


Supporting information
![]() | Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536812049070/bt6873sup1.cif |
![]() | Structure factor file (CIF format) https://doi.org/10.1107/S1600536812049070/bt6873Isup2.hkl |
![]() | Chemical Markup Language (CML) file https://doi.org/10.1107/S1600536812049070/bt6873Isup3.cml |
CCDC reference: 920206
Key indicators
- Single-crystal X-ray study
- T = 293 K
- Mean
(C-C) = 0.007 Å
- R factor = 0.041
- wR factor = 0.092
- Data-to-parameter ratio = 8.5
checkCIF/PLATON results
No syntax errors found
Alert level B PLAT915_ALERT_3_B Low Friedel Pair Coverage ...................... 15 Perc.
Author Response: We feel that the Flack parameter is correct enough to present the structural information on this compound reliably, by unambiguously solving the structure and refining it. |
Alert level C PLAT334_ALERT_2_C Small Average Benzene C-C Dist. C1 -C6 1.37 Ang. PLAT340_ALERT_3_C Low Bond Precision on C-C Bonds ............... 0.0068 Ang PLAT910_ALERT_3_C Missing # of FCF Reflections Below Th(Min) ..... 1
Alert level G PLAT002_ALERT_2_G Number of Distance or Angle Restraints on AtSite 2 PLAT005_ALERT_5_G No _iucr_refine_instructions_details in the CIF ? PLAT199_ALERT_1_G Check the Reported _cell_measurement_temperature 293 K PLAT200_ALERT_1_G Check the Reported _diffrn_ambient_temperature 293 K PLAT860_ALERT_3_G Note: Number of Least-Squares Restraints ....... 3 PLAT912_ALERT_4_G Missing # of FCF Reflections Above STh/L= 0.600 2
0 ALERT level A = Most likely a serious problem - resolve or explain 1 ALERT level B = A potentially serious problem, consider carefully 3 ALERT level C = Check. Ensure it is not caused by an omission or oversight 6 ALERT level G = General information/check it is not something unexpected 2 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 2 ALERT type 2 Indicator that the structure model may be wrong or deficient 4 ALERT type 3 Indicator that the structure quality may be low 1 ALERT type 4 Improvement, methodology, query or suggestion 1 ALERT type 5 Informative message, check
The title compound was prepared by treating 4-nitrobenzenesulfonylchloride with 4-chloroaniline in the stoichiometric ratio and boiling the reaction mixture for 15 minutes. The reaction mixture was then cooled to room temperature and added to ice cold water (100 ml). The resultant solid N-(4-chlorophenyl)-4-nitrobenzenesulfonamide was filtered under suction and washed thoroughly with cold water and dilute HCl to remove the excess sulfonylchloride and aniline, respectively. It was then recrystallized from dilute ethanol. The purity of the compound was checked and characterized by its infrared spectra.
Prism like colourless single crystals of the title compound used in X-ray diffraction studies were grown in an ethanolic solution by slow evaporation of the solvent at room temperature.
H atoms bonded to C were positioned with idealized geometry using a riding model with the aromatic C—H = 0.93 Å. The amino H atom was freely refined with the N—H distance restrained to 0.86 (2) Å. All H atoms were refined with isotropic displacement parameters set at 1.2 Ueq of the parent atom.
As a part of our studies on the substituent effects on the structures and other aspects of N-(aryl)-amides (Gowda & Weiss, 1994); N-arylsulfonamides (Chaithanya et al., 2012; Gowda et al., 2003) and N-chloroarylsulfonamides (Gowda et al., 2005; Shetty & Gowda, 2004), in the present work, the crystal structure of N-(4-chlorophenyl)-4-nitrobenzenesulfonamide (I) has been determined (Fig. 1).
The conformation of the N—C bond in the —SO2—NH—C segment has gauche torsions with respect to the S═O bonds (Fig. 1), similar to that observed in N-(phenyl)-4-nitrobenzenesulfonamide (II) (Chaithanya et al., 2012). The molecule is twisted at the S—N bond with the torsional angle of 63.74 (35)°, compared to the value of 61.89 (32)° in (II).
The dihedral angle between the sulfonyl and the anilino rings is 31.40 (23)°, compared to the value of 36.19 (18)° in (II).
In the crystal, intermolecular N—H···O hydrogen bond interactions link the molecules into C(4) chains. Part of the crystal structure is shown in Fig. 2.
For our studies on the effects of substituents on the structures and other aspects of N-(aryl)-amides, see: Gowda & Weiss (1994), of N-arylsulfonamides, see: Chaithanya et al. (2012); Gowda et al. (2003) and of N-chloroarylsulfonamides, see: Gowda et al. (2005); Shetty & Gowda (2004).
Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis CCD (Oxford Diffraction, 2009); data reduction: CrysAlis RED (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).
C12H9ClN2O4S | F(000) = 640 |
Mr = 312.72 | Dx = 1.580 Mg m−3 |
Monoclinic, Cc | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: C -2yc | Cell parameters from 1307 reflections |
a = 5.0881 (4) Å | θ = 2.6–27.8° |
b = 13.0313 (9) Å | µ = 0.46 mm−1 |
c = 19.886 (2) Å | T = 293 K |
β = 94.194 (7)° | Prism, colourless |
V = 1315.00 (19) Å3 | 0.46 × 0.24 × 0.12 mm |
Z = 4 |
Oxford Diffraction Xcalibur diffractometer with a Sapphire CCD detector | 1557 independent reflections |
Radiation source: fine-focus sealed tube | 1432 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.014 |
Rotation method data acquisition using ω scans | θmax = 26.4°, θmin = 3.1° |
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009) | h = −6→3 |
Tmin = 0.815, Tmax = 0.947 | k = −8→16 |
2432 measured reflections | l = −24→24 |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.041 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.092 | w = 1/[σ2(Fo2) + (0.0318P)2 + 1.8686P] where P = (Fo2 + 2Fc2)/3 |
S = 1.13 | (Δ/σ)max < 0.001 |
1557 reflections | Δρmax = 0.29 e Å−3 |
184 parameters | Δρmin = −0.29 e Å−3 |
3 restraints | Absolute structure: Flack (1983), 203 Friedel pairs |
Primary atom site location: structure-invariant direct methods | Absolute structure parameter: −0.02 (11) |
C12H9ClN2O4S | V = 1315.00 (19) Å3 |
Mr = 312.72 | Z = 4 |
Monoclinic, Cc | Mo Kα radiation |
a = 5.0881 (4) Å | µ = 0.46 mm−1 |
b = 13.0313 (9) Å | T = 293 K |
c = 19.886 (2) Å | 0.46 × 0.24 × 0.12 mm |
β = 94.194 (7)° |
Oxford Diffraction Xcalibur diffractometer with a Sapphire CCD detector | 1557 independent reflections |
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009) | 1432 reflections with I > 2σ(I) |
Tmin = 0.815, Tmax = 0.947 | Rint = 0.014 |
2432 measured reflections |
R[F2 > 2σ(F2)] = 0.041 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.092 | Δρmax = 0.29 e Å−3 |
S = 1.13 | Δρmin = −0.29 e Å−3 |
1557 reflections | Absolute structure: Flack (1983), 203 Friedel pairs |
184 parameters | Absolute structure parameter: −0.02 (11) |
3 restraints |
Experimental. Absorption correction: CrysAlis RED (Oxford Diffraction, 2009) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm. |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.3399 (8) | 0.8673 (3) | 0.3654 (2) | 0.0386 (9) | |
C2 | 0.5320 (9) | 0.8525 (3) | 0.3209 (2) | 0.0464 (11) | |
H2 | 0.6101 | 0.7885 | 0.3173 | 0.056* | |
C3 | 0.6079 (10) | 0.9336 (3) | 0.2819 (2) | 0.0479 (12) | |
H3 | 0.7365 | 0.9249 | 0.2514 | 0.057* | |
C4 | 0.4895 (9) | 1.0268 (3) | 0.2889 (2) | 0.0405 (10) | |
C5 | 0.2944 (10) | 1.0418 (3) | 0.3320 (3) | 0.0522 (12) | |
H5 | 0.2142 | 1.1056 | 0.3350 | 0.063* | |
C6 | 0.2198 (9) | 0.9608 (3) | 0.3704 (3) | 0.0499 (11) | |
H6 | 0.0878 | 0.9694 | 0.3999 | 0.060* | |
C7 | 0.4286 (8) | 0.8807 (4) | 0.5281 (2) | 0.0417 (10) | |
C8 | 0.5769 (10) | 0.9675 (4) | 0.5181 (3) | 0.0549 (12) | |
H8 | 0.7061 | 0.9655 | 0.4873 | 0.066* | |
C9 | 0.5366 (12) | 1.0564 (4) | 0.5527 (3) | 0.0635 (15) | |
H9 | 0.6395 | 1.1141 | 0.5464 | 0.076* | |
C10 | 0.3403 (11) | 1.0586 (4) | 0.5970 (2) | 0.0539 (13) | |
C11 | 0.1964 (11) | 0.9734 (4) | 0.6082 (2) | 0.0584 (14) | |
H11 | 0.0676 | 0.9757 | 0.6390 | 0.070* | |
C12 | 0.2400 (10) | 0.8829 (4) | 0.5740 (2) | 0.0535 (12) | |
H12 | 0.1425 | 0.8243 | 0.5821 | 0.064* | |
N1 | 0.4632 (7) | 0.7883 (3) | 0.4904 (2) | 0.0454 (9) | |
H1N | 0.620 (5) | 0.783 (4) | 0.479 (2) | 0.055* | |
N2 | 0.5752 (9) | 1.1153 (3) | 0.2495 (2) | 0.0540 (10) | |
O1 | 0.3503 (6) | 0.6725 (2) | 0.39544 (17) | 0.0528 (8) | |
O2 | 0.0062 (6) | 0.7821 (2) | 0.44006 (16) | 0.0508 (8) | |
O3 | 0.7655 (9) | 1.1042 (3) | 0.2172 (2) | 0.0846 (14) | |
O4 | 0.4539 (9) | 1.1952 (3) | 0.2524 (2) | 0.0773 (13) | |
Cl1 | 0.2766 (3) | 1.17181 (11) | 0.63901 (8) | 0.0816 (5) | |
S1 | 0.27032 (19) | 0.76820 (7) | 0.42212 (6) | 0.0408 (3) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.035 (2) | 0.034 (2) | 0.047 (2) | −0.0002 (18) | 0.0082 (19) | 0.0000 (18) |
C2 | 0.049 (3) | 0.035 (2) | 0.057 (3) | 0.004 (2) | 0.017 (2) | −0.005 (2) |
C3 | 0.052 (3) | 0.048 (3) | 0.046 (2) | 0.003 (2) | 0.019 (2) | −0.002 (2) |
C4 | 0.043 (2) | 0.038 (2) | 0.042 (2) | −0.002 (2) | 0.009 (2) | 0.0015 (18) |
C5 | 0.054 (3) | 0.032 (2) | 0.072 (3) | 0.010 (2) | 0.016 (3) | 0.005 (2) |
C6 | 0.043 (3) | 0.043 (2) | 0.066 (3) | 0.007 (2) | 0.023 (2) | 0.001 (2) |
C7 | 0.035 (2) | 0.046 (3) | 0.044 (2) | 0.003 (2) | 0.0044 (19) | −0.001 (2) |
C8 | 0.049 (3) | 0.053 (3) | 0.066 (3) | −0.010 (2) | 0.021 (2) | −0.005 (2) |
C9 | 0.075 (4) | 0.045 (3) | 0.073 (4) | −0.011 (3) | 0.017 (3) | −0.001 (2) |
C10 | 0.070 (3) | 0.042 (3) | 0.049 (3) | 0.011 (2) | 0.000 (3) | −0.002 (2) |
C11 | 0.057 (3) | 0.069 (4) | 0.051 (3) | 0.000 (3) | 0.021 (2) | −0.008 (2) |
C12 | 0.060 (3) | 0.053 (3) | 0.050 (3) | −0.011 (2) | 0.020 (2) | 0.000 (2) |
N1 | 0.0347 (19) | 0.045 (2) | 0.058 (2) | 0.0038 (17) | 0.0116 (17) | −0.0014 (17) |
N2 | 0.061 (3) | 0.045 (2) | 0.058 (2) | 0.000 (2) | 0.015 (2) | 0.0051 (18) |
O1 | 0.055 (2) | 0.0328 (15) | 0.072 (2) | 0.0009 (14) | 0.0165 (17) | −0.0057 (14) |
O2 | 0.0334 (17) | 0.0510 (19) | 0.070 (2) | −0.0034 (14) | 0.0145 (16) | 0.0022 (15) |
O3 | 0.087 (3) | 0.069 (3) | 0.106 (3) | 0.008 (2) | 0.057 (3) | 0.022 (2) |
O4 | 0.091 (3) | 0.0454 (19) | 0.100 (3) | 0.013 (2) | 0.038 (3) | 0.0190 (19) |
Cl1 | 0.1210 (14) | 0.0577 (8) | 0.0657 (9) | 0.0210 (9) | 0.0044 (9) | −0.0131 (7) |
S1 | 0.0349 (5) | 0.0353 (5) | 0.0534 (6) | −0.0006 (5) | 0.0110 (4) | −0.0006 (5) |
C1—C6 | 1.370 (6) | C8—C9 | 1.370 (7) |
C1—C2 | 1.378 (6) | C8—H8 | 0.9300 |
C1—S1 | 1.768 (4) | C9—C10 | 1.381 (7) |
C2—C3 | 1.383 (6) | C9—H9 | 0.9300 |
C2—H2 | 0.9300 | C10—C11 | 1.357 (7) |
C3—C4 | 1.368 (6) | C10—Cl1 | 1.737 (5) |
C3—H3 | 0.9300 | C11—C12 | 1.387 (7) |
C4—C5 | 1.371 (6) | C11—H11 | 0.9300 |
C4—N2 | 1.479 (6) | C12—H12 | 0.9300 |
C5—C6 | 1.374 (6) | N1—S1 | 1.637 (4) |
C5—H5 | 0.9300 | N1—H1N | 0.85 (2) |
C6—H6 | 0.9300 | N2—O3 | 1.209 (5) |
C7—C12 | 1.373 (6) | N2—O4 | 1.214 (5) |
C7—C8 | 1.382 (7) | O1—S1 | 1.426 (3) |
C7—N1 | 1.436 (6) | O2—S1 | 1.427 (3) |
C6—C1—C2 | 120.8 (4) | C8—C9—C10 | 118.7 (5) |
C6—C1—S1 | 119.4 (3) | C8—C9—H9 | 120.7 |
C2—C1—S1 | 119.5 (3) | C10—C9—H9 | 120.7 |
C1—C2—C3 | 119.6 (4) | C11—C10—C9 | 120.8 (5) |
C1—C2—H2 | 120.2 | C11—C10—Cl1 | 119.6 (4) |
C3—C2—H2 | 120.2 | C9—C10—Cl1 | 119.6 (4) |
C4—C3—C2 | 118.5 (4) | C10—C11—C12 | 120.5 (4) |
C4—C3—H3 | 120.8 | C10—C11—H11 | 119.7 |
C2—C3—H3 | 120.8 | C12—C11—H11 | 119.7 |
C3—C4—C5 | 122.4 (4) | C7—C12—C11 | 119.2 (4) |
C3—C4—N2 | 119.3 (4) | C7—C12—H12 | 120.4 |
C5—C4—N2 | 118.3 (4) | C11—C12—H12 | 120.4 |
C4—C5—C6 | 118.7 (4) | C7—N1—S1 | 118.6 (3) |
C4—C5—H5 | 120.7 | C7—N1—H1N | 111 (4) |
C6—C5—H5 | 120.7 | S1—N1—H1N | 106 (4) |
C1—C6—C5 | 120.0 (4) | O3—N2—O4 | 123.9 (4) |
C1—C6—H6 | 120.0 | O3—N2—C4 | 117.8 (4) |
C5—C6—H6 | 120.0 | O4—N2—C4 | 118.3 (4) |
C12—C7—C8 | 119.6 (4) | O1—S1—O2 | 120.2 (2) |
C12—C7—N1 | 118.9 (4) | O1—S1—N1 | 106.2 (2) |
C8—C7—N1 | 121.5 (4) | O2—S1—N1 | 106.9 (2) |
C9—C8—C7 | 121.1 (4) | O1—S1—C1 | 109.0 (2) |
C9—C8—H8 | 119.5 | O2—S1—C1 | 107.7 (2) |
C7—C8—H8 | 119.5 | N1—S1—C1 | 106.1 (2) |
C6—C1—C2—C3 | 1.2 (7) | N1—C7—C12—C11 | −176.8 (5) |
S1—C1—C2—C3 | −172.7 (4) | C10—C11—C12—C7 | −0.7 (8) |
C1—C2—C3—C4 | 0.4 (7) | C12—C7—N1—S1 | 83.9 (5) |
C2—C3—C4—C5 | −1.7 (8) | C8—C7—N1—S1 | −94.8 (5) |
C2—C3—C4—N2 | 177.7 (4) | C3—C4—N2—O3 | −7.2 (7) |
C3—C4—C5—C6 | 1.5 (8) | C5—C4—N2—O3 | 172.3 (5) |
N2—C4—C5—C6 | −177.9 (5) | C3—C4—N2—O4 | 174.2 (5) |
C2—C1—C6—C5 | −1.4 (7) | C5—C4—N2—O4 | −6.3 (7) |
S1—C1—C6—C5 | 172.5 (4) | C7—N1—S1—O1 | 179.6 (3) |
C4—C5—C6—C1 | 0.0 (8) | C7—N1—S1—O2 | −50.9 (4) |
C12—C7—C8—C9 | −0.8 (8) | C7—N1—S1—C1 | 63.7 (3) |
N1—C7—C8—C9 | 177.8 (5) | C6—C1—S1—O1 | 162.6 (4) |
C7—C8—C9—C10 | −1.3 (9) | C2—C1—S1—O1 | −23.4 (4) |
C8—C9—C10—C11 | 2.5 (9) | C6—C1—S1—O2 | 30.7 (4) |
C8—C9—C10—Cl1 | −177.5 (4) | C2—C1—S1—O2 | −155.3 (4) |
C9—C10—C11—C12 | −1.5 (8) | C6—C1—S1—N1 | −83.4 (4) |
Cl1—C10—C11—C12 | 178.5 (4) | C2—C1—S1—N1 | 90.5 (4) |
C8—C7—C12—C11 | 1.9 (8) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1N···O2i | 0.85 (2) | 2.16 (2) | 3.007 (4) | 173 (5) |
Symmetry code: (i) x+1, y, z. |
Experimental details
Crystal data | |
Chemical formula | C12H9ClN2O4S |
Mr | 312.72 |
Crystal system, space group | Monoclinic, Cc |
Temperature (K) | 293 |
a, b, c (Å) | 5.0881 (4), 13.0313 (9), 19.886 (2) |
β (°) | 94.194 (7) |
V (Å3) | 1315.00 (19) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.46 |
Crystal size (mm) | 0.46 × 0.24 × 0.12 |
Data collection | |
Diffractometer | Oxford Diffraction Xcalibur diffractometer with a Sapphire CCD detector |
Absorption correction | Multi-scan (CrysAlis RED; Oxford Diffraction, 2009) |
Tmin, Tmax | 0.815, 0.947 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 2432, 1557, 1432 |
Rint | 0.014 |
(sin θ/λ)max (Å−1) | 0.625 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.041, 0.092, 1.13 |
No. of reflections | 1557 |
No. of parameters | 184 |
No. of restraints | 3 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.29, −0.29 |
Absolute structure | Flack (1983), 203 Friedel pairs |
Absolute structure parameter | −0.02 (11) |
Computer programs: CrysAlis CCD (Oxford Diffraction, 2009), CrysAlis RED (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1N···O2i | 0.85 (2) | 2.16 (2) | 3.007 (4) | 173 (5) |
Symmetry code: (i) x+1, y, z. |
As a part of our studies on the substituent effects on the structures and other aspects of N-(aryl)-amides (Gowda & Weiss, 1994); N-arylsulfonamides (Chaithanya et al., 2012; Gowda et al., 2003) and N-chloroarylsulfonamides (Gowda et al., 2005; Shetty & Gowda, 2004), in the present work, the crystal structure of N-(4-chlorophenyl)-4-nitrobenzenesulfonamide (I) has been determined (Fig. 1).
The conformation of the N—C bond in the —SO2—NH—C segment has gauche torsions with respect to the S═O bonds (Fig. 1), similar to that observed in N-(phenyl)-4-nitrobenzenesulfonamide (II) (Chaithanya et al., 2012). The molecule is twisted at the S—N bond with the torsional angle of 63.74 (35)°, compared to the value of 61.89 (32)° in (II).
The dihedral angle between the sulfonyl and the anilino rings is 31.40 (23)°, compared to the value of 36.19 (18)° in (II).
In the crystal, intermolecular N—H···O hydrogen bond interactions link the molecules into C(4) chains. Part of the crystal structure is shown in Fig. 2.