | Rint = 0.015 |
9395 measured reflections |
R[F2 > 2σ(F2)] = 0.057 | 0 restraints |
wR(F2) = 0.151 | H-atom parameters constrained |
S = 1.08 | Δρmax = 0.96 e Å−3 |
2407 reflections | Δρmin = −0.88 e Å−3 |
138 parameters |
Experimental. Absorption correction: CrysAlis RED (Oxford Diffraction, 2007) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm. |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Cl1 | 1.2122 (2) | 0.19521 (5) | 0.59191 (11) | 0.0833 (4) | |
Cl2 | 1.1512 (2) | 0.15721 (6) | 0.31037 (12) | 0.0939 (5) | |
Cl3 | 0.8043 (2) | 0.12567 (5) | 0.45005 (16) | 0.0919 (4) | |
O1 | 0.8060 (5) | 0.25550 (12) | 0.2520 (2) | 0.0643 (7) | |
N1 | 0.8025 (4) | 0.28196 (11) | 0.4703 (2) | 0.0403 (5) | |
H1N | 0.8600 | 0.2723 | 0.5563 | 0.048* | |
C1 | 0.6475 (5) | 0.33590 (13) | 0.4375 (3) | 0.0377 (6) | |
C2 | 0.6550 (5) | 0.37830 (13) | 0.3319 (3) | 0.0399 (6) | |
H2 | 0.7657 | 0.3724 | 0.2819 | 0.048* | |
C3 | 0.4996 (5) | 0.42941 (13) | 0.2998 (3) | 0.0413 (6) | |
C4 | 0.3341 (5) | 0.43886 (14) | 0.3749 (3) | 0.0459 (7) | |
C5 | 0.3325 (6) | 0.39622 (17) | 0.4814 (4) | 0.0552 (8) | |
H5 | 0.2243 | 0.4024 | 0.5329 | 0.066* | |
C6 | 0.4852 (6) | 0.34532 (15) | 0.5131 (3) | 0.0500 (7) | |
H6 | 0.4796 | 0.3174 | 0.5848 | 0.060* | |
C7 | 0.8629 (5) | 0.24601 (13) | 0.3758 (3) | 0.0391 (6) | |
C8 | 1.0067 (5) | 0.18464 (14) | 0.4322 (3) | 0.0440 (7) | |
C9 | 0.5074 (7) | 0.47305 (17) | 0.1813 (4) | 0.0618 (9) | |
H9A | 0.6361 | 0.4609 | 0.1449 | 0.074* | |
H9B | 0.5285 | 0.5166 | 0.2138 | 0.074* | |
H9C | 0.3625 | 0.4695 | 0.1096 | 0.074* | |
C10 | 0.1610 (7) | 0.49358 (19) | 0.3417 (4) | 0.0662 (10) | |
H10A | 0.2428 | 0.5334 | 0.3672 | 0.079* | |
H10B | 0.0457 | 0.4884 | 0.3929 | 0.079* | |
H10C | 0.0843 | 0.4937 | 0.2441 | 0.079* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cl1 | 0.0948 (8) | 0.0602 (6) | 0.0657 (6) | 0.0180 (5) | −0.0288 (5) | −0.0006 (4) |
Cl2 | 0.1151 (9) | 0.1008 (9) | 0.0806 (7) | 0.0593 (7) | 0.0517 (7) | 0.0208 (6) |
Cl3 | 0.0866 (8) | 0.0481 (5) | 0.1423 (11) | −0.0182 (5) | 0.0329 (7) | 0.0060 (6) |
O1 | 0.0981 (18) | 0.0639 (14) | 0.0272 (10) | 0.0322 (13) | 0.0104 (11) | −0.0009 (10) |
N1 | 0.0564 (14) | 0.0378 (12) | 0.0244 (10) | 0.0055 (10) | 0.0067 (10) | 0.0019 (9) |
C1 | 0.0476 (15) | 0.0331 (13) | 0.0305 (13) | −0.0007 (11) | 0.0074 (11) | −0.0030 (10) |
C2 | 0.0472 (15) | 0.0398 (14) | 0.0344 (14) | 0.0002 (12) | 0.0141 (12) | 0.0006 (11) |
C3 | 0.0482 (16) | 0.0346 (14) | 0.0389 (14) | −0.0022 (12) | 0.0078 (12) | 0.0003 (11) |
C4 | 0.0460 (16) | 0.0386 (15) | 0.0520 (17) | −0.0001 (12) | 0.0113 (13) | −0.0036 (13) |
C5 | 0.0551 (19) | 0.0589 (19) | 0.060 (2) | 0.0054 (15) | 0.0295 (16) | −0.0003 (16) |
C6 | 0.0630 (19) | 0.0491 (17) | 0.0430 (16) | 0.0002 (15) | 0.0230 (14) | 0.0058 (13) |
C7 | 0.0475 (15) | 0.0370 (14) | 0.0305 (13) | 0.0016 (12) | 0.0064 (11) | −0.0009 (11) |
C8 | 0.0501 (17) | 0.0389 (15) | 0.0418 (15) | 0.0020 (12) | 0.0100 (13) | 0.0007 (12) |
C9 | 0.073 (2) | 0.0528 (19) | 0.063 (2) | 0.0143 (17) | 0.0238 (18) | 0.0199 (16) |
C10 | 0.059 (2) | 0.057 (2) | 0.084 (3) | 0.0139 (17) | 0.0217 (19) | 0.0043 (19) |
Cl1—C8 | 1.741 (3) | C4—C5 | 1.389 (5) |
Cl2—C8 | 1.759 (3) | C4—C10 | 1.507 (4) |
Cl3—C8 | 1.755 (3) | C5—C6 | 1.373 (5) |
O1—C7 | 1.209 (3) | C5—H5 | 0.9300 |
N1—C7 | 1.327 (3) | C6—H6 | 0.9300 |
N1—C1 | 1.431 (3) | C7—C8 | 1.555 (4) |
N1—H1N | 0.8600 | C9—H9A | 0.9600 |
C1—C6 | 1.383 (4) | C9—H9B | 0.9600 |
C1—C2 | 1.387 (4) | C9—H9C | 0.9600 |
C2—C3 | 1.386 (4) | C10—H10A | 0.9600 |
C2—H2 | 0.9300 | C10—H10B | 0.9600 |
C3—C4 | 1.395 (4) | C10—H10C | 0.9600 |
C3—C9 | 1.504 (4) | ||
C7—N1—C1 | 123.9 (2) | O1—C7—N1 | 125.6 (3) |
C7—N1—H1N | 118.0 | O1—C7—C8 | 118.7 (2) |
C1—N1—H1N | 118.0 | N1—C7—C8 | 115.5 (2) |
C6—C1—C2 | 119.6 (3) | C7—C8—Cl1 | 114.0 (2) |
C6—C1—N1 | 118.7 (2) | C7—C8—Cl3 | 107.0 (2) |
C2—C1—N1 | 121.7 (2) | Cl1—C8—Cl3 | 108.74 (17) |
C3—C2—C1 | 120.8 (3) | C7—C8—Cl2 | 109.6 (2) |
C3—C2—H2 | 119.6 | Cl1—C8—Cl2 | 109.15 (17) |
C1—C2—H2 | 119.6 | Cl3—C8—Cl2 | 108.17 (17) |
C2—C3—C4 | 120.0 (3) | C3—C9—H9A | 109.5 |
C2—C3—C9 | 119.3 (3) | C3—C9—H9B | 109.5 |
C4—C3—C9 | 120.8 (3) | H9A—C9—H9B | 109.5 |
C5—C4—C3 | 118.1 (3) | C3—C9—H9C | 109.5 |
C5—C4—C10 | 120.6 (3) | H9A—C9—H9C | 109.5 |
C3—C4—C10 | 121.3 (3) | H9B—C9—H9C | 109.5 |
C6—C5—C4 | 122.2 (3) | C4—C10—H10A | 109.5 |
C6—C5—H5 | 118.9 | C4—C10—H10B | 109.5 |
C4—C5—H5 | 118.9 | H10A—C10—H10B | 109.5 |
C5—C6—C1 | 119.4 (3) | C4—C10—H10C | 109.5 |
C5—C6—H6 | 120.3 | H10A—C10—H10C | 109.5 |
C1—C6—H6 | 120.3 | H10B—C10—H10C | 109.5 |
C7—N1—C1—C6 | 140.0 (3) | C4—C5—C6—C1 | 0.3 (5) |
C7—N1—C1—C2 | −39.4 (4) | C2—C1—C6—C5 | 0.6 (5) |
C6—C1—C2—C3 | −1.0 (4) | N1—C1—C6—C5 | −178.9 (3) |
N1—C1—C2—C3 | 178.5 (3) | C1—N1—C7—O1 | 3.8 (5) |
C1—C2—C3—C4 | 0.4 (4) | C1—N1—C7—C8 | −172.3 (2) |
C1—C2—C3—C9 | −177.9 (3) | O1—C7—C8—Cl1 | 145.1 (3) |
C2—C3—C4—C5 | 0.5 (4) | N1—C7—C8—Cl1 | −38.5 (3) |
C9—C3—C4—C5 | 178.7 (3) | O1—C7—C8—Cl3 | −94.6 (3) |
C2—C3—C4—C10 | −179.4 (3) | N1—C7—C8—Cl3 | 81.8 (3) |
C9—C3—C4—C10 | −1.1 (5) | O1—C7—C8—Cl2 | 22.4 (4) |
C3—C4—C5—C6 | −0.8 (5) | N1—C7—C8—Cl2 | −161.1 (2) |
C10—C4—C5—C6 | 179.0 (3) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1N···O1i | 0.86 | 2.14 | 2.917 (3) | 149 |
N1—H1N···Cl1 | 0.86 | 2.57 | 3.003 (3) | 112 |
Symmetry code: (i) x, −y+1/2, z+1/2. |
Experimental details
Crystal data | |
Chemical formula | C10H10Cl3NO |
Mr | 266.54 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 299 |
a, b, c (Å) | 5.9003 (8), 20.843 (2), 9.996 (1) |
β (°) | 105.53 (1) |
V (Å3) | 1184.4 (2) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.75 |
Crystal size (mm) | 0.46 × 0.40 × 0.30 |
Data collection | |
Diffractometer | Oxford Diffraction Xcalibur diffractometer with a Sapphire CCD detector |
Absorption correction | Multi-scan (CrysAlis RED; Oxford Diffraction, 2007) |
Tmin, Tmax | 0.726, 0.807 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 9395, 2407, 1952 |
Rint | 0.015 |
(sin θ/λ)max (Å−1) | 0.625 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.057, 0.151, 1.08 |
No. of reflections | 2407 |
No. of parameters | 138 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.96, −0.88 |
Computer programs: CrysAlis CCD (Oxford Diffraction, 2004), CrysAlis RED (Oxford Diffraction, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1N···O1i | 0.86 | 2.14 | 2.917 (3) | 149.4 |
N1—H1N···Cl1 | 0.86 | 2.57 | 3.003 (3) | 111.8 |
Symmetry code: (i) x, −y+1/2, z+1/2. |
As part of a study of the effect of ring and side chain substitutions on the crystal structures of aromatic amides (Gowda et al., 2007; 2008; 2009), the structure of 2,2,2-trichloro-N-(3,4-dimethylphenyl)acetamide has been determined. The conformation of the N—H bond in the title compound is anti to the 3-methyl substituent in the aromatic ring similar to that observed with respect to the 3-chloro substituent in N- (3,4-dichlorophenyl)-2,2,2-trichloroacetamide (Gowda et al., 2007), but in contrast to the syn conformation observed with respect to the 3-methyl substituent in N-(3,4-dimethylphenyl)acetamide (Gowda et al., 2008). The conformation of the C=O bond in the structure is anti to the N—H bond similar to that observed in other amides. The amide H atom exhibits both N—H···Cl intramolecular and N—H···O intermolecular hydrogen bonding. The molecules in (I) are linked into infinite chains through intermolecular N—H···O hydrogen bonding (Table 1, Fig. 2).