Download citation
Download citation
link to html
In the title compound, C12H10N2O4S, the dihedral angle between the aromatic rings is 36.19 (18)°. In the crystal, N—H...O hydrogen bonds link the mol­ecules into C(4) chains running along the a axis.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536812037798/bt6832sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536812037798/bt6832Isup2.hkl
Contains datablock I

cml

Chemical Markup Language (CML) file https://doi.org/10.1107/S1600536812037798/bt6832Isup3.cml
Supplementary material

CCDC reference: 907408

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](C-C) = 0.006 Å
  • R factor = 0.037
  • wR factor = 0.086
  • Data-to-parameter ratio = 8.1

checkCIF/PLATON results

No syntax errors found



Alert level B PLAT915_ALERT_3_B Low Friedel Pair Coverage ...................... 25 Perc.
Author Response: We feel that the Flack parameter is correct enough and presented structural information on this compound is reliable enough in order to unambigiously solve the structure and refine the structure model reliably.

Alert level C PLAT340_ALERT_3_C Low Bond Precision on C-C Bonds ............... 0.0064 Ang PLAT910_ALERT_3_C Missing # of FCF Reflections Below Th(Min) ..... 1 PLAT911_ALERT_3_C Missing # FCF Refl Between THmin & STh/L= 0.600 3
Alert level G REFLT03_ALERT_4_G WARNING: Large fraction of Friedel related reflns may be needed to determine absolute structure From the CIF: _diffrn_reflns_theta_max 25.33 From the CIF: _reflns_number_total 1421 Count of symmetry unique reflns 1142 Completeness (_total/calc) 124.43% TEST3: Check Friedels for noncentro structure Estimate of Friedel pairs measured 279 Fraction of Friedel pairs measured 0.244 Are heavy atom types Z>Si present yes PLAT002_ALERT_2_G Number of Distance or Angle Restraints on AtSite 2 PLAT005_ALERT_5_G No _iucr_refine_instructions_details in CIF .... ? PLAT199_ALERT_1_G Check the Reported _cell_measurement_temperature 293 K PLAT200_ALERT_1_G Check the Reported _diffrn_ambient_temperature 293 K PLAT860_ALERT_3_G Note: Number of Least-Squares Restraints ....... 3 PLAT909_ALERT_3_G Percentage of Observed Data at Theta(Max) still 78 Perc.
0 ALERT level A = Most likely a serious problem - resolve or explain 1 ALERT level B = A potentially serious problem, consider carefully 3 ALERT level C = Check. Ensure it is not caused by an omission or oversight 7 ALERT level G = General information/check it is not something unexpected 2 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 1 ALERT type 2 Indicator that the structure model may be wrong or deficient 6 ALERT type 3 Indicator that the structure quality may be low 1 ALERT type 4 Improvement, methodology, query or suggestion 1 ALERT type 5 Informative message, check

Comment top

As a part of our studies on the substituent effects on the structures and other aspects of N-(aryl)-amides (Alkan et al., 2011; Gowda & Weiss, 1994; Shahwar et al., 2012); N-arylsulfonamides (Chaithanya et al., 2012; Gowda et al., 2003) and N-chloroarylsulfonamides (Gowda et al., 2005; Shetty & Gowda, 2004),in the present work, the crystal structure of N-(phenyl)-4-nitrobenzenesulfonamide has been determined (Fig. 1).

The conformation of the N—C bond in the —SO2—NH—C segment has gauche torsions with respect to the SO bonds (Fig.1). The molecule is twisted at the S—N bond with the torsional angle of 61.89 (32)°, compared to the value of -72.83 (15)° in N-(phenyl)-2-nitrobenzenesulfonamide (I)(Chaithanya et al., 2012).

The dihedral angle between the sulfonyl and the anilino rings is 36.19 (18)°, compared to the value of 59.55 (7)° in (I).

In the crystal, the intermolecular N—H···O hydrogen bond interactions link the molecules into C(4) chains. Part of the crystal structure is shown in Fig. 2.

Related literature top

For studies on the effects of substituents on the structures and other aspects of N-(aryl)-amides, see: Alkan et al. (2011); Gowda & Weiss (1994); Shahwar et al. (2012), of N-arylsulfonamides, see: Chaithanya et al. (2012); Gowda et al. (2003) and of N-chloroarylsulfonamides, see: Gowda et al. (2005); Shetty & Gowda (2004).

Experimental top

The title compound was prepared by treating 4-nitrobenzenesulfonylchloride with aniline in the stoichiometric ratio and boiling the reaction mixture for 15 minutes. The reaction mixture was then cooled to room temperature and added to ice cold water (100 ml). The resultant solid N-(phenyl)-4-nitrobenzenesulfonamide was filtered under suction and washed thoroughly with cold water and dilute HCl to remove the excess sulfonylchloride and aniline, respectively. It was then recrystallized to constant melting point from dilute ethanol. The purity of the compound was checked and characterized by its infrared spectra.

Plate like colourless single crystals of the title compound used in X-ray diffraction studies were grown in ethanolic solution by slow evaporation of the solvent at room temperature.

Refinement top

H atoms bonded to C were positioned with idealized geometry using a riding model with C—H = 0.93 Å. The coordinates of the amino H atom were refined with the N—H distance restrained to 0.86 (2) Å. All H atoms were refined with isotropic displacement parameters set at 1.2 Ueq of the parent atom.

Structure description top

As a part of our studies on the substituent effects on the structures and other aspects of N-(aryl)-amides (Alkan et al., 2011; Gowda & Weiss, 1994; Shahwar et al., 2012); N-arylsulfonamides (Chaithanya et al., 2012; Gowda et al., 2003) and N-chloroarylsulfonamides (Gowda et al., 2005; Shetty & Gowda, 2004),in the present work, the crystal structure of N-(phenyl)-4-nitrobenzenesulfonamide has been determined (Fig. 1).

The conformation of the N—C bond in the —SO2—NH—C segment has gauche torsions with respect to the SO bonds (Fig.1). The molecule is twisted at the S—N bond with the torsional angle of 61.89 (32)°, compared to the value of -72.83 (15)° in N-(phenyl)-2-nitrobenzenesulfonamide (I)(Chaithanya et al., 2012).

The dihedral angle between the sulfonyl and the anilino rings is 36.19 (18)°, compared to the value of 59.55 (7)° in (I).

In the crystal, the intermolecular N—H···O hydrogen bond interactions link the molecules into C(4) chains. Part of the crystal structure is shown in Fig. 2.

For studies on the effects of substituents on the structures and other aspects of N-(aryl)-amides, see: Alkan et al. (2011); Gowda & Weiss (1994); Shahwar et al. (2012), of N-arylsulfonamides, see: Chaithanya et al. (2012); Gowda et al. (2003) and of N-chloroarylsulfonamides, see: Gowda et al. (2005); Shetty & Gowda (2004).

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis CCD (Oxford Diffraction, 2009); data reduction: CrysAlis RED (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound, showing the atom labelling scheme and with displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. Molecular packing of the title compound with hydrogen bonding shown as dashed lines.
4-Nitro-N-phenylbenzenesulfonamide top
Crystal data top
C12H10N2O4SF(000) = 576
Mr = 278.28Dx = 1.490 Mg m3
Monoclinic, CcMo Kα radiation, λ = 0.71073 Å
Hall symbol: C -2ycCell parameters from 1242 reflections
a = 5.1948 (4) Åθ = 3.2–27.6°
b = 12.8089 (9) ŵ = 0.27 mm1
c = 18.682 (1) ÅT = 293 K
β = 93.419 (7)°Plate, colourless
V = 1240.88 (15) Å30.36 × 0.32 × 0.08 mm
Z = 4
Data collection top
Oxford Diffraction Xcalibur
diffractometer with a Sapphire CCD detector
1421 independent reflections
Radiation source: fine-focus sealed tube1311 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.013
Rotation method data acquisition using ω scansθmax = 25.3°, θmin = 3.2°
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
h = 63
Tmin = 0.908, Tmax = 0.979k = 515
2074 measured reflectionsl = 2221
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.037H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.086 w = 1/[σ2(Fo2) + (0.032P)2 + 0.9798P]
where P = (Fo2 + 2Fc2)/3
S = 1.20(Δ/σ)max < 0.001
1421 reflectionsΔρmax = 0.25 e Å3
175 parametersΔρmin = 0.16 e Å3
3 restraintsAbsolute structure: Flack (1983), 282 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.09 (12)
Crystal data top
C12H10N2O4SV = 1240.88 (15) Å3
Mr = 278.28Z = 4
Monoclinic, CcMo Kα radiation
a = 5.1948 (4) ŵ = 0.27 mm1
b = 12.8089 (9) ÅT = 293 K
c = 18.682 (1) Å0.36 × 0.32 × 0.08 mm
β = 93.419 (7)°
Data collection top
Oxford Diffraction Xcalibur
diffractometer with a Sapphire CCD detector
1421 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
1311 reflections with I > 2σ(I)
Tmin = 0.908, Tmax = 0.979Rint = 0.013
2074 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.037H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.086Δρmax = 0.25 e Å3
S = 1.20Δρmin = 0.16 e Å3
1421 reflectionsAbsolute structure: Flack (1983), 282 Friedel pairs
175 parametersAbsolute structure parameter: 0.09 (12)
3 restraints
Special details top

Experimental. Absorption correction: CrysAlis RED (Oxford Diffraction, 2009) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.0817 (7)0.9140 (3)0.0338 (2)0.0425 (9)
C20.0381 (8)1.0097 (3)0.0379 (2)0.0535 (11)
H20.17001.01950.06880.064*
C30.0406 (8)1.0907 (3)0.0044 (2)0.0570 (12)
H30.03811.15580.00260.068*
C40.2345 (8)1.0741 (3)0.0487 (2)0.0457 (9)
C50.3565 (9)0.9789 (3)0.0540 (3)0.0569 (11)
H50.48830.96970.08490.068*
C60.2773 (8)0.8980 (3)0.0120 (2)0.0533 (11)
H60.35500.83280.01460.064*
C70.1676 (8)0.9283 (3)0.2053 (2)0.0457 (9)
C80.3323 (9)1.0099 (3)0.1962 (3)0.0604 (12)
H80.46311.00340.16460.072*
C90.3052 (12)1.1013 (4)0.2335 (3)0.0762 (15)
H90.41861.15640.22770.091*
C100.1108 (13)1.1109 (4)0.2793 (3)0.0826 (17)
H100.08951.17340.30360.099*
C110.0527 (11)1.0291 (5)0.2895 (3)0.0825 (16)
H110.18331.03580.32110.099*
C120.0235 (9)0.9362 (4)0.2526 (2)0.0658 (13)
H120.13220.88000.25990.079*
N10.1932 (7)0.8315 (2)0.16574 (19)0.0491 (8)
H1N0.346 (5)0.817 (3)0.156 (2)0.059*
N20.3232 (8)1.1618 (3)0.0926 (2)0.0624 (10)
O10.2542 (5)0.82835 (19)0.11253 (16)0.0535 (8)
O20.0826 (6)0.71539 (19)0.06472 (17)0.0569 (8)
O30.2037 (8)1.2437 (3)0.0919 (2)0.0907 (13)
O40.5135 (8)1.1485 (3)0.1263 (2)0.0894 (13)
S20.00585 (16)0.81293 (6)0.09388 (7)0.0445 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.037 (2)0.0366 (16)0.054 (2)0.0000 (16)0.0048 (17)0.0008 (16)
C20.045 (2)0.0422 (19)0.076 (3)0.0090 (18)0.024 (2)0.0009 (19)
C30.055 (3)0.038 (2)0.080 (3)0.0115 (19)0.017 (2)0.005 (2)
C40.048 (2)0.0387 (18)0.051 (2)0.0031 (17)0.0065 (18)0.0020 (16)
C50.061 (3)0.054 (2)0.058 (3)0.005 (2)0.027 (2)0.003 (2)
C60.054 (3)0.042 (2)0.066 (3)0.0123 (19)0.018 (2)0.0004 (19)
C70.047 (2)0.0451 (19)0.045 (2)0.0006 (18)0.0039 (18)0.0022 (17)
C80.061 (3)0.058 (2)0.064 (3)0.006 (2)0.016 (2)0.002 (2)
C90.104 (5)0.051 (2)0.074 (3)0.008 (3)0.009 (3)0.000 (2)
C100.104 (5)0.078 (3)0.066 (3)0.017 (3)0.004 (3)0.025 (3)
C110.072 (4)0.115 (4)0.062 (3)0.007 (4)0.022 (3)0.024 (3)
C120.061 (3)0.087 (3)0.051 (3)0.014 (2)0.020 (2)0.007 (2)
N10.0428 (19)0.0479 (18)0.057 (2)0.0060 (16)0.0083 (16)0.0036 (15)
N20.068 (3)0.054 (2)0.067 (3)0.0027 (19)0.016 (2)0.0115 (17)
O10.0344 (15)0.0529 (16)0.074 (2)0.0013 (12)0.0104 (14)0.0027 (13)
O20.0585 (19)0.0351 (13)0.078 (2)0.0002 (12)0.0166 (16)0.0035 (12)
O30.109 (3)0.0544 (18)0.112 (3)0.020 (2)0.038 (3)0.0257 (18)
O40.095 (3)0.071 (2)0.108 (3)0.0060 (19)0.053 (3)0.027 (2)
S20.0383 (5)0.0369 (4)0.0592 (5)0.0003 (5)0.0108 (4)0.0004 (5)
Geometric parameters (Å, º) top
C1—C21.379 (5)C8—C91.375 (6)
C1—C61.383 (5)C8—H80.9300
C1—S21.773 (4)C9—C101.366 (7)
C2—C31.382 (5)C9—H90.9300
C2—H20.9300C10—C111.369 (8)
C3—C41.358 (5)C10—H100.9300
C3—H30.9300C11—C121.387 (7)
C4—C51.380 (5)C11—H110.9300
C4—N21.480 (5)C12—H120.9300
C5—C61.376 (5)N1—S21.628 (4)
C5—H50.9300N1—H1N0.85 (2)
C6—H60.9300N2—O41.215 (5)
C7—C81.368 (6)N2—O31.220 (5)
C7—C121.371 (5)O1—S21.429 (3)
C7—N11.454 (5)O2—S21.429 (3)
C2—C1—C6121.1 (3)C10—C9—C8119.7 (5)
C2—C1—S2119.7 (3)C10—C9—H9120.1
C6—C1—S2118.9 (3)C8—C9—H9120.1
C1—C2—C3119.1 (4)C9—C10—C11120.4 (5)
C1—C2—H2120.5C9—C10—H10119.8
C3—C2—H2120.5C11—C10—H10119.8
C4—C3—C2119.1 (3)C10—C11—C12120.0 (5)
C4—C3—H3120.4C10—C11—H11120.0
C2—C3—H3120.4C12—C11—H11120.0
C3—C4—C5122.8 (3)C7—C12—C11119.2 (4)
C3—C4—N2119.0 (4)C7—C12—H12120.4
C5—C4—N2118.1 (4)C11—C12—H12120.4
C6—C5—C4118.0 (4)C7—N1—S2118.4 (3)
C6—C5—H5121.0C7—N1—H1N114 (3)
C4—C5—H5121.0S2—N1—H1N108 (3)
C5—C6—C1119.8 (3)O4—N2—O3123.7 (4)
C5—C6—H6120.1O4—N2—C4118.1 (4)
C1—C6—H6120.1O3—N2—C4118.1 (4)
C8—C7—C12120.4 (4)O1—S2—O2120.20 (16)
C8—C7—N1120.7 (4)O1—S2—N1107.82 (18)
C12—C7—N1118.9 (4)O2—S2—N1106.00 (18)
C7—C8—C9120.2 (5)O1—S2—C1107.61 (16)
C7—C8—H8119.9O2—S2—C1108.63 (17)
C9—C8—H8119.9N1—S2—C1105.71 (18)
C6—C1—C2—C30.3 (7)C10—C11—C12—C71.0 (8)
S2—C1—C2—C3173.8 (3)C8—C7—N1—S298.6 (4)
C1—C2—C3—C40.3 (7)C12—C7—N1—S282.0 (5)
C2—C3—C4—C50.6 (7)C3—C4—N2—O4172.7 (5)
C2—C3—C4—N2178.4 (4)C5—C4—N2—O46.3 (6)
C3—C4—C5—C60.3 (7)C3—C4—N2—O36.2 (6)
N2—C4—C5—C6178.7 (4)C5—C4—N2—O3174.8 (5)
C4—C5—C6—C10.3 (7)C7—N1—S2—O153.0 (3)
C2—C1—C6—C50.6 (7)C7—N1—S2—O2177.1 (3)
S2—C1—C6—C5173.5 (4)C7—N1—S2—C161.9 (3)
C12—C7—C8—C91.0 (8)C2—C1—S2—O129.2 (4)
N1—C7—C8—C9179.5 (4)C6—C1—S2—O1156.6 (3)
C7—C8—C9—C100.8 (8)C2—C1—S2—O2160.8 (4)
C8—C9—C10—C111.7 (9)C6—C1—S2—O225.0 (4)
C9—C10—C11—C120.8 (9)C2—C1—S2—N185.9 (4)
C8—C7—C12—C111.9 (7)C6—C1—S2—N188.4 (4)
N1—C7—C12—C11178.6 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O1i0.85 (2)2.28 (2)3.094 (4)162 (4)
Symmetry code: (i) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC12H10N2O4S
Mr278.28
Crystal system, space groupMonoclinic, Cc
Temperature (K)293
a, b, c (Å)5.1948 (4), 12.8089 (9), 18.682 (1)
β (°) 93.419 (7)
V3)1240.88 (15)
Z4
Radiation typeMo Kα
µ (mm1)0.27
Crystal size (mm)0.36 × 0.32 × 0.08
Data collection
DiffractometerOxford Diffraction Xcalibur
diffractometer with a Sapphire CCD detector
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2009)
Tmin, Tmax0.908, 0.979
No. of measured, independent and
observed [I > 2σ(I)] reflections
2074, 1421, 1311
Rint0.013
(sin θ/λ)max1)0.602
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.086, 1.20
No. of reflections1421
No. of parameters175
No. of restraints3
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.25, 0.16
Absolute structureFlack (1983), 282 Friedel pairs
Absolute structure parameter0.09 (12)

Computer programs: CrysAlis CCD (Oxford Diffraction, 2009), CrysAlis RED (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O1i0.85 (2)2.28 (2)3.094 (4)162 (4)
Symmetry code: (i) x+1, y, z.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds