Download citation
Download citation
link to html
The asymmetric unit of the title compound, [Ru(C15H11N3)2](ClO4)2·0.5H2O, contains one ruthenium–terpiridine complex cation, two perchlorate anions and one half-mol­ecule of water. Face-to-face and face-to-edge π-stacking inter­actions between terpyridine units [centroid–centroid distances = 3.793 (2) and 3.801 (2)  Å] stabilize the crystal lattice The partially occupied water mol­ecule inter­acts with two perchlorate ions via O—H...O hydrogen bonds. In the crystal lattice, the complex cations, perchlorate ion-water pairs and the second perchlorate anions are arranged into columns along b direction.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536812043917/bt6849sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536812043917/bt6849Isup2.hkl
Contains datablock I

CCDC reference: 909756

Key indicators

  • Single-crystal X-ray study
  • T = 100 K
  • Mean [sigma](C-C) = 0.005 Å
  • Disorder in solvent or counterion
  • R factor = 0.042
  • wR factor = 0.083
  • Data-to-parameter ratio = 14.0

checkCIF/PLATON results

No syntax errors found



Alert level B PLAT934_ALERT_3_B Number of (Iobs-Icalc)/SigmaW .gt. 10 Outliers . 2
Alert level C PLAT244_ALERT_4_C Low 'Solvent' Ueq as Compared to Neighbors of Cl1A PLAT717_ALERT_1_C D...A Unknown or Inconsistent Label .......... <I>CG</ PLAT717_ALERT_1_C D...A Unknown or Inconsistent Label .......... <I>CG</ PLAT906_ALERT_3_C Large K value in the Analysis of Variance ...... 4.455 PLAT910_ALERT_3_C Missing # of FCF Reflections Below Th(Min) ..... 5 PLAT975_ALERT_2_C Positive Residual Density at 1.03A from O4B . 0.60 eA-3 PLAT975_ALERT_2_C Positive Residual Density at 0.85A from O4B . 0.51 eA-3
Alert level G PLAT002_ALERT_2_G Number of Distance or Angle Restraints on AtSite 3 PLAT005_ALERT_5_G No _iucr_refine_instructions_details in CIF ... ? PLAT042_ALERT_1_G Calc. and Reported MoietyFormula Strings Differ ? PLAT045_ALERT_1_G Calculated and Reported Z Differ by ............ 0.50 Ratio PLAT083_ALERT_2_G SHELXL Second Parameter in WGHT Unusually Large. 7.00 PLAT128_ALERT_4_G Alternate Setting of Space-group P21/c ....... P21/n PLAT302_ALERT_4_G Note: Anion/Solvent Disorder ................... 5 Perc. PLAT860_ALERT_3_G Note: Number of Least-Squares Restraints ....... 3 PLAT912_ALERT_4_G Missing # of FCF Reflections Above STh/L= 0.600 3
0 ALERT level A = Most likely a serious problem - resolve or explain 1 ALERT level B = A potentially serious problem, consider carefully 7 ALERT level C = Check. Ensure it is not caused by an omission or oversight 9 ALERT level G = General information/check it is not something unexpected 4 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 4 ALERT type 2 Indicator that the structure model may be wrong or deficient 4 ALERT type 3 Indicator that the structure quality may be low 4 ALERT type 4 Improvement, methodology, query or suggestion 1 ALERT type 5 Informative message, check

Comment top

A 2,2':6',2''-terpyridine (tpy) compound, as chelating N-donor, forms complexes with most of transition metals (Burstall et al., 1952). The polyimine complexes of divalent transition metal cations are well known due to their photophysical and electrochemical properties (Anders et al., 2004; Plonska et al., 2002; Winkler et al., 2003; Winkler et al., 2006). Ruthenium complexes with terpyridyl or bipyridyl ligands might catalyze photochemical water oxidation (Constable, 2007). The metal-to-ligand charge transfer processes in the visible region enable photo- and electroluminescence phenomena and make these applicable in a supramolecular chemistry (Constable, 2007).

The asymmetric unit contains one divalent cation of the ruthenium-terpiridine complex, two perchlorate anions and a water molecule with a half-occupancy (Fig. 1). The crystal lattice is stabilized by terpyridine moieties and respective face-to-face and face-to-edge π-stacking interactions. The partially occupied water molecule and one perchlorate anion are located in a proximity of the inversion center and a symmetry related water-anion pair is generated. Two hydrogen bonds O5—H5A···O1A and H5—H5B···O2A (equivalent anion -x + 2,-y + 1,-z) are formed between water molecule and oxygen atoms of perchlorate units. Geometrical parameters of hydrogen bond interactions are summarized in Table 1. In the crystal lattice each water molecule serves as a bridge between two symmetry dependent perchlorate units (Fig. 2). It is of note, that only one perchlorate unit and its symmetry-mates form hydrogen bonds with water molecules, whereas the second anion interacts with C-bonded hydrogen atoms (Fig 2).

Related literature top

For the preparation of terpyridine complexes with transition metals, see: Burstall et al. (1952). For the structures of salts of complexes of ruthenium with terpyridine, see: Craig et al. (1998); Lashgari et al. (1999); Pyo et al. (1999); Tovee et al. (2009); Walstrom et al. (2009). For background to the properties and applications of terpiridine complexes, see: Anders et al. (2004); Constable (2007); Plonska et al. (2002); Winkler et al. (2003, 2006).

Experimental top

The transition metal complex salt, [RuII(tpy)2](ClO4)2 was prepared according to the procedure described by Burstall et al. (1952). Crystals suitable for X-ray diffraction study were obtained at room temperature by a slow evaporation of [RuII(tpy)2](ClO4)2 solution in acetonitrile.

Refinement top

During the initial refinement steps, the occupancy factor for the water molecule was refined and it was in a range of 0.49–0.52. For the final refinement cycles, this occupancy was fixed at 0.5 with isotropic atomic displacement parameters for hydrogen atoms. All H atoms were located in electron density difference maps. C-bonded hydrogen atoms were constrained to idealized positions with C—H distances fixed at 0.95 Å and 1.2Ueq(C). O—H distances were fixed at 0.85 Å with Uiso(H) = 1.5Ueq(C) and the positions of water hydrogen atoms were refined.

Computing details top

Data collection: CrysAlis PRO (Agilent, 2011); cell refinement: CrysAlis PRO (Agilent, 2011); data reduction: CrysAlis PRO (Agilent, 2011); program(s) used to solve structure: SHELXD (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the compound. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. Crystal packing viewed along b direction. Dashed lines represent hydrogen bonds between half-molecule of water and perchlorate anions.
Bis(2,2':6',2''-terpyridine)ruthenium(II) bis(perchlorate) hemihydrate top
Crystal data top
[Ru(C15H11N3)2](ClO4)2·0.5H2OF(000) = 1564
Mr = 775.51Dx = 1.706 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 7538 reflections
a = 8.7676 (2) Åθ = 2.5–26.3°
b = 8.8221 (9) ŵ = 0.76 mm1
c = 39.118 (4) ÅT = 100 K
β = 93.582 (5)°Plate, red
V = 3019.8 (4) Å30.15 × 0.12 × 0.03 mm
Z = 4
Data collection top
Agilent SuperNova (Dual, Cu at zero, Atlas)
diffractometer
6158 independent reflections
Radiation source: SuperNova (Mo) X-ray Source5858 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.027
Detector resolution: 10.4052 pixels mm-1θmax = 26.4°, θmin = 2.5°
ω scansh = 1010
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
k = 011
Tmin = 0.801, Tmax = 1.000l = 048
16537 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.083H atoms treated by a mixture of independent and constrained refinement
S = 1.27 w = 1/[σ2(Fo2) + (0.0111P)2 + 7.0042P]
where P = (Fo2 + 2Fc2)/3
6158 reflections(Δ/σ)max = 0.001
439 parametersΔρmax = 0.65 e Å3
3 restraintsΔρmin = 1.17 e Å3
Crystal data top
[Ru(C15H11N3)2](ClO4)2·0.5H2OV = 3019.8 (4) Å3
Mr = 775.51Z = 4
Monoclinic, P21/nMo Kα radiation
a = 8.7676 (2) ŵ = 0.76 mm1
b = 8.8221 (9) ÅT = 100 K
c = 39.118 (4) Å0.15 × 0.12 × 0.03 mm
β = 93.582 (5)°
Data collection top
Agilent SuperNova (Dual, Cu at zero, Atlas)
diffractometer
6158 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
5858 reflections with I > 2σ(I)
Tmin = 0.801, Tmax = 1.000Rint = 0.027
16537 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0423 restraints
wR(F2) = 0.083H atoms treated by a mixture of independent and constrained refinement
S = 1.27Δρmax = 0.65 e Å3
6158 reflectionsΔρmin = 1.17 e Å3
439 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Ru10.35193 (3)0.33315 (3)0.127794 (6)0.01027 (7)
N1A0.2631 (3)0.1164 (3)0.12359 (7)0.0121 (5)
N3A0.4324 (3)0.5408 (3)0.11162 (7)0.0122 (5)
C15A0.4968 (3)0.6520 (4)0.13099 (8)0.0142 (6)
H15A0.50390.63990.15520.017*
C1A0.2479 (3)0.0135 (4)0.14867 (8)0.0155 (7)
H1A0.28370.03860.17140.019*
C10A0.3495 (3)0.4333 (4)0.05723 (8)0.0139 (6)
C10B0.5227 (3)0.3134 (4)0.19339 (8)0.0145 (6)
C11A0.4207 (3)0.5607 (4)0.07649 (8)0.0145 (6)
C5A0.2170 (3)0.0758 (4)0.09058 (8)0.0142 (6)
C12A0.4743 (4)0.6915 (4)0.06155 (9)0.0179 (7)
H12A0.46350.70420.03740.022*
C2A0.1819 (4)0.1275 (4)0.14247 (9)0.0181 (7)
H2A0.17240.19750.16070.022*
C15B0.6578 (3)0.1840 (4)0.11219 (8)0.0156 (7)
H15B0.62280.18790.08870.019*
C4A0.1491 (4)0.0635 (4)0.08320 (9)0.0174 (7)
H4A0.11620.08880.06030.021*
C12B0.7609 (4)0.1731 (4)0.17951 (9)0.0199 (7)
H12B0.79490.17000.20300.024*
C8A0.2508 (4)0.2943 (4)0.00816 (8)0.0213 (7)
H8A0.22960.28660.01590.026*
C9A0.3187 (4)0.4247 (4)0.02177 (8)0.0184 (7)
H9A0.34370.50640.00730.022*
C14A0.5534 (4)0.7834 (4)0.11718 (9)0.0189 (7)
H14A0.59850.85940.13170.023*
C3A0.1300 (4)0.1650 (4)0.10941 (9)0.0211 (7)
H3A0.08160.25990.10480.025*
C13A0.5437 (4)0.8035 (4)0.08197 (9)0.0205 (7)
H13A0.58380.89210.07200.025*
C4B0.0091 (4)0.5255 (4)0.18713 (9)0.0193 (7)
H4B0.00760.55210.21060.023*
C7B0.3040 (4)0.4475 (4)0.23114 (8)0.0196 (7)
H7B0.22810.49370.24400.024*
N2B0.3874 (3)0.3573 (3)0.17813 (6)0.0124 (5)
C6B0.2779 (3)0.4223 (4)0.19610 (8)0.0143 (6)
C14B0.7970 (4)0.1152 (4)0.12103 (9)0.0184 (7)
H14B0.85650.07310.10390.022*
C1B0.0186 (4)0.4455 (4)0.11975 (9)0.0163 (7)
H1B0.02030.41680.09640.020*
C13B0.8476 (4)0.1089 (4)0.15514 (9)0.0216 (7)
H13B0.94170.06060.16180.026*
C5B0.1388 (4)0.4593 (4)0.17462 (8)0.0149 (7)
C2B0.1131 (4)0.5101 (4)0.13105 (9)0.0208 (7)
H2B0.19970.52530.11560.025*
C3B0.1173 (4)0.5522 (4)0.16509 (9)0.0223 (8)
H3B0.20590.59880.17320.027*
C8B0.4433 (4)0.4036 (4)0.24683 (9)0.0215 (7)
H8B0.46250.41990.27070.026*
C9B0.5547 (4)0.3367 (4)0.22841 (8)0.0192 (7)
H9B0.65010.30740.23930.023*
N1B0.1441 (3)0.4219 (3)0.14059 (7)0.0127 (5)
N2A0.3132 (3)0.3157 (3)0.07744 (6)0.0126 (5)
C6A0.2464 (3)0.1891 (4)0.06429 (8)0.0142 (6)
N3B0.5705 (3)0.2454 (3)0.13564 (6)0.0123 (5)
C7A0.2136 (4)0.1753 (4)0.02910 (8)0.0198 (7)
H7A0.16680.08620.01970.024*
C11B0.6234 (3)0.2424 (4)0.16936 (8)0.0146 (7)
Cl1A0.78661 (9)0.20109 (9)0.02625 (2)0.01935 (18)
O2A0.8387 (3)0.2126 (3)0.00779 (6)0.0306 (6)
O4A0.6256 (3)0.2268 (4)0.02484 (7)0.0426 (8)
O3A0.8209 (4)0.0534 (3)0.03981 (7)0.0383 (7)
O1A0.8611 (4)0.3124 (3)0.04797 (7)0.0407 (7)
Cl1B0.52415 (9)0.83287 (10)0.22156 (2)0.02087 (18)
O2B0.5394 (3)0.7741 (3)0.25576 (7)0.0369 (7)
O1B0.3911 (3)0.7690 (3)0.20366 (6)0.0279 (6)
O3B0.5070 (3)0.9946 (3)0.22300 (7)0.0297 (6)
O4B0.6574 (3)0.7965 (4)0.20354 (7)0.0433 (8)
O50.9985 (6)0.6020 (6)0.05038 (12)0.0266 (11)0.50
H5A1.044 (8)0.639 (8)0.0339 (13)0.040*0.50
H5B0.950 (8)0.523 (6)0.0438 (18)0.040*0.50
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ru10.00989 (12)0.00929 (12)0.01172 (13)0.00013 (10)0.00132 (9)0.00072 (10)
N1A0.0079 (12)0.0103 (13)0.0179 (13)0.0022 (10)0.0002 (10)0.0004 (11)
N3A0.0100 (12)0.0096 (13)0.0173 (13)0.0017 (10)0.0025 (10)0.0008 (11)
C15A0.0119 (14)0.0129 (16)0.0179 (16)0.0005 (12)0.0008 (12)0.0028 (13)
C1A0.0130 (15)0.0161 (17)0.0171 (16)0.0008 (13)0.0000 (12)0.0015 (13)
C10A0.0114 (15)0.0123 (16)0.0181 (16)0.0039 (12)0.0010 (12)0.0001 (13)
C10B0.0158 (15)0.0109 (16)0.0168 (16)0.0039 (12)0.0002 (12)0.0007 (13)
C11A0.0123 (15)0.0145 (16)0.0171 (16)0.0030 (13)0.0031 (12)0.0005 (13)
C5A0.0101 (15)0.0129 (16)0.0194 (16)0.0024 (12)0.0003 (12)0.0015 (13)
C12A0.0190 (16)0.0153 (17)0.0198 (17)0.0005 (13)0.0031 (13)0.0031 (14)
C2A0.0150 (16)0.0119 (16)0.0273 (18)0.0037 (13)0.0013 (13)0.0053 (14)
C15B0.0171 (16)0.0126 (16)0.0175 (16)0.0028 (13)0.0047 (12)0.0005 (13)
C4A0.0153 (16)0.0145 (17)0.0221 (17)0.0000 (13)0.0012 (13)0.0031 (14)
C12B0.0168 (16)0.0195 (17)0.0228 (17)0.0005 (14)0.0030 (13)0.0026 (15)
C8A0.0236 (18)0.028 (2)0.0122 (16)0.0017 (15)0.0000 (13)0.0018 (14)
C9A0.0204 (17)0.0187 (18)0.0162 (16)0.0000 (14)0.0026 (13)0.0009 (14)
C14A0.0165 (16)0.0143 (16)0.0260 (18)0.0020 (13)0.0018 (13)0.0038 (14)
C3A0.0157 (16)0.0118 (16)0.036 (2)0.0042 (14)0.0000 (14)0.0010 (15)
C13A0.0193 (17)0.0129 (17)0.0297 (19)0.0023 (13)0.0047 (14)0.0044 (14)
C4B0.0207 (17)0.0141 (17)0.0240 (18)0.0010 (14)0.0093 (14)0.0003 (14)
C7B0.0258 (18)0.0160 (17)0.0178 (17)0.0032 (14)0.0088 (13)0.0030 (14)
N2B0.0133 (13)0.0081 (13)0.0161 (13)0.0015 (10)0.0028 (10)0.0007 (10)
C6B0.0149 (15)0.0089 (15)0.0195 (16)0.0024 (12)0.0044 (12)0.0017 (13)
C14B0.0152 (16)0.0146 (16)0.0262 (18)0.0000 (13)0.0073 (13)0.0003 (14)
C1B0.0159 (16)0.0100 (16)0.0228 (17)0.0028 (13)0.0005 (13)0.0017 (13)
C13B0.0147 (16)0.0184 (18)0.032 (2)0.0010 (14)0.0013 (14)0.0041 (15)
C5B0.0184 (16)0.0076 (15)0.0194 (16)0.0023 (12)0.0065 (13)0.0006 (13)
C2B0.0134 (16)0.0159 (17)0.033 (2)0.0005 (13)0.0019 (14)0.0046 (15)
C3B0.0167 (17)0.0157 (17)0.036 (2)0.0030 (14)0.0111 (14)0.0021 (15)
C8B0.0292 (19)0.0219 (19)0.0134 (16)0.0064 (15)0.0008 (13)0.0018 (14)
C9B0.0212 (17)0.0187 (17)0.0171 (16)0.0012 (14)0.0049 (13)0.0000 (14)
N1B0.0122 (13)0.0083 (13)0.0179 (14)0.0028 (10)0.0030 (10)0.0004 (11)
N2A0.0111 (12)0.0111 (13)0.0155 (13)0.0013 (10)0.0012 (10)0.0000 (11)
C6A0.0116 (14)0.0127 (16)0.0185 (16)0.0030 (12)0.0017 (12)0.0027 (13)
N3B0.0111 (12)0.0101 (13)0.0155 (13)0.0026 (10)0.0000 (10)0.0010 (11)
C7A0.0198 (16)0.0204 (18)0.0190 (17)0.0021 (15)0.0010 (13)0.0044 (14)
C11B0.0144 (15)0.0120 (16)0.0175 (16)0.0049 (13)0.0008 (12)0.0004 (13)
Cl1A0.0207 (4)0.0201 (4)0.0172 (4)0.0005 (3)0.0013 (3)0.0022 (3)
O2A0.0369 (15)0.0372 (16)0.0184 (13)0.0012 (13)0.0073 (11)0.0027 (12)
O4A0.0226 (14)0.072 (2)0.0337 (16)0.0097 (15)0.0027 (12)0.0139 (16)
O3A0.062 (2)0.0264 (15)0.0263 (15)0.0128 (14)0.0007 (13)0.0011 (12)
O1A0.0560 (19)0.0395 (18)0.0263 (15)0.0183 (15)0.0012 (13)0.0127 (13)
Cl1B0.0236 (4)0.0194 (4)0.0191 (4)0.0054 (3)0.0023 (3)0.0056 (3)
O2B0.0604 (19)0.0273 (15)0.0211 (14)0.0101 (14)0.0127 (13)0.0005 (12)
O1B0.0301 (14)0.0306 (15)0.0218 (13)0.0036 (12)0.0073 (11)0.0022 (11)
O3B0.0389 (16)0.0187 (13)0.0330 (15)0.0019 (12)0.0143 (12)0.0010 (12)
O4B0.0276 (15)0.059 (2)0.0432 (17)0.0136 (14)0.0025 (13)0.0240 (16)
O50.034 (3)0.025 (3)0.021 (3)0.010 (2)0.002 (2)0.005 (2)
Geometric parameters (Å, º) top
Ru1—N2A1.984 (3)C14A—C13A1.386 (5)
Ru1—N2B1.986 (3)C14A—H14A0.9500
Ru1—N1A2.067 (3)C3A—H3A0.9500
Ru1—N3B2.072 (3)C13A—H13A0.9500
Ru1—N1B2.073 (3)C4B—C3B1.381 (5)
Ru1—N3A2.076 (3)C4B—C5B1.394 (4)
N1A—C1A1.350 (4)C4B—H4B0.9500
N1A—C5A1.376 (4)C7B—C8B1.388 (5)
N3A—C15A1.342 (4)C7B—C6B1.393 (4)
N3A—C11A1.383 (4)C7B—H7B0.9500
C15A—C14A1.384 (5)N2B—C6B1.352 (4)
C15A—H15A0.9500C6B—C5B1.474 (4)
C1A—C2A1.387 (5)C14B—C13B1.381 (5)
C1A—H1A0.9500C14B—H14B0.9500
C10A—N2A1.354 (4)C1B—N1B1.345 (4)
C10A—C9A1.399 (4)C1B—C2B1.384 (5)
C10A—C11A1.470 (4)C1B—H1B0.9500
C10B—N2B1.351 (4)C13B—H13B0.9500
C10B—C9B1.396 (4)C5B—N1B1.375 (4)
C10B—C11B1.469 (4)C2B—C3B1.385 (5)
C11A—C12A1.389 (4)C2B—H2B0.9500
C5A—C4A1.388 (4)C3B—H3B0.9500
C5A—C6A1.468 (4)C8B—C9B1.382 (5)
C12A—C13A1.387 (5)C8B—H8B0.9500
C12A—H12A0.9500C9B—H9B0.9500
C2A—C3A1.384 (5)N2A—C6A1.349 (4)
C2A—H2A0.9500C6A—C7A1.394 (4)
C15B—N3B1.344 (4)N3B—C11B1.371 (4)
C15B—C14B1.388 (4)C7A—H7A0.9500
C15B—H15B0.9500Cl1A—O4A1.427 (3)
C4A—C3A1.380 (5)Cl1A—O1A1.430 (3)
C4A—H4A0.9500Cl1A—O3A1.432 (3)
C12B—C13B1.378 (5)Cl1A—O2A1.438 (3)
C12B—C11B1.387 (4)Cl1B—O2B1.433 (3)
C12B—H12B0.9500Cl1B—O3B1.437 (3)
C8A—C7A1.384 (5)Cl1B—O1B1.437 (3)
C8A—C9A1.386 (5)Cl1B—O4B1.438 (3)
C8A—H8A0.9500O5—H5A0.85 (2)
C9A—H9A0.9500O5—H5B0.85 (2)
N2A—Ru1—N2B178.09 (11)C12A—C13A—H13A120.7
N2A—Ru1—N1A78.99 (10)C3B—C4B—C5B119.5 (3)
N2B—Ru1—N1A102.30 (10)C3B—C4B—H4B120.2
N2A—Ru1—N3B102.56 (10)C5B—C4B—H4B120.2
N2B—Ru1—N3B78.88 (10)C8B—C7B—C6B118.4 (3)
N1A—Ru1—N3B90.37 (10)C8B—C7B—H7B120.8
N2A—Ru1—N1B99.82 (10)C6B—C7B—H7B120.8
N2B—Ru1—N1B78.78 (10)C6B—N2B—C10B121.6 (3)
N1A—Ru1—N1B92.06 (10)C6B—N2B—Ru1119.3 (2)
N3B—Ru1—N1B157.54 (10)C10B—N2B—Ru1119.1 (2)
N2A—Ru1—N3A78.81 (10)N2B—C6B—C7B120.1 (3)
N2B—Ru1—N3A99.93 (10)N2B—C6B—C5B112.7 (3)
N1A—Ru1—N3A157.73 (10)C7B—C6B—C5B127.2 (3)
N3B—Ru1—N3A92.65 (10)C13B—C14B—C15B118.9 (3)
N1B—Ru1—N3A93.49 (10)C13B—C14B—H14B120.5
C1A—N1A—C5A118.1 (3)C15B—C14B—H14B120.5
C1A—N1A—Ru1128.2 (2)N1B—C1B—C2B122.5 (3)
C5A—N1A—Ru1113.7 (2)N1B—C1B—H1B118.7
C15A—N3A—C11A118.1 (3)C2B—C1B—H1B118.7
C15A—N3A—Ru1127.7 (2)C12B—C13B—C14B119.6 (3)
C11A—N3A—Ru1114.1 (2)C12B—C13B—H13B120.2
N3A—C15A—C14A122.7 (3)C14B—C13B—H13B120.2
N3A—C15A—H15A118.7N1B—C5B—C4B121.2 (3)
C14A—C15A—H15A118.7N1B—C5B—C6B114.9 (3)
N1A—C1A—C2A122.4 (3)C4B—C5B—C6B123.8 (3)
N1A—C1A—H1A118.8C1B—C2B—C3B119.4 (3)
C2A—C1A—H1A118.8C1B—C2B—H2B120.3
N2A—C10A—C9A120.0 (3)C3B—C2B—H2B120.3
N2A—C10A—C11A113.2 (3)C4B—C3B—C2B119.1 (3)
C9A—C10A—C11A126.8 (3)C4B—C3B—H3B120.5
N2B—C10B—C9B120.5 (3)C2B—C3B—H3B120.5
N2B—C10B—C11B112.7 (3)C9B—C8B—C7B121.3 (3)
C9B—C10B—C11B126.8 (3)C9B—C8B—H8B119.3
N3A—C11A—C12A121.1 (3)C7B—C8B—H8B119.3
N3A—C11A—C10A114.5 (3)C8B—C9B—C10B118.0 (3)
C12A—C11A—C10A124.3 (3)C8B—C9B—H9B121.0
N1A—C5A—C4A121.5 (3)C10B—C9B—H9B121.0
N1A—C5A—C6A115.2 (3)C1B—N1B—C5B118.3 (3)
C4A—C5A—C6A123.3 (3)C1B—N1B—Ru1127.6 (2)
C13A—C12A—C11A119.8 (3)C5B—N1B—Ru1114.1 (2)
C13A—C12A—H12A120.1C6A—N2A—C10A121.6 (3)
C11A—C12A—H12A120.1C6A—N2A—Ru1119.1 (2)
C3A—C2A—C1A119.2 (3)C10A—N2A—Ru1119.2 (2)
C3A—C2A—H2A120.4N2A—C6A—C7A120.5 (3)
C1A—C2A—H2A120.4N2A—C6A—C5A112.8 (3)
N3B—C15B—C14B122.4 (3)C7A—C6A—C5A126.7 (3)
N3B—C15B—H15B118.8C15B—N3B—C11B118.5 (3)
C14B—C15B—H15B118.8C15B—N3B—Ru1127.6 (2)
C3A—C4A—C5A119.4 (3)C11B—N3B—Ru1113.8 (2)
C3A—C4A—H4A120.3C8A—C7A—C6A118.5 (3)
C5A—C4A—H4A120.3C8A—C7A—H7A120.8
C13B—C12B—C11B119.4 (3)C6A—C7A—H7A120.8
C13B—C12B—H12B120.3N3B—C11B—C12B121.3 (3)
C11B—C12B—H12B120.3N3B—C11B—C10B115.3 (3)
C7A—C8A—C9A120.9 (3)C12B—C11B—C10B123.4 (3)
C7A—C8A—H8A119.5O4A—Cl1A—O1A109.1 (2)
C9A—C8A—H8A119.5O4A—Cl1A—O3A110.07 (19)
C8A—C9A—C10A118.5 (3)O1A—Cl1A—O3A109.10 (18)
C8A—C9A—H9A120.7O4A—Cl1A—O2A108.88 (16)
C10A—C9A—H9A120.7O1A—Cl1A—O2A109.99 (17)
C15A—C14A—C13A119.6 (3)O3A—Cl1A—O2A109.65 (17)
C15A—C14A—H14A120.2O2B—Cl1B—O3B109.08 (16)
C13A—C14A—H14A120.2O2B—Cl1B—O1B109.78 (17)
C4A—C3A—C2A119.4 (3)O3B—Cl1B—O1B108.93 (16)
C4A—C3A—H3A120.3O2B—Cl1B—O4B110.22 (18)
C2A—C3A—H3A120.3O3B—Cl1B—O4B109.33 (18)
C14A—C13A—C12A118.6 (3)O1B—Cl1B—O4B109.47 (16)
C14A—C13A—H13A120.7H5A—O5—H5B110 (5)
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centoids of the N3A–C15A and N3B–C15B rings, respectively.
D—H···AD—HH···AD···AD—H···A
O5—H5A···O2Ai0.85 (2)1.98 (3)2.790 (6)159 (7)
O5—H5B···O1A0.85 (2)2.03 (3)2.824 (6)157 (7)
C2B—H2B···Cg1ii0.953.09 (1)3.945 (4)45 (1)
C14A—H14A···Cg2iii0.953.01 (1)3.878 (4)43 (1)
Symmetry codes: (i) x+2, y+1, z; (ii) x1, y, z; (iii) x, y+1, z.

Experimental details

Crystal data
Chemical formula[Ru(C15H11N3)2](ClO4)2·0.5H2O
Mr775.51
Crystal system, space groupMonoclinic, P21/n
Temperature (K)100
a, b, c (Å)8.7676 (2), 8.8221 (9), 39.118 (4)
β (°) 93.582 (5)
V3)3019.8 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.76
Crystal size (mm)0.15 × 0.12 × 0.03
Data collection
DiffractometerAgilent SuperNova (Dual, Cu at zero, Atlas)
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2011)
Tmin, Tmax0.801, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
16537, 6158, 5858
Rint0.027
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.083, 1.27
No. of reflections6158
No. of parameters439
No. of restraints3
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.65, 1.17

Computer programs: CrysAlis PRO (Agilent, 2011), SHELXD (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2006).

Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centoids of the N3A–C15A and N3B–C15B rings, respectively.
D—H···AD—HH···AD···AD—H···A
O5—H5A···O2Ai0.85 (2)1.98 (3)2.790 (6)159 (7)
O5—H5B···O1A0.85 (2)2.03 (3)2.824 (6)157 (7)
C2B—H2B···Cg1ii0.953.086 (1)3.945 (4)45.3 (2)
C14A—H14A···Cg2iii0.953.013 (1)3.878 (4)42.7 (2)
Symmetry codes: (i) x+2, y+1, z; (ii) x1, y, z; (iii) x, y+1, z.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds