Download citation
Download citation
link to html
In the polymeric title compound, [Co(C2O4)(C14H14N4O2)]n, the CoII atom is six-coordinated by two N atoms from symmetry-related bis­[(pyridin-4-yl)meth­yl]oxalamide (BPMO) ligands and four O atoms from two centrosymmetric oxalate anions in a distorted octa­hedral coordination geometry. The CoII atoms are linked by the oxalate anions into a chain running parallel to [100]. The chains are linked by the BPMO ligands into a three-dimensional architecture. In addition, N—H...O hydrogen bonds stabilize the crystal packing.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536814015608/bt6986sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536814015608/bt6986Isup2.hkl
Contains datablock I

CCDC reference: 1012047

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](C-C) = 0.008 Å
  • R factor = 0.065
  • wR factor = 0.149
  • Data-to-parameter ratio = 17.4

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT026_ALERT_3_C Ratio Observed / Unique Reflections too Low .... 48 % PLAT241_ALERT_2_C High Ueq as Compared to Neighbors for ..... C14 Check PLAT341_ALERT_3_C Low Bond Precision on C-C Bonds ............... 0.0076 Ang. PLAT369_ALERT_2_C Long C(sp2)-C(sp2) Bond C9 - C10 ... 1.54 Ang. PLAT906_ALERT_3_C Large K value in the Analysis of Variance ...... 5.505 Check PLAT906_ALERT_3_C Large K value in the Analysis of Variance ...... 2.070 Check
Alert level G PLAT004_ALERT_5_G Polymeric Structure Found with Dimension ....... 3 Info PLAT005_ALERT_5_G No _iucr_refine_instructions_details in the CIF Please Do ! PLAT007_ALERT_5_G Number of Unrefined Donor-H Atoms .............. 2 Why ? PLAT199_ALERT_1_G Reported _cell_measurement_temperature ..... (K) 293 Check PLAT200_ALERT_1_G Reported _diffrn_ambient_temperature ..... (K) 293 Check PLAT710_ALERT_4_G Delete 1-2-3 or 2-3-4 Linear Torsion Angle ... # 57 Do ! C7 -N1 -CO1 -O2 -92.70 1.10 1.555 1.555 1.555 3.556 PLAT710_ALERT_4_G Delete 1-2-3 or 2-3-4 Linear Torsion Angle ... # 58 Do ! C3 -N1 -CO1 -O2 84.30 1.10 1.555 1.555 1.555 3.556 PLAT910_ALERT_3_G Missing # of FCF Reflections Below Th(Min) ..... 1 Why ? PLAT912_ALERT_4_G Missing # of FCF Reflections Above STh/L= 0.600 128 Note
0 ALERT level A = Most likely a serious problem - resolve or explain 0 ALERT level B = A potentially serious problem, consider carefully 6 ALERT level C = Check. Ensure it is not caused by an omission or oversight 9 ALERT level G = General information/check it is not something unexpected 2 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 2 ALERT type 2 Indicator that the structure model may be wrong or deficient 5 ALERT type 3 Indicator that the structure quality may be low 3 ALERT type 4 Improvement, methodology, query or suggestion 3 ALERT type 5 Informative message, check

Comment top

Design of effective ligands and the proper choice of metal centers are the keys to design and construct novel metal-organic frameworks (Kitagawa et al., 2004; Ma et al., 2009). These complexes can be specially designed by the careful selection of metal cations with preferred coordination geometries, the nature of the anions, the structure of the connecting ligands, and the reaction conditions (Li et al., 2005; Wang et al., 2007). We selected oxalic acid as an organic carboxylate anion and N,N'-Bis-pyridin-4-ylmethyl-oxalamide (BPMO) as a N-donor neutral ligand, generating a coordination compound, [Co(C2O4)(BPMO)]n, which is reported here.

In the asymmetric unit of the title compound, [Co(C2O4)(BPMO)]n, the central CoII is six-coordinated by two nitrogen atoms from different BPMO ligands and four oxygen atoms from two oxalate anions in a distorted octahedral coordination geometry. The Co—N and Co—O distances are comparable to those found in other crystallographically characterized CoII complexes (Ma et al., 2005). The CoII atoms are linked by the oxalate anions to give a one-dimensional chain. The chains are linked by BPMO ligands and extend the chains into a three-dimensional supramolecular architecture. Moreover, the hydrogen bonds between the N-donor neutral ligand and oxalate, are crucial for stabilizing the three-dimensional framework.

Related literature top

For information on compounds with metal-organic framework structures, see: Kitagawa et al. (2004); Ma et al. (2009); Li et al. (2005); Wang et al. (2007). For related CoII complexes, see: Ma et al. (2005).

Experimental top

The synthesis was performed under hydrothermal conditions. A mixture of Co(CH3COO)2.4(H2O),(0.2 mmol, 0.05 g), N,N'-Bis-pyridin-4-ylmethyl-oxalamide (0.2 mmol, 0.054 g), sodium oxalate (0.2 mmol,0.026 g) and H2O(15 ml) in a 25 ml stainless steel reactor with a Teflon liner was heated from 293 to 443 K in 2 h and a constant temperature was maintained at 443 K for 72 h, after which the mixture was cooled to 298 K. Pink crystals of (I) were recovered from the reaction.

Refinement top

All H atoms on C and N atoms atoms were poisitioned geometrically and refined as riding atoms with Uiso(H) = 1.2 Ueq(C, N).

Computing details top

Data collection: APEX2 (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. A view of the molecule of (I). Displacement ellipsoids are drawn at the 30% probability level. (i) - x + 1, -y, - z + 1; (ii) -x, -y, - z + 1; (iii) x, - y + 1/2, z + 1/2; (iv) x + 1, - y + 1/2, z - 1/2.
[Figure 2] Fig. 2. View of the three-dimensional structure of (I).
Poly[{µ-N,N'-bis[(pyridin-4-yl)methyl]oxalamide}-µ-oxalato-cobalt(II)] top
Crystal data top
[Co(C2O4)(C14H14N4O2)]F(000) = 852
Mr = 417.24Dx = 1.581 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4380 reflections
a = 8.4143 (12) Åθ = 1.7–22.8°
b = 24.421 (4) ŵ = 1.02 mm1
c = 9.2884 (14) ÅT = 293 K
β = 113.322 (2)°Block, pink
V = 1752.7 (4) Å30.43 × 0.25 × 0.25 mm
Z = 4
Data collection top
Bruker SMART APEXII CCD
diffractometer
4254 independent reflections
Radiation source: fine-focus sealed tube2027 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.085
phi and ω scansθmax = 28.4°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1110
Tmin = 0.740, Tmax = 0.785k = 3232
11121 measured reflectionsl = 1210
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.065Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.149H-atom parameters constrained
S = 0.98 w = 1/[σ2(Fo2) + (0.0591P)2]
where P = (Fo2 + 2Fc2)/3
4254 reflections(Δ/σ)max < 0.001
244 parametersΔρmax = 0.49 e Å3
0 restraintsΔρmin = 0.39 e Å3
Crystal data top
[Co(C2O4)(C14H14N4O2)]V = 1752.7 (4) Å3
Mr = 417.24Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.4143 (12) ŵ = 1.02 mm1
b = 24.421 (4) ÅT = 293 K
c = 9.2884 (14) Å0.43 × 0.25 × 0.25 mm
β = 113.322 (2)°
Data collection top
Bruker SMART APEXII CCD
diffractometer
4254 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2027 reflections with I > 2σ(I)
Tmin = 0.740, Tmax = 0.785Rint = 0.085
11121 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0650 restraints
wR(F2) = 0.149H-atom parameters constrained
S = 0.98Δρmax = 0.49 e Å3
4254 reflectionsΔρmin = 0.39 e Å3
244 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.5475 (6)0.02677 (18)0.5426 (6)0.0391 (12)
C20.0727 (6)0.00051 (18)0.4182 (6)0.0373 (11)
C30.0325 (7)0.0938 (2)0.0435 (7)0.0588 (15)
H3A0.06280.09830.06920.071*
C40.0141 (7)0.1061 (2)0.1055 (7)0.0644 (16)
H40.09060.11870.17970.077*
C50.1578 (7)0.0990 (2)0.1424 (6)0.0553 (15)
H50.15070.10790.24220.066*
C60.3094 (6)0.07904 (17)0.0329 (6)0.0358 (11)
C70.3141 (6)0.06856 (18)0.1129 (6)0.0413 (12)
H70.41720.05550.18840.050*
C80.4646 (6)0.06836 (16)0.0724 (6)0.0398 (12)
H8A0.55780.05370.01950.048*
H8B0.43430.04090.15430.048*
C90.5876 (6)0.15839 (19)0.0278 (6)0.0372 (11)
C100.6436 (5)0.20856 (18)0.0958 (6)0.0353 (11)
C110.7359 (6)0.30333 (18)0.0376 (6)0.0411 (12)
H11A0.72240.33060.03280.049*
H11B0.65760.31300.14320.049*
C120.9189 (6)0.30606 (19)0.0279 (5)0.0396 (12)
C131.0379 (7)0.2660 (2)0.0275 (7)0.0700 (18)
H131.00940.23340.06320.084*
C141.2033 (7)0.2734 (2)0.0312 (8)0.083 (2)
H141.28590.24580.06660.100*
C151.2411 (7)0.3229 (2)0.0193 (7)0.0631 (16)
H151.35170.32810.01650.076*
C160.9683 (6)0.35427 (19)0.0767 (6)0.0431 (12)
H160.88610.38190.11530.052*
N10.1806 (5)0.07571 (16)0.1551 (5)0.0455 (11)
N20.5257 (5)0.11716 (15)0.1243 (4)0.0403 (10)
H20.52130.11900.21830.048*
N30.6855 (4)0.25082 (15)0.0010 (4)0.0423 (10)
H30.68260.24670.09180.051*
N41.1276 (5)0.36374 (16)0.0717 (5)0.0439 (10)
O10.0491 (4)0.02611 (12)0.3106 (4)0.0434 (8)
O20.2077 (4)0.02540 (13)0.4033 (4)0.0503 (9)
O30.4618 (4)0.07115 (12)0.5055 (4)0.0446 (9)
O40.6991 (4)0.02217 (12)0.6401 (4)0.0494 (9)
O50.5999 (5)0.15868 (13)0.1070 (4)0.0612 (11)
O60.6455 (4)0.20801 (12)0.2267 (4)0.0464 (8)
Co10.20072 (8)0.05586 (2)0.38091 (8)0.0405 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.035 (3)0.043 (3)0.049 (3)0.003 (2)0.026 (3)0.001 (2)
C20.034 (3)0.033 (2)0.051 (3)0.002 (2)0.023 (2)0.008 (2)
C30.050 (4)0.067 (4)0.068 (4)0.013 (3)0.034 (3)0.009 (3)
C40.043 (4)0.087 (4)0.053 (4)0.018 (3)0.009 (3)0.015 (3)
C50.063 (4)0.061 (4)0.044 (4)0.003 (3)0.023 (3)0.001 (3)
C60.037 (3)0.026 (2)0.043 (3)0.004 (2)0.015 (3)0.005 (2)
C70.034 (3)0.044 (3)0.046 (3)0.006 (2)0.016 (2)0.004 (3)
C80.053 (3)0.027 (2)0.048 (3)0.004 (2)0.029 (3)0.001 (2)
C90.035 (3)0.041 (3)0.037 (3)0.010 (2)0.016 (2)0.002 (2)
C100.034 (3)0.039 (3)0.038 (3)0.010 (2)0.019 (2)0.001 (2)
C110.048 (3)0.040 (3)0.044 (3)0.010 (2)0.027 (3)0.001 (2)
C120.043 (3)0.042 (3)0.034 (3)0.013 (2)0.016 (2)0.001 (2)
C130.052 (4)0.045 (3)0.109 (6)0.009 (3)0.028 (4)0.015 (3)
C140.050 (4)0.046 (4)0.142 (7)0.003 (3)0.026 (4)0.016 (4)
C150.045 (3)0.048 (3)0.104 (5)0.003 (3)0.036 (3)0.003 (3)
C160.039 (3)0.045 (3)0.052 (3)0.006 (2)0.024 (3)0.001 (3)
N10.041 (3)0.047 (2)0.054 (3)0.0103 (19)0.024 (2)0.009 (2)
N20.052 (3)0.041 (2)0.035 (2)0.0080 (19)0.026 (2)0.0039 (19)
N30.052 (3)0.045 (2)0.038 (3)0.0204 (19)0.026 (2)0.005 (2)
N40.039 (2)0.042 (2)0.058 (3)0.0088 (19)0.027 (2)0.005 (2)
O10.040 (2)0.044 (2)0.048 (2)0.0012 (15)0.0202 (17)0.0061 (17)
O20.042 (2)0.057 (2)0.055 (2)0.0090 (17)0.0222 (18)0.0050 (18)
O30.0356 (19)0.0339 (18)0.070 (3)0.0063 (14)0.0269 (18)0.0041 (16)
O40.037 (2)0.041 (2)0.065 (3)0.0040 (16)0.0145 (19)0.0052 (17)
O50.098 (3)0.050 (2)0.044 (2)0.036 (2)0.037 (2)0.0086 (18)
O60.064 (2)0.044 (2)0.041 (2)0.0107 (16)0.0318 (19)0.0026 (16)
Co10.0349 (4)0.0385 (4)0.0551 (5)0.0057 (3)0.0253 (3)0.0030 (3)
Geometric parameters (Å, º) top
C1—O41.243 (5)C11—N31.440 (5)
C1—O31.271 (5)C11—C121.508 (6)
C1—C1i1.573 (9)C11—H11A0.9700
C2—O21.259 (5)C11—H11B0.9700
C2—O11.260 (5)C12—C131.348 (6)
C2—C2ii1.527 (9)C12—C161.383 (6)
C3—N11.342 (6)C13—C141.390 (7)
C3—C41.363 (7)C13—H130.9300
C3—H3A0.9300C14—C151.380 (7)
C4—C51.392 (7)C14—H140.9300
C4—H40.9300C15—N41.332 (6)
C5—C61.369 (6)C15—H150.9300
C5—H50.9300C16—N41.343 (5)
C6—C71.364 (6)C16—H160.9300
C6—C81.512 (6)N1—Co12.093 (4)
C7—N11.339 (5)N2—H20.8600
C7—H70.9300N3—H30.8600
C8—N21.454 (5)N4—Co1iii2.155 (4)
C8—H8A0.9700O1—Co12.070 (3)
C8—H8B0.9700O2—Co1ii2.117 (3)
C9—O51.215 (5)O3—Co12.072 (3)
C9—N21.311 (5)O4—Co1i2.124 (3)
C9—C101.535 (6)Co1—O2ii2.117 (3)
C10—O61.222 (5)Co1—O4i2.124 (3)
C10—N31.322 (5)Co1—N4iv2.155 (4)
O4—C1—O3125.7 (4)C12—C13—H13120.0
O4—C1—C1i117.5 (5)C14—C13—H13120.0
O3—C1—C1i116.8 (6)C15—C14—C13117.9 (5)
O2—C2—O1125.5 (4)C15—C14—H14121.0
O2—C2—C2ii115.7 (6)C13—C14—H14121.0
O1—C2—C2ii118.8 (5)N4—C15—C14123.5 (5)
N1—C3—C4123.7 (5)N4—C15—H15118.2
N1—C3—H3A118.2C14—C15—H15118.2
C4—C3—H3A118.2N4—C16—C12124.1 (4)
C3—C4—C5117.5 (5)N4—C16—H16117.9
C3—C4—H4121.2C12—C16—H16117.9
C5—C4—H4121.2C7—N1—C3116.5 (5)
C6—C5—C4120.4 (5)C7—N1—Co1121.2 (3)
C6—C5—H5119.8C3—N1—Co1122.2 (3)
C4—C5—H5119.8C9—N2—C8120.0 (4)
C7—C6—C5117.2 (4)C9—N2—H2120.0
C7—C6—C8121.4 (4)C8—N2—H2120.0
C5—C6—C8121.5 (4)C10—N3—C11123.5 (4)
N1—C7—C6124.7 (5)C10—N3—H3118.3
N1—C7—H7117.7C11—N3—H3118.3
C6—C7—H7117.7C15—N4—C16116.4 (4)
N2—C8—C6113.1 (3)C15—N4—Co1iii122.3 (3)
N2—C8—H8A109.0C16—N4—Co1iii120.8 (3)
C6—C8—H8A109.0C2—O1—Co1112.5 (3)
N2—C8—H8B109.0C2—O2—Co1ii112.7 (3)
C6—C8—H8B109.0C1—O3—Co1111.1 (3)
H8A—C8—H8B107.8C1—O4—Co1i110.2 (3)
O5—C9—N2123.9 (4)O1—Co1—O3163.58 (13)
O5—C9—C10120.3 (4)O1—Co1—N195.51 (15)
N2—C9—C10115.8 (4)O3—Co1—N199.50 (14)
O6—C10—N3125.5 (4)O1—Co1—O2ii79.59 (13)
O6—C10—C9121.8 (4)O3—Co1—O2ii84.77 (12)
N3—C10—C9112.7 (4)N1—Co1—O2ii172.33 (14)
N3—C11—C12114.8 (4)O1—Co1—O4i92.68 (12)
N3—C11—H11A108.6O3—Co1—O4i80.86 (12)
C12—C11—H11A108.6N1—Co1—O4i89.62 (14)
N3—C11—H11B108.6O2ii—Co1—O4i84.76 (13)
C12—C11—H11B108.6O1—Co1—N4iv92.74 (13)
H11A—C11—H11B107.6O3—Co1—N4iv92.70 (13)
C13—C12—C16117.9 (4)N1—Co1—N4iv94.43 (15)
C13—C12—C11125.3 (4)O2ii—Co1—N4iv91.71 (14)
C16—C12—C11116.8 (4)O4i—Co1—N4iv172.90 (15)
C12—C13—C14120.0 (5)
N1—C3—C4—C50.2 (9)C14—C15—N4—Co1iii171.3 (5)
C3—C4—C5—C61.7 (8)C12—C16—N4—C151.5 (8)
C4—C5—C6—C72.3 (7)C12—C16—N4—Co1iii171.1 (4)
C4—C5—C6—C8177.0 (5)O2—C2—O1—Co1173.9 (3)
C5—C6—C7—N11.0 (7)C2ii—C2—O1—Co15.5 (6)
C8—C6—C7—N1178.3 (4)O1—C2—O2—Co1ii174.5 (3)
C7—C6—C8—N2121.0 (5)C2ii—C2—O2—Co1ii6.2 (6)
C5—C6—C8—N259.8 (6)O4—C1—O3—Co1166.2 (4)
O5—C9—C10—O6174.2 (4)C1i—C1—O3—Co113.8 (6)
N2—C9—C10—O66.6 (6)O3—C1—O4—Co1i166.7 (4)
O5—C9—C10—N36.6 (6)C1i—C1—O4—Co1i13.4 (6)
N2—C9—C10—N3172.6 (4)C2—O1—Co1—O311.5 (6)
N3—C11—C12—C136.9 (7)C2—O1—Co1—N1167.5 (3)
N3—C11—C12—C16174.7 (4)C2—O1—Co1—O2ii6.5 (3)
C16—C12—C13—C141.3 (9)C2—O1—Co1—O4i77.7 (3)
C11—C12—C13—C14179.7 (5)C2—O1—Co1—N4iv97.7 (3)
C12—C13—C14—C151.6 (10)C1—O3—Co1—O151.8 (6)
C13—C14—C15—N40.3 (10)C1—O3—Co1—N1104.0 (3)
C13—C12—C16—N40.3 (8)C1—O3—Co1—O2ii69.6 (3)
C11—C12—C16—N4178.2 (4)C1—O3—Co1—O4i15.9 (3)
C6—C7—N1—C30.9 (7)C1—O3—Co1—N4iv161.1 (3)
C6—C7—N1—Co1178.1 (3)C7—N1—Co1—O1142.6 (3)
C4—C3—N1—C71.5 (8)C3—N1—Co1—O134.4 (4)
C4—C3—N1—Co1178.7 (4)C7—N1—Co1—O330.7 (4)
O5—C9—N2—C80.8 (7)C3—N1—Co1—O3152.3 (4)
C10—C9—N2—C8178.3 (4)C7—N1—Co1—O2ii92.7 (11)
C6—C8—N2—C964.2 (6)C3—N1—Co1—O2ii84.3 (11)
O6—C10—N3—C111.6 (7)C7—N1—Co1—O4i50.0 (4)
C9—C10—N3—C11177.5 (4)C3—N1—Co1—O4i127.0 (4)
C12—C11—N3—C1077.4 (6)C7—N1—Co1—N4iv124.2 (4)
C14—C15—N4—C161.2 (9)C3—N1—Co1—N4iv58.8 (4)
Symmetry codes: (i) x+1, y, z+1; (ii) x, y, z+1; (iii) x+1, y+1/2, z1/2; (iv) x1, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3···O6v0.862.142.863 (5)142
Symmetry code: (v) x, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3···O6i0.862.142.863 (5)141.6
Symmetry code: (i) x, y+1/2, z+1/2.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds