Download citation
Download citation
link to html
In the title compound, C13H16N2OS, the piperidine ring exhibit a classical chair conformation. In the crystal, the mol­ecules are linked by N—H...O hydrogen bonds, forming zigzag chains running parallel to the c axis.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S160053681004170X/bt5376sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S160053681004170X/bt5376Isup2.hkl
Contains datablock I

CCDC reference: 799661

Key indicators

  • Single-crystal X-ray study
  • T = 298 K
  • Mean [sigma](C-C) = 0.003 Å
  • R factor = 0.047
  • wR factor = 0.126
  • Data-to-parameter ratio = 14.4

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT230_ALERT_2_C Hirshfeld Test Diff for S1 -- C8 .. 5.16 su PLAT911_ALERT_3_C Missing # FCF Refl Between THmin & STh/L= 0.595 5
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 2 ALERT level C = Check and explain 0 ALERT level G = General alerts; check 0 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 1 ALERT type 2 Indicator that the structure model may be wrong or deficient 1 ALERT type 3 Indicator that the structure quality may be low 0 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

N,N-dialkyl-N'-benzoyl thioureas are known to form stable complexes with lage number of transition metals. The title compound has been used extensivelly as ligand to form stable complexes with Cu, Ni, Co, Pt, Pd, Hg, Ru, Os, Rh and Ir (Mohamadou et al., 1994; Salyn et al., 1977; Röbisch et al., 1982). The six-membered piperidine ring has a classical chair conformation.

In the crystal, the molecules are linked by N—H···O hydrogen bonds forming zigzag chains running parallel to the crystallographic c-axis.

Related literature top

For complexes with the title compound as a ligand, see: Mohamadou et al. (1994); Salyn et al. (1977); Röbisch et al. (1982).

Experimental top

A solution of benzoyl chloride (10 mmol) in acetone was added slowly to a equimolar solution of ammonium thiocyanate in acetone. The reaction mixture was stirred at room temperature before adding piperidine (10 mmol) slowly and left stirring at room temperature for 4 h. The mixture was poured on to a water-ice mixture and then filtered. The pure product was recrystallized to give colourless crystals (70% yield).

Refinement top

H atom positions were calculated and they were refined using a riding model with Uiso=1.2Ueq(C,N) and with Caromatic-H = 0.93 Å or C-H = 0.97 Å, and N-H = 0.86 Å.

Structure description top

N,N-dialkyl-N'-benzoyl thioureas are known to form stable complexes with lage number of transition metals. The title compound has been used extensivelly as ligand to form stable complexes with Cu, Ni, Co, Pt, Pd, Hg, Ru, Os, Rh and Ir (Mohamadou et al., 1994; Salyn et al., 1977; Röbisch et al., 1982). The six-membered piperidine ring has a classical chair conformation.

In the crystal, the molecules are linked by N—H···O hydrogen bonds forming zigzag chains running parallel to the crystallographic c-axis.

For complexes with the title compound as a ligand, see: Mohamadou et al. (1994); Salyn et al. (1977); Röbisch et al. (1982).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008), PARST (Nardelli, 1995) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of N-(piperidine-1-carbamothioyl)benzamide, with displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. Crystal packing of the title compound viewed down the c-axis. Hydrogen bonds are drawn as dashed lines.
N-[(Piperidin-1-yl)carbothioyl]benzamide top
Crystal data top
C13H16N2OSF(000) = 528
Mr = 248.34Dx = 1.300 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1679 reflections
a = 10.913 (3) Åθ = 1.9–25.0°
b = 14.297 (4) ŵ = 0.24 mm1
c = 8.323 (2) ÅT = 298 K
β = 102.212 (6)°Needle, colourless
V = 1269.2 (6) Å30.50 × 0.41 × 0.38 mm
Z = 4
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
2221 independent reflections
Radiation source: fine-focus sealed tube1727 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
ω scanθmax = 25.0°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 128
Tmin = 0.889, Tmax = 0.915k = 1617
7091 measured reflectionsl = 99
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.126H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0702P)2 + 0.1087P]
where P = (Fo2 + 2Fc2)/3
2221 reflections(Δ/σ)max < 0.001
154 parametersΔρmax = 0.29 e Å3
0 restraintsΔρmin = 0.27 e Å3
Crystal data top
C13H16N2OSV = 1269.2 (6) Å3
Mr = 248.34Z = 4
Monoclinic, P21/cMo Kα radiation
a = 10.913 (3) ŵ = 0.24 mm1
b = 14.297 (4) ÅT = 298 K
c = 8.323 (2) Å0.50 × 0.41 × 0.38 mm
β = 102.212 (6)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
2221 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
1727 reflections with I > 2σ(I)
Tmin = 0.889, Tmax = 0.915Rint = 0.031
7091 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0470 restraints
wR(F2) = 0.126H-atom parameters constrained
S = 1.08Δρmax = 0.29 e Å3
2221 reflectionsΔρmin = 0.27 e Å3
154 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.93006 (6)0.86988 (4)0.12334 (8)0.0562 (2)
O11.15395 (14)0.65828 (11)0.05387 (17)0.0500 (4)
N11.07366 (15)0.72851 (13)0.2538 (2)0.0419 (4)
H1A1.08640.74270.35640.050*
N20.88426 (17)0.68658 (13)0.0845 (2)0.0444 (5)
C11.2732 (2)0.63954 (15)0.4875 (3)0.0472 (6)
H1B1.19680.64240.52010.057*
C21.3821 (3)0.61791 (16)0.6010 (3)0.0546 (6)
H2A1.37900.60720.71020.066*
C31.4937 (2)0.61231 (16)0.5526 (3)0.0560 (7)
H3A1.56650.59810.62940.067*
C41.4996 (2)0.62748 (16)0.3912 (3)0.0526 (6)
H4A1.57600.62300.35900.063*
C51.3923 (2)0.64924 (15)0.2774 (3)0.0448 (5)
H5A1.39610.65890.16810.054*
C61.27884 (19)0.65682 (14)0.3256 (2)0.0385 (5)
C71.1646 (2)0.68059 (14)0.1983 (2)0.0393 (5)
C80.95923 (19)0.75579 (16)0.1496 (2)0.0404 (5)
C90.9072 (2)0.58599 (16)0.1188 (3)0.0521 (6)
H9A0.98040.57850.20710.062*
H9B0.92430.55540.02180.062*
C100.7954 (2)0.53997 (16)0.1670 (3)0.0502 (6)
H10A0.80990.47310.17820.060*
H10B0.78640.56400.27290.060*
C110.6756 (2)0.55748 (17)0.0417 (3)0.0576 (7)
H11A0.60510.53190.08130.069*
H11B0.67970.52640.06050.069*
C120.6569 (2)0.66148 (17)0.0119 (3)0.0511 (6)
H12A0.58260.67170.07360.061*
H12B0.64380.69140.11150.061*
C130.7685 (2)0.70500 (17)0.0388 (3)0.0491 (6)
H13A0.77670.67960.14410.059*
H13B0.75590.77200.05140.059*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0585 (4)0.0490 (4)0.0571 (4)0.0034 (3)0.0029 (3)0.0042 (3)
O10.0432 (9)0.0702 (11)0.0352 (9)0.0035 (8)0.0048 (7)0.0055 (7)
N10.0350 (10)0.0584 (11)0.0305 (9)0.0052 (9)0.0028 (7)0.0008 (7)
N20.0314 (10)0.0495 (11)0.0489 (10)0.0030 (9)0.0009 (8)0.0062 (8)
C10.0428 (13)0.0551 (14)0.0431 (13)0.0013 (11)0.0078 (10)0.0043 (10)
C20.0624 (16)0.0561 (15)0.0399 (13)0.0032 (13)0.0013 (11)0.0079 (10)
C30.0446 (14)0.0504 (14)0.0619 (16)0.0031 (11)0.0136 (12)0.0039 (11)
C40.0352 (13)0.0545 (15)0.0653 (16)0.0000 (11)0.0044 (11)0.0026 (11)
C50.0383 (12)0.0496 (13)0.0456 (12)0.0010 (10)0.0065 (10)0.0002 (10)
C60.0341 (12)0.0411 (11)0.0387 (11)0.0015 (9)0.0042 (9)0.0004 (9)
C70.0342 (12)0.0475 (12)0.0359 (11)0.0035 (10)0.0065 (9)0.0032 (9)
C80.0351 (11)0.0556 (13)0.0313 (10)0.0023 (10)0.0084 (9)0.0030 (9)
C90.0374 (13)0.0471 (13)0.0689 (16)0.0065 (11)0.0051 (11)0.0026 (11)
C100.0447 (14)0.0438 (12)0.0586 (13)0.0018 (11)0.0033 (11)0.0000 (10)
C110.0454 (14)0.0603 (15)0.0625 (15)0.0081 (12)0.0012 (12)0.0025 (12)
C120.0338 (12)0.0640 (15)0.0505 (13)0.0001 (11)0.0027 (10)0.0025 (11)
C130.0396 (13)0.0599 (14)0.0420 (12)0.0039 (11)0.0041 (10)0.0062 (10)
Geometric parameters (Å, º) top
S1—C81.667 (2)C5—C61.385 (3)
O1—C71.225 (2)C5—H5A0.9300
N1—C71.364 (3)C6—C71.495 (3)
N1—C81.416 (3)C9—C101.514 (3)
N1—H1A0.8600C9—H9A0.9700
N2—C81.325 (3)C9—H9B0.9700
N2—C131.473 (3)C10—C111.511 (3)
N2—C91.477 (3)C10—H10A0.9700
C1—C61.385 (3)C10—H10B0.9700
C1—C21.388 (3)C11—C121.514 (3)
C1—H1B0.9300C11—H11A0.9700
C2—C31.364 (4)C11—H11B0.9700
C2—H2A0.9300C12—C131.506 (3)
C3—C41.376 (3)C12—H12A0.9700
C3—H3A0.9300C12—H12B0.9700
C4—C51.377 (3)C13—H13A0.9700
C4—H4A0.9300C13—H13B0.9700
C7—N1—C8122.74 (17)N2—C9—C10111.15 (18)
C7—N1—H1A118.6N2—C9—H9A109.4
C8—N1—H1A118.6C10—C9—H9A109.4
C8—N2—C13121.05 (18)N2—C9—H9B109.4
C8—N2—C9125.68 (18)C10—C9—H9B109.4
C13—N2—C9113.22 (18)H9A—C9—H9B108.0
C6—C1—C2119.6 (2)C11—C10—C9111.9 (2)
C6—C1—H1B120.2C11—C10—H10A109.2
C2—C1—H1B120.2C9—C10—H10A109.2
C3—C2—C1120.2 (2)C11—C10—H10B109.2
C3—C2—H2A119.9C9—C10—H10B109.2
C1—C2—H2A119.9H10A—C10—H10B107.9
C2—C3—C4120.5 (2)C10—C11—C12110.07 (19)
C2—C3—H3A119.7C10—C11—H11A109.6
C4—C3—H3A119.7C12—C11—H11A109.6
C3—C4—C5119.9 (2)C10—C11—H11B109.6
C3—C4—H4A120.0C12—C11—H11B109.6
C5—C4—H4A120.0H11A—C11—H11B108.2
C4—C5—C6120.1 (2)C13—C12—C11111.2 (2)
C4—C5—H5A120.0C13—C12—H12A109.4
C6—C5—H5A120.0C11—C12—H12A109.4
C1—C6—C5119.7 (2)C13—C12—H12B109.4
C1—C6—C7121.89 (19)C11—C12—H12B109.4
C5—C6—C7118.43 (18)H12A—C12—H12B108.0
O1—C7—N1122.59 (19)N2—C13—C12110.88 (18)
O1—C7—C6121.86 (19)N2—C13—H13A109.5
N1—C7—C6115.56 (17)C12—C13—H13A109.5
N2—C8—N1115.66 (19)N2—C13—H13B109.5
N2—C8—S1126.36 (16)C12—C13—H13B109.5
N1—C8—S1117.96 (16)H13A—C13—H13B108.1
C6—C1—C2—C31.0 (3)C13—N2—C8—N1173.80 (17)
C1—C2—C3—C40.3 (4)C9—N2—C8—N13.5 (3)
C2—C3—C4—C50.5 (3)C13—N2—C8—S17.6 (3)
C3—C4—C5—C60.7 (3)C9—N2—C8—S1175.12 (16)
C2—C1—C6—C52.2 (3)C7—N1—C8—N265.2 (3)
C2—C1—C6—C7179.9 (2)C7—N1—C8—S1116.00 (19)
C4—C5—C6—C12.0 (3)C8—N2—C9—C10128.2 (2)
C4—C5—C6—C7179.98 (19)C13—N2—C9—C1054.3 (2)
C8—N1—C7—O10.5 (3)N2—C9—C10—C1153.4 (3)
C8—N1—C7—C6179.52 (18)C9—C10—C11—C1254.2 (3)
C1—C6—C7—O1148.6 (2)C10—C11—C12—C1355.5 (3)
C5—C6—C7—O129.4 (3)C8—N2—C13—C12126.5 (2)
C1—C6—C7—N131.4 (3)C9—N2—C13—C1255.8 (2)
C5—C6—C7—N1150.61 (19)C11—C12—C13—N256.1 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O1i0.862.182.949 (2)149
Symmetry code: (i) x, y+3/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC13H16N2OS
Mr248.34
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)10.913 (3), 14.297 (4), 8.323 (2)
β (°) 102.212 (6)
V3)1269.2 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.24
Crystal size (mm)0.50 × 0.41 × 0.38
Data collection
DiffractometerBruker SMART APEX CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.889, 0.915
No. of measured, independent and
observed [I > 2σ(I)] reflections
7091, 2221, 1727
Rint0.031
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.126, 1.08
No. of reflections2221
No. of parameters154
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.29, 0.27

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), PARST (Nardelli, 1995) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O1i0.862.182.949 (2)149
Symmetry code: (i) x, y+3/2, z+1/2.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds