Download citation
Download citation
link to html
All the non-H atoms of the title compound, C11H10ClNO2, are roughly coplanar (r.m.s. deviation = 0.058 Å). In the crystal, adjacent mol­ecules are linked by an O—H...N hydrogen bond, generating chains running along the a axis.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536809054051/bt5140sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536809054051/bt5140Isup2.hkl
Contains datablock I

CCDC reference: 727108

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](C-C) = 0.003 Å
  • R factor = 0.041
  • wR factor = 0.108
  • Data-to-parameter ratio = 17.0

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT230_ALERT_2_C Hirshfeld Test Diff for N1 -- C1 .. 5.49 su PLAT910_ALERT_3_C Missing # of FCF Reflections Below Th(Min) ..... 1 PLAT912_ALERT_4_C Missing # of FCF Reflections Above STh/L= 0.600 44
Alert level G PLAT128_ALERT_4_G Non-standard setting of Space-group P21/c .... P21/n PLAT199_ALERT_1_G Check the Reported _cell_measurement_temperature 293 K PLAT200_ALERT_1_G Check the Reported _diffrn_ambient_temperature 293 K
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 3 ALERT level C = Check and explain 3 ALERT level G = General alerts; check 2 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 1 ALERT type 2 Indicator that the structure model may be wrong or deficient 1 ALERT type 3 Indicator that the structure quality may be low 2 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Related literature top

Substituted quinoline-3-carbaldehydes are intermediates for annelation and functional group modification; for a review of the synthesis of quinolines by the Vilsmeier–Haack reaction, see: Meth-Cohn (1993).

Experimental top

2-Chloro-8-methoxyquinoline-3-carbaldehyde (220 mg, 1 mmol), sodium borohydride (38 mg, 1 mmol) and a catalytic amount of montmorillonite K-10 were placed in a beaker. The contents were irradiated at 500 W for 5 min. The product was dissolved in ethyl acetate and the residue removed by filtration. The filtrate was subjected to column chromatography on silica, and ethyl acetate/petroleum ether was used as the eluant. The solvent was evaporated and the residue recrystallized from chloroform to give colorless crystals.

Refinement top

Hydrogen atoms were placed in calculated positions (C–H 0.93–0.97, O–H 0.82 Å) and were included in the refinement in the riding model approximation, with U(H) set to 1.2–1.5U(C,O).

Computing details top

Data collection: SMART (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Anisotropic displacement ellipsoid plot (Barbour, 2001) of C11H10ClNO2 at the 50% probability level; hydrogen atoms are drawn as spheres of arbitrary radius.
2-Chloro-3-hydroxymethyl-6-methoxyquinoline top
Crystal data top
C11H10ClNO2F(000) = 464
Mr = 223.65Dx = 1.422 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 1941 reflections
a = 6.9738 (3) Åθ = 3.1–25.5°
b = 21.4668 (9) ŵ = 0.34 mm1
c = 7.3479 (4) ÅT = 293 K
β = 108.220 (5)°Block, colorless
V = 1044.87 (8) Å30.28 × 0.21 × 0.20 mm
Z = 4
Data collection top
Bruker SMART area-detector
diffractometer
2348 independent reflections
Radiation source: fine-focus sealed tube1487 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.035
ϕ and ω scansθmax = 27.5°, θmin = 3.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 98
Tmin = 0.910, Tmax = 0.935k = 2627
11517 measured reflectionsl = 99
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.108H-atom parameters constrained
S = 0.97 w = 1/[σ2(Fo2) + (0.058P)2]
where P = (Fo2 + 2Fc2)/3
2348 reflections(Δ/σ)max = 0.001
138 parametersΔρmax = 0.21 e Å3
0 restraintsΔρmin = 0.25 e Å3
Crystal data top
C11H10ClNO2V = 1044.87 (8) Å3
Mr = 223.65Z = 4
Monoclinic, P21/nMo Kα radiation
a = 6.9738 (3) ŵ = 0.34 mm1
b = 21.4668 (9) ÅT = 293 K
c = 7.3479 (4) Å0.28 × 0.21 × 0.20 mm
β = 108.220 (5)°
Data collection top
Bruker SMART area-detector
diffractometer
2348 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1487 reflections with I > 2σ(I)
Tmin = 0.910, Tmax = 0.935Rint = 0.035
11517 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.108H-atom parameters constrained
S = 0.97Δρmax = 0.21 e Å3
2348 reflectionsΔρmin = 0.25 e Å3
138 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.33210 (8)0.65210 (2)0.10064 (7)0.0648 (2)
O10.97027 (18)0.59162 (7)0.33602 (19)0.0672 (4)
H11.02000.57900.25540.101*
O20.4314 (2)0.29302 (7)0.3876 (2)0.0766 (5)
N10.2607 (2)0.53770 (7)0.16969 (18)0.0446 (4)
C10.4061 (3)0.57605 (8)0.1763 (2)0.0430 (4)
C20.6156 (2)0.56246 (8)0.2401 (2)0.0408 (4)
C30.6650 (2)0.50291 (8)0.2994 (2)0.0437 (4)
H30.80040.49160.34610.052*
C40.5149 (2)0.45775 (8)0.2917 (2)0.0390 (4)
C50.5600 (3)0.39542 (9)0.3483 (2)0.0494 (5)
H50.69350.38210.39260.059*
C60.4070 (3)0.35449 (9)0.3379 (2)0.0526 (5)
C70.2053 (3)0.37443 (9)0.2741 (2)0.0546 (5)
H70.10270.34630.26980.065*
C80.1583 (3)0.43397 (9)0.2189 (2)0.0507 (5)
H80.02380.44630.17580.061*
C90.3120 (2)0.47761 (8)0.2261 (2)0.0405 (4)
C100.7702 (3)0.61178 (9)0.2442 (3)0.0528 (5)
H10A0.75750.62400.11380.063*
H10B0.74300.64820.31030.063*
C110.6296 (4)0.26820 (11)0.4324 (4)0.0912 (8)
H11A0.67990.27470.32630.137*
H11B0.62640.22440.45730.137*
H11C0.71630.28870.54390.137*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0574 (3)0.0603 (3)0.0736 (4)0.0151 (2)0.0158 (3)0.0111 (3)
O10.0365 (8)0.0931 (11)0.0762 (9)0.0030 (7)0.0235 (7)0.0079 (8)
O20.0887 (12)0.0522 (9)0.0807 (10)0.0010 (8)0.0147 (8)0.0016 (7)
N10.0306 (8)0.0591 (9)0.0412 (8)0.0057 (7)0.0069 (6)0.0035 (7)
C10.0389 (10)0.0539 (10)0.0365 (9)0.0122 (8)0.0123 (8)0.0006 (8)
C20.0347 (9)0.0573 (11)0.0341 (8)0.0033 (8)0.0161 (7)0.0036 (8)
C30.0277 (9)0.0628 (11)0.0403 (9)0.0106 (8)0.0103 (7)0.0021 (8)
C40.0328 (9)0.0524 (10)0.0307 (8)0.0059 (8)0.0083 (7)0.0051 (7)
C50.0420 (11)0.0593 (12)0.0428 (10)0.0127 (9)0.0076 (8)0.0032 (9)
C60.0589 (13)0.0534 (12)0.0427 (10)0.0005 (9)0.0119 (9)0.0073 (9)
C70.0504 (12)0.0631 (13)0.0476 (10)0.0115 (10)0.0115 (9)0.0095 (9)
C80.0334 (10)0.0698 (13)0.0443 (10)0.0022 (9)0.0056 (8)0.0093 (9)
C90.0334 (9)0.0559 (11)0.0304 (8)0.0047 (8)0.0070 (7)0.0069 (8)
C100.0433 (11)0.0653 (12)0.0547 (11)0.0001 (9)0.0223 (9)0.0013 (10)
C110.113 (2)0.0600 (14)0.1016 (18)0.0275 (14)0.0342 (16)0.0121 (13)
Geometric parameters (Å, º) top
Cl1—C11.7496 (18)C4—C91.411 (2)
O1—C101.414 (2)C5—C61.366 (2)
O1—H10.8200C5—H50.9300
O2—C61.366 (2)C6—C71.403 (3)
O2—C111.421 (3)C7—C81.350 (3)
N1—C11.295 (2)C7—H70.9300
N1—C91.368 (2)C8—C91.412 (2)
C1—C21.418 (2)C8—H80.9300
C2—C31.360 (2)C10—H10A0.9700
C2—C101.505 (2)C10—H10B0.9700
C3—C41.415 (2)C11—H11A0.9600
C3—H30.9300C11—H11B0.9600
C4—C51.407 (2)C11—H11C0.9600
C10—O1—H1109.5C8—C7—C6120.86 (18)
C6—O2—C11117.08 (18)C8—C7—H7119.6
C1—N1—C9117.42 (14)C6—C7—H7119.6
N1—C1—C2126.53 (16)C7—C8—C9120.44 (17)
N1—C1—Cl1115.57 (13)C7—C8—H8119.8
C2—C1—Cl1117.90 (14)C9—C8—H8119.8
C3—C2—C1115.52 (16)N1—C9—C4121.87 (16)
C3—C2—C10123.17 (16)N1—C9—C8119.38 (15)
C1—C2—C10121.30 (16)C4—C9—C8118.75 (16)
C2—C3—C4121.42 (16)O1—C10—C2112.82 (16)
C2—C3—H3119.3O1—C10—H10A109.0
C4—C3—H3119.3C2—C10—H10A109.0
C5—C4—C9119.71 (16)O1—C10—H10B109.0
C5—C4—C3123.07 (16)C2—C10—H10B109.0
C9—C4—C3117.21 (15)H10A—C10—H10B107.8
C6—C5—C4119.79 (17)O2—C11—H11A109.5
C6—C5—H5120.1O2—C11—H11B109.5
C4—C5—H5120.1H11A—C11—H11B109.5
O2—C6—C5125.23 (18)O2—C11—H11C109.5
O2—C6—C7114.34 (18)H11A—C11—H11C109.5
C5—C6—C7120.43 (18)H11B—C11—H11C109.5
C9—N1—C1—C21.4 (2)C4—C5—C6—C71.1 (3)
C9—N1—C1—Cl1179.45 (10)O2—C6—C7—C8179.55 (16)
N1—C1—C2—C30.1 (2)C5—C6—C7—C81.1 (3)
Cl1—C1—C2—C3179.24 (12)C6—C7—C8—C90.6 (3)
N1—C1—C2—C10178.78 (16)C1—N1—C9—C40.9 (2)
Cl1—C1—C2—C100.4 (2)C1—N1—C9—C8179.17 (15)
C1—C2—C3—C41.7 (2)C5—C4—C9—N1179.93 (14)
C10—C2—C3—C4179.43 (15)C3—C4—C9—N10.8 (2)
C2—C3—C4—C5178.76 (15)C5—C4—C9—C80.0 (2)
C2—C3—C4—C92.1 (2)C3—C4—C9—C8179.16 (14)
C9—C4—C5—C60.5 (2)C7—C8—C9—N1179.89 (15)
C3—C4—C5—C6179.60 (16)C7—C8—C9—C40.1 (2)
C11—O2—C6—C57.7 (3)C3—C2—C10—O16.8 (2)
C11—O2—C6—C7173.00 (17)C1—C2—C10—O1171.94 (14)
C4—C5—C6—O2179.68 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N1i0.822.162.913 (2)153
Symmetry code: (i) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC11H10ClNO2
Mr223.65
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)6.9738 (3), 21.4668 (9), 7.3479 (4)
β (°) 108.220 (5)
V3)1044.87 (8)
Z4
Radiation typeMo Kα
µ (mm1)0.34
Crystal size (mm)0.28 × 0.21 × 0.20
Data collection
DiffractometerBruker SMART area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.910, 0.935
No. of measured, independent and
observed [I > 2σ(I)] reflections
11517, 2348, 1487
Rint0.035
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.108, 0.97
No. of reflections2348
No. of parameters138
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.21, 0.25

Computer programs: SMART (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N1i0.822.162.913 (2)153
Symmetry code: (i) x+1, y, z.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds