Download citation
Download citation
link to html
In the title compound, C12H9ClN2O4S, the dihedral angle between the benzene rings is 31.4 (2)°. In the crystal, N—H...O hydrogen bonds link the mol­ecules into C(4) chains running along the a-axis direction.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536812049070/bt6873sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536812049070/bt6873Isup2.hkl
Contains datablock I

cml

Chemical Markup Language (CML) file https://doi.org/10.1107/S1600536812049070/bt6873Isup3.cml
Supplementary material

CCDC reference: 920206

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](C-C) = 0.007 Å
  • R factor = 0.041
  • wR factor = 0.092
  • Data-to-parameter ratio = 8.5

checkCIF/PLATON results

No syntax errors found



Alert level B PLAT915_ALERT_3_B Low Friedel Pair Coverage ...................... 15 Perc.
Author Response: We feel that the Flack parameter is correct enough to present the structural information on this compound reliably, by unambiguously solving the structure and refining it.

Alert level C PLAT334_ALERT_2_C Small Average Benzene C-C Dist. C1 -C6 1.37 Ang. PLAT340_ALERT_3_C Low Bond Precision on C-C Bonds ............... 0.0068 Ang PLAT910_ALERT_3_C Missing # of FCF Reflections Below Th(Min) ..... 1
Alert level G PLAT002_ALERT_2_G Number of Distance or Angle Restraints on AtSite 2 PLAT005_ALERT_5_G No _iucr_refine_instructions_details in the CIF ? PLAT199_ALERT_1_G Check the Reported _cell_measurement_temperature 293 K PLAT200_ALERT_1_G Check the Reported _diffrn_ambient_temperature 293 K PLAT860_ALERT_3_G Note: Number of Least-Squares Restraints ....... 3 PLAT912_ALERT_4_G Missing # of FCF Reflections Above STh/L= 0.600 2
0 ALERT level A = Most likely a serious problem - resolve or explain 1 ALERT level B = A potentially serious problem, consider carefully 3 ALERT level C = Check. Ensure it is not caused by an omission or oversight 6 ALERT level G = General information/check it is not something unexpected 2 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 2 ALERT type 2 Indicator that the structure model may be wrong or deficient 4 ALERT type 3 Indicator that the structure quality may be low 1 ALERT type 4 Improvement, methodology, query or suggestion 1 ALERT type 5 Informative message, check

Comment top

As a part of our studies on the substituent effects on the structures and other aspects of N-(aryl)-amides (Gowda & Weiss, 1994); N-arylsulfonamides (Chaithanya et al., 2012; Gowda et al., 2003) and N-chloroarylsulfonamides (Gowda et al., 2005; Shetty & Gowda, 2004), in the present work, the crystal structure of N-(4-chlorophenyl)-4-nitrobenzenesulfonamide (I) has been determined (Fig. 1).

The conformation of the N—C bond in the —SO2—NH—C segment has gauche torsions with respect to the SO bonds (Fig. 1), similar to that observed in N-(phenyl)-4-nitrobenzenesulfonamide (II) (Chaithanya et al., 2012). The molecule is twisted at the S—N bond with the torsional angle of 63.74 (35)°, compared to the value of 61.89 (32)° in (II).

The dihedral angle between the sulfonyl and the anilino rings is 31.40 (23)°, compared to the value of 36.19 (18)° in (II).

In the crystal, intermolecular N—H···O hydrogen bond interactions link the molecules into C(4) chains. Part of the crystal structure is shown in Fig. 2.

Related literature top

For our studies on the effects of substituents on the structures and other aspects of N-(aryl)-amides, see: Gowda & Weiss (1994), of N-arylsulfonamides, see: Chaithanya et al. (2012); Gowda et al. (2003) and of N-chloroarylsulfonamides, see: Gowda et al. (2005); Shetty & Gowda (2004).

Experimental top

The title compound was prepared by treating 4-nitrobenzenesulfonylchloride with 4-chloroaniline in the stoichiometric ratio and boiling the reaction mixture for 15 minutes. The reaction mixture was then cooled to room temperature and added to ice cold water (100 ml). The resultant solid N-(4-chlorophenyl)-4-nitrobenzenesulfonamide was filtered under suction and washed thoroughly with cold water and dilute HCl to remove the excess sulfonylchloride and aniline, respectively. It was then recrystallized from dilute ethanol. The purity of the compound was checked and characterized by its infrared spectra.

Prism like colourless single crystals of the title compound used in X-ray diffraction studies were grown in an ethanolic solution by slow evaporation of the solvent at room temperature.

Refinement top

H atoms bonded to C were positioned with idealized geometry using a riding model with the aromatic C—H = 0.93 Å. The amino H atom was freely refined with the N—H distance restrained to 0.86 (2) Å. All H atoms were refined with isotropic displacement parameters set at 1.2 Ueq of the parent atom.

Structure description top

As a part of our studies on the substituent effects on the structures and other aspects of N-(aryl)-amides (Gowda & Weiss, 1994); N-arylsulfonamides (Chaithanya et al., 2012; Gowda et al., 2003) and N-chloroarylsulfonamides (Gowda et al., 2005; Shetty & Gowda, 2004), in the present work, the crystal structure of N-(4-chlorophenyl)-4-nitrobenzenesulfonamide (I) has been determined (Fig. 1).

The conformation of the N—C bond in the —SO2—NH—C segment has gauche torsions with respect to the SO bonds (Fig. 1), similar to that observed in N-(phenyl)-4-nitrobenzenesulfonamide (II) (Chaithanya et al., 2012). The molecule is twisted at the S—N bond with the torsional angle of 63.74 (35)°, compared to the value of 61.89 (32)° in (II).

The dihedral angle between the sulfonyl and the anilino rings is 31.40 (23)°, compared to the value of 36.19 (18)° in (II).

In the crystal, intermolecular N—H···O hydrogen bond interactions link the molecules into C(4) chains. Part of the crystal structure is shown in Fig. 2.

For our studies on the effects of substituents on the structures and other aspects of N-(aryl)-amides, see: Gowda & Weiss (1994), of N-arylsulfonamides, see: Chaithanya et al. (2012); Gowda et al. (2003) and of N-chloroarylsulfonamides, see: Gowda et al. (2005); Shetty & Gowda (2004).

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis CCD (Oxford Diffraction, 2009); data reduction: CrysAlis RED (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound, showing the atom labelling scheme and with displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. Molecular packing of the title compound with hydrogen bonding shown as dashed lines.
N-(4-Chlorophenyl)-4-nitrobenzenesulfonamide top
Crystal data top
C12H9ClN2O4SF(000) = 640
Mr = 312.72Dx = 1.580 Mg m3
Monoclinic, CcMo Kα radiation, λ = 0.71073 Å
Hall symbol: C -2ycCell parameters from 1307 reflections
a = 5.0881 (4) Åθ = 2.6–27.8°
b = 13.0313 (9) ŵ = 0.46 mm1
c = 19.886 (2) ÅT = 293 K
β = 94.194 (7)°Prism, colourless
V = 1315.00 (19) Å30.46 × 0.24 × 0.12 mm
Z = 4
Data collection top
Oxford Diffraction Xcalibur
diffractometer with a Sapphire CCD detector
1557 independent reflections
Radiation source: fine-focus sealed tube1432 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.014
Rotation method data acquisition using ω scansθmax = 26.4°, θmin = 3.1°
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
h = 63
Tmin = 0.815, Tmax = 0.947k = 816
2432 measured reflectionsl = 2424
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.041H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.092 w = 1/[σ2(Fo2) + (0.0318P)2 + 1.8686P]
where P = (Fo2 + 2Fc2)/3
S = 1.13(Δ/σ)max < 0.001
1557 reflectionsΔρmax = 0.29 e Å3
184 parametersΔρmin = 0.29 e Å3
3 restraintsAbsolute structure: Flack (1983), 203 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.02 (11)
Crystal data top
C12H9ClN2O4SV = 1315.00 (19) Å3
Mr = 312.72Z = 4
Monoclinic, CcMo Kα radiation
a = 5.0881 (4) ŵ = 0.46 mm1
b = 13.0313 (9) ÅT = 293 K
c = 19.886 (2) Å0.46 × 0.24 × 0.12 mm
β = 94.194 (7)°
Data collection top
Oxford Diffraction Xcalibur
diffractometer with a Sapphire CCD detector
1557 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
1432 reflections with I > 2σ(I)
Tmin = 0.815, Tmax = 0.947Rint = 0.014
2432 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.041H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.092Δρmax = 0.29 e Å3
S = 1.13Δρmin = 0.29 e Å3
1557 reflectionsAbsolute structure: Flack (1983), 203 Friedel pairs
184 parametersAbsolute structure parameter: 0.02 (11)
3 restraints
Special details top

Experimental. Absorption correction: CrysAlis RED (Oxford Diffraction, 2009) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.3399 (8)0.8673 (3)0.3654 (2)0.0386 (9)
C20.5320 (9)0.8525 (3)0.3209 (2)0.0464 (11)
H20.61010.78850.31730.056*
C30.6079 (10)0.9336 (3)0.2819 (2)0.0479 (12)
H30.73650.92490.25140.057*
C40.4895 (9)1.0268 (3)0.2889 (2)0.0405 (10)
C50.2944 (10)1.0418 (3)0.3320 (3)0.0522 (12)
H50.21421.10560.33500.063*
C60.2198 (9)0.9608 (3)0.3704 (3)0.0499 (11)
H60.08780.96940.39990.060*
C70.4286 (8)0.8807 (4)0.5281 (2)0.0417 (10)
C80.5769 (10)0.9675 (4)0.5181 (3)0.0549 (12)
H80.70610.96550.48730.066*
C90.5366 (12)1.0564 (4)0.5527 (3)0.0635 (15)
H90.63951.11410.54640.076*
C100.3403 (11)1.0586 (4)0.5970 (2)0.0539 (13)
C110.1964 (11)0.9734 (4)0.6082 (2)0.0584 (14)
H110.06760.97570.63900.070*
C120.2400 (10)0.8829 (4)0.5740 (2)0.0535 (12)
H120.14250.82430.58210.064*
N10.4632 (7)0.7883 (3)0.4904 (2)0.0454 (9)
H1N0.620 (5)0.783 (4)0.479 (2)0.055*
N20.5752 (9)1.1153 (3)0.2495 (2)0.0540 (10)
O10.3503 (6)0.6725 (2)0.39544 (17)0.0528 (8)
O20.0062 (6)0.7821 (2)0.44006 (16)0.0508 (8)
O30.7655 (9)1.1042 (3)0.2172 (2)0.0846 (14)
O40.4539 (9)1.1952 (3)0.2524 (2)0.0773 (13)
Cl10.2766 (3)1.17181 (11)0.63901 (8)0.0816 (5)
S10.27032 (19)0.76820 (7)0.42212 (6)0.0408 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.035 (2)0.034 (2)0.047 (2)0.0002 (18)0.0082 (19)0.0000 (18)
C20.049 (3)0.035 (2)0.057 (3)0.004 (2)0.017 (2)0.005 (2)
C30.052 (3)0.048 (3)0.046 (2)0.003 (2)0.019 (2)0.002 (2)
C40.043 (2)0.038 (2)0.042 (2)0.002 (2)0.009 (2)0.0015 (18)
C50.054 (3)0.032 (2)0.072 (3)0.010 (2)0.016 (3)0.005 (2)
C60.043 (3)0.043 (2)0.066 (3)0.007 (2)0.023 (2)0.001 (2)
C70.035 (2)0.046 (3)0.044 (2)0.003 (2)0.0044 (19)0.001 (2)
C80.049 (3)0.053 (3)0.066 (3)0.010 (2)0.021 (2)0.005 (2)
C90.075 (4)0.045 (3)0.073 (4)0.011 (3)0.017 (3)0.001 (2)
C100.070 (3)0.042 (3)0.049 (3)0.011 (2)0.000 (3)0.002 (2)
C110.057 (3)0.069 (4)0.051 (3)0.000 (3)0.021 (2)0.008 (2)
C120.060 (3)0.053 (3)0.050 (3)0.011 (2)0.020 (2)0.000 (2)
N10.0347 (19)0.045 (2)0.058 (2)0.0038 (17)0.0116 (17)0.0014 (17)
N20.061 (3)0.045 (2)0.058 (2)0.000 (2)0.015 (2)0.0051 (18)
O10.055 (2)0.0328 (15)0.072 (2)0.0009 (14)0.0165 (17)0.0057 (14)
O20.0334 (17)0.0510 (19)0.070 (2)0.0034 (14)0.0145 (16)0.0022 (15)
O30.087 (3)0.069 (3)0.106 (3)0.008 (2)0.057 (3)0.022 (2)
O40.091 (3)0.0454 (19)0.100 (3)0.013 (2)0.038 (3)0.0190 (19)
Cl10.1210 (14)0.0577 (8)0.0657 (9)0.0210 (9)0.0044 (9)0.0131 (7)
S10.0349 (5)0.0353 (5)0.0534 (6)0.0006 (5)0.0110 (4)0.0006 (5)
Geometric parameters (Å, º) top
C1—C61.370 (6)C8—C91.370 (7)
C1—C21.378 (6)C8—H80.9300
C1—S11.768 (4)C9—C101.381 (7)
C2—C31.383 (6)C9—H90.9300
C2—H20.9300C10—C111.357 (7)
C3—C41.368 (6)C10—Cl11.737 (5)
C3—H30.9300C11—C121.387 (7)
C4—C51.371 (6)C11—H110.9300
C4—N21.479 (6)C12—H120.9300
C5—C61.374 (6)N1—S11.637 (4)
C5—H50.9300N1—H1N0.85 (2)
C6—H60.9300N2—O31.209 (5)
C7—C121.373 (6)N2—O41.214 (5)
C7—C81.382 (7)O1—S11.426 (3)
C7—N11.436 (6)O2—S11.427 (3)
C6—C1—C2120.8 (4)C8—C9—C10118.7 (5)
C6—C1—S1119.4 (3)C8—C9—H9120.7
C2—C1—S1119.5 (3)C10—C9—H9120.7
C1—C2—C3119.6 (4)C11—C10—C9120.8 (5)
C1—C2—H2120.2C11—C10—Cl1119.6 (4)
C3—C2—H2120.2C9—C10—Cl1119.6 (4)
C4—C3—C2118.5 (4)C10—C11—C12120.5 (4)
C4—C3—H3120.8C10—C11—H11119.7
C2—C3—H3120.8C12—C11—H11119.7
C3—C4—C5122.4 (4)C7—C12—C11119.2 (4)
C3—C4—N2119.3 (4)C7—C12—H12120.4
C5—C4—N2118.3 (4)C11—C12—H12120.4
C4—C5—C6118.7 (4)C7—N1—S1118.6 (3)
C4—C5—H5120.7C7—N1—H1N111 (4)
C6—C5—H5120.7S1—N1—H1N106 (4)
C1—C6—C5120.0 (4)O3—N2—O4123.9 (4)
C1—C6—H6120.0O3—N2—C4117.8 (4)
C5—C6—H6120.0O4—N2—C4118.3 (4)
C12—C7—C8119.6 (4)O1—S1—O2120.2 (2)
C12—C7—N1118.9 (4)O1—S1—N1106.2 (2)
C8—C7—N1121.5 (4)O2—S1—N1106.9 (2)
C9—C8—C7121.1 (4)O1—S1—C1109.0 (2)
C9—C8—H8119.5O2—S1—C1107.7 (2)
C7—C8—H8119.5N1—S1—C1106.1 (2)
C6—C1—C2—C31.2 (7)N1—C7—C12—C11176.8 (5)
S1—C1—C2—C3172.7 (4)C10—C11—C12—C70.7 (8)
C1—C2—C3—C40.4 (7)C12—C7—N1—S183.9 (5)
C2—C3—C4—C51.7 (8)C8—C7—N1—S194.8 (5)
C2—C3—C4—N2177.7 (4)C3—C4—N2—O37.2 (7)
C3—C4—C5—C61.5 (8)C5—C4—N2—O3172.3 (5)
N2—C4—C5—C6177.9 (5)C3—C4—N2—O4174.2 (5)
C2—C1—C6—C51.4 (7)C5—C4—N2—O46.3 (7)
S1—C1—C6—C5172.5 (4)C7—N1—S1—O1179.6 (3)
C4—C5—C6—C10.0 (8)C7—N1—S1—O250.9 (4)
C12—C7—C8—C90.8 (8)C7—N1—S1—C163.7 (3)
N1—C7—C8—C9177.8 (5)C6—C1—S1—O1162.6 (4)
C7—C8—C9—C101.3 (9)C2—C1—S1—O123.4 (4)
C8—C9—C10—C112.5 (9)C6—C1—S1—O230.7 (4)
C8—C9—C10—Cl1177.5 (4)C2—C1—S1—O2155.3 (4)
C9—C10—C11—C121.5 (8)C6—C1—S1—N183.4 (4)
Cl1—C10—C11—C12178.5 (4)C2—C1—S1—N190.5 (4)
C8—C7—C12—C111.9 (8)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O2i0.85 (2)2.16 (2)3.007 (4)173 (5)
Symmetry code: (i) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC12H9ClN2O4S
Mr312.72
Crystal system, space groupMonoclinic, Cc
Temperature (K)293
a, b, c (Å)5.0881 (4), 13.0313 (9), 19.886 (2)
β (°) 94.194 (7)
V3)1315.00 (19)
Z4
Radiation typeMo Kα
µ (mm1)0.46
Crystal size (mm)0.46 × 0.24 × 0.12
Data collection
DiffractometerOxford Diffraction Xcalibur
diffractometer with a Sapphire CCD detector
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2009)
Tmin, Tmax0.815, 0.947
No. of measured, independent and
observed [I > 2σ(I)] reflections
2432, 1557, 1432
Rint0.014
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.092, 1.13
No. of reflections1557
No. of parameters184
No. of restraints3
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.29, 0.29
Absolute structureFlack (1983), 203 Friedel pairs
Absolute structure parameter0.02 (11)

Computer programs: CrysAlis CCD (Oxford Diffraction, 2009), CrysAlis RED (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O2i0.85 (2)2.16 (2)3.007 (4)173 (5)
Symmetry code: (i) x+1, y, z.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds