Download citation
Download citation
link to html
All non-H atoms of the title compound, C12H12ClNO, are co-planar (r.m.s. deviation = 0.055 Å). The hydr­oxy H atom is disordered over two positions of equal occupancy. In the crystal, mol­ecules are linked by O—H...O hydrogen bonds, generating zigzag chains running along the b axis.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S160053680905404X/bt5139sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S160053680905404X/bt5139Isup2.hkl
Contains datablock I

CCDC reference: 725751

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](C-C) = 0.003 Å
  • R factor = 0.033
  • wR factor = 0.094
  • Data-to-parameter ratio = 13.6

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT910_ALERT_3_C Missing # of FCF Reflections Below Th(Min) ..... 3 PLAT152_ALERT_1_C The Supplied and Calc. Volume s.u. Differ by ... 2 Units
Alert level G PLAT199_ALERT_1_G Check the Reported _cell_measurement_temperature 293 K PLAT200_ALERT_1_G Check the Reported _diffrn_ambient_temperature 293 K
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 2 ALERT level C = Check and explain 2 ALERT level G = General alerts; check 3 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 0 ALERT type 2 Indicator that the structure model may be wrong or deficient 1 ALERT type 3 Indicator that the structure quality may be low 0 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Related literature top

Substituted quinoline-3-carbaldehydes are intermediates for annelation and functional group modification; for a review of the synthesis of quinolines by the Vilsmeier–Haack reaction, see: Meth-Cohn (1993).

Experimental top

2-Chloro-7,8-dimethylquinoline-3-carbaldehyde (220 mg, 1 mmol), sodium borohydride (38 mg, 1 mmol) and catalytic amount of montmorillonite K-10 were placed in a beaker. The contents were irradiated at 500 W for 5 min. The product was dissolved in ethyl acetate and the residue removed by filtration. The filtrate was subjected to column chromatography on silica, and ethyl acetate/petroleum ether was used as the eluant. The solvent was evaporated and the residue recrystallized from chloroform to give colorless crystals.

Refinement top

Hydrogen atoms were placed in calculated positions (C–H 0.93–0.97, O–H 0.82 Å) and were included in the refinement in the riding model approximation, with U(H) set to 1.2–1.5U(C,O). The methyl H-atoms were refined as disordered over two equally occupied sites. The hydroxy H-atom is also disordered over two positions with equal site occupancy.

Computing details top

Data collection: SMART (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Thermal ellipsoid plot (Barbour, 2001) of C12H12ClNO at the 50% probability level; hydrogen atoms are drawn as spheres of arbitrary radius.
2-Chloro-3-hydroxymethyl-7,8-dimethylquinoline top
Crystal data top
C12H12ClNOF(000) = 464
Mr = 221.68Dx = 1.381 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 963 reflections
a = 17.4492 (12) Åθ = 3.1–25.0°
b = 4.6271 (2) ŵ = 0.33 mm1
c = 14.3773 (7) ÅT = 293 K
β = 113.297 (7)°Plate, colorless
V = 1066.17 (10) Å30.38 × 0.15 × 0.06 mm
Z = 4
Data collection top
Bruker SMART area-detector
diffractometer
1884 independent reflections
Radiation source: fine-focus sealed tube1488 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.033
ϕ and ω scansθmax = 25.0°, θmin = 3.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 2020
Tmin = 0.885, Tmax = 0.981k = 55
10456 measured reflectionsl = 1717
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.094H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0496P)2 + 0.1434P]
where P = (Fo2 + 2Fc2)/3
1884 reflections(Δ/σ)max = 0.001
139 parametersΔρmax = 0.16 e Å3
0 restraintsΔρmin = 0.22 e Å3
Crystal data top
C12H12ClNOV = 1066.17 (10) Å3
Mr = 221.68Z = 4
Monoclinic, P21/cMo Kα radiation
a = 17.4492 (12) ŵ = 0.33 mm1
b = 4.6271 (2) ÅT = 293 K
c = 14.3773 (7) Å0.38 × 0.15 × 0.06 mm
β = 113.297 (7)°
Data collection top
Bruker SMART area-detector
diffractometer
1884 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1488 reflections with I > 2σ(I)
Tmin = 0.885, Tmax = 0.981Rint = 0.033
10456 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0330 restraints
wR(F2) = 0.094H-atom parameters constrained
S = 1.05Δρmax = 0.16 e Å3
1884 reflectionsΔρmin = 0.22 e Å3
139 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cl10.37792 (3)0.62190 (11)0.12385 (3)0.0547 (2)
O10.46228 (9)0.7503 (3)0.45560 (9)0.0578 (4)
H1A0.48920.89910.47630.087*0.50
H1B0.49140.61020.48240.087*0.50
N10.27105 (9)0.2833 (3)0.15172 (10)0.0365 (3)
C10.33144 (11)0.4587 (4)0.19891 (12)0.0361 (4)
C20.36337 (11)0.5327 (3)0.30325 (12)0.0365 (4)
C30.32309 (11)0.4071 (3)0.35710 (12)0.0381 (4)
H30.34030.44930.42560.046*
C40.25620 (10)0.2154 (4)0.31127 (12)0.0349 (4)
C50.21258 (12)0.0807 (4)0.36385 (13)0.0427 (5)
H50.22730.11860.43230.051*
C60.14924 (12)0.1037 (4)0.31451 (13)0.0440 (5)
H60.12100.18990.35020.053*
C70.12436 (11)0.1703 (4)0.21072 (13)0.0398 (4)
C80.16551 (11)0.0432 (4)0.15657 (12)0.0370 (4)
C90.23169 (10)0.1536 (3)0.20687 (12)0.0333 (4)
C100.43655 (11)0.7321 (4)0.34903 (13)0.0454 (5)
H10A0.48250.66230.33340.054*
H10B0.42150.92310.31960.054*
C110.05264 (12)0.3765 (4)0.16298 (16)0.0558 (5)
H11A0.05100.43930.09860.084*0.50
H11B0.00130.28090.15350.084*0.50
H11C0.05990.54090.20640.084*0.50
H11D0.02380.40150.20710.084*0.50
H11E0.07350.55980.15210.084*0.50
H11F0.01490.29980.09930.084*0.50
C120.14234 (13)0.1070 (4)0.04636 (13)0.0516 (5)
H12A0.19100.16940.03630.077*0.50
H12B0.12030.06440.00730.077*0.50
H12C0.10090.25680.02500.077*0.50
H12D0.08380.07180.00950.077*0.50
H12E0.15450.30560.03840.077*0.50
H12F0.17390.01560.02070.077*0.50
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0522 (3)0.0662 (4)0.0492 (3)0.0064 (2)0.0237 (2)0.0071 (2)
O10.0632 (9)0.0508 (8)0.0438 (7)0.0109 (7)0.0045 (6)0.0114 (6)
N10.0374 (9)0.0395 (8)0.0307 (7)0.0031 (7)0.0116 (6)0.0004 (6)
C10.0360 (10)0.0362 (10)0.0357 (9)0.0056 (8)0.0138 (8)0.0032 (7)
C20.0369 (10)0.0313 (9)0.0366 (9)0.0060 (8)0.0094 (8)0.0016 (7)
C30.0420 (11)0.0384 (10)0.0283 (8)0.0051 (8)0.0078 (7)0.0053 (7)
C40.0375 (10)0.0344 (9)0.0308 (8)0.0068 (8)0.0113 (7)0.0004 (7)
C50.0478 (11)0.0506 (12)0.0310 (9)0.0050 (9)0.0169 (8)0.0009 (8)
C60.0431 (11)0.0482 (11)0.0438 (10)0.0061 (9)0.0203 (8)0.0099 (8)
C70.0345 (10)0.0368 (10)0.0439 (10)0.0062 (8)0.0110 (8)0.0054 (8)
C80.0370 (10)0.0361 (10)0.0320 (9)0.0055 (8)0.0075 (7)0.0004 (7)
C90.0351 (10)0.0335 (9)0.0293 (8)0.0060 (8)0.0105 (7)0.0007 (7)
C100.0448 (12)0.0382 (10)0.0463 (10)0.0017 (9)0.0107 (8)0.0033 (8)
C110.0454 (12)0.0536 (13)0.0631 (13)0.0041 (10)0.0157 (10)0.0039 (10)
C120.0547 (13)0.0576 (13)0.0342 (9)0.0056 (10)0.0087 (9)0.0064 (8)
Geometric parameters (Å, º) top
Cl1—C11.7563 (17)C7—C111.506 (3)
O1—C101.418 (2)C8—C91.423 (2)
O1—H1A0.8200C8—C121.501 (2)
O1—H1B0.8200C10—H10A0.9700
N1—C11.290 (2)C10—H10B0.9700
N1—C91.375 (2)C11—H11A0.9600
C1—C21.420 (2)C11—H11B0.9600
C2—C31.364 (2)C11—H11C0.9600
C2—C101.500 (2)C11—H11D0.9600
C3—C41.405 (2)C11—H11E0.9600
C3—H30.9300C11—H11F0.9600
C4—C51.412 (2)C12—H12A0.9600
C4—C91.418 (2)C12—H12B0.9600
C5—C61.354 (3)C12—H12C0.9600
C5—H50.9300C12—H12D0.9600
C6—C71.413 (2)C12—H12E0.9600
C6—H60.9300C12—H12F0.9600
C7—C81.382 (2)
C10—O1—H1A109.5O1—C10—C2111.18 (14)
C10—O1—H1B109.5O1—C10—H10A109.4
C1—N1—C9117.49 (14)C2—C10—H10A109.4
N1—C1—C2127.22 (15)O1—C10—H10B109.4
N1—C1—Cl1115.28 (12)C2—C10—H10B109.4
C2—C1—Cl1117.51 (13)H10A—C10—H10B108.0
C3—C2—C1114.95 (16)C7—C11—H11A109.5
C3—C2—C10123.59 (15)C7—C11—H11B109.5
C1—C2—C10121.46 (15)H11A—C11—H11B109.5
C2—C3—C4121.44 (15)C7—C11—H11C109.5
C2—C3—H3119.3H11A—C11—H11C109.5
C4—C3—H3119.3H11B—C11—H11C109.5
C3—C4—C5123.44 (15)C7—C11—H11D109.5
C3—C4—C9118.06 (15)C7—C11—H11E109.5
C5—C4—C9118.49 (16)H11D—C11—H11E109.5
C6—C5—C4119.92 (16)C7—C11—H11F109.5
C6—C5—H5120.0H11D—C11—H11F109.5
C4—C5—H5120.0H11E—C11—H11F109.5
C5—C6—C7122.47 (16)C8—C12—H12A109.5
C5—C6—H6118.8C8—C12—H12B109.5
C7—C6—H6118.8H12A—C12—H12B109.5
C8—C7—C6119.41 (16)C8—C12—H12C109.5
C8—C7—C11122.41 (16)H12A—C12—H12C109.5
C6—C7—C11118.17 (16)H12B—C12—H12C109.5
C7—C8—C9118.95 (15)C8—C12—H12D109.5
C7—C8—C12121.87 (16)C8—C12—H12E109.5
C9—C8—C12119.19 (15)H12D—C12—H12E109.5
N1—C9—C4120.81 (15)C8—C12—H12F109.5
N1—C9—C8118.43 (14)H12D—C12—H12F109.5
C4—C9—C8120.75 (15)H12E—C12—H12F109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1a···O1i0.821.912.715 (3)167
O1—H1b···O1ii0.821.912.720 (3)168
Symmetry codes: (i) x+1, y+2, z+1; (ii) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC12H12ClNO
Mr221.68
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)17.4492 (12), 4.6271 (2), 14.3773 (7)
β (°) 113.297 (7)
V3)1066.17 (10)
Z4
Radiation typeMo Kα
µ (mm1)0.33
Crystal size (mm)0.38 × 0.15 × 0.06
Data collection
DiffractometerBruker SMART area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.885, 0.981
No. of measured, independent and
observed [I > 2σ(I)] reflections
10456, 1884, 1488
Rint0.033
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.094, 1.05
No. of reflections1884
No. of parameters139
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.16, 0.22

Computer programs: SMART (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1a···O1i0.821.912.715 (3)167
O1—H1b···O1ii0.821.912.720 (3)168
Symmetry codes: (i) x+1, y+2, z+1; (ii) x+1, y+1, z+1.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds