Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
An automated tool, RIDL (Radiation-Induced Density Loss), has been developed that enables user-independent detection and quantification of radiation-induced site-specific changes to macromolecular structures as a function of absorbed dose. RIDL has been designed to extract suitable per-atom descriptors of radiation damage, based on changes detectable in Fobs,nFobs,1 Fourier difference maps between successive dose data sets. Subjective bias, which frequently plagues the interpretation of true damage signal versus noise, is thus eliminated. Metrics derived from RIDL have already proved beneficial for damage analysis on a range of protein and nucleic acid systems in the radiation damage literature. However, the tool is also sufficiently generalized for improving the rigour with which biologically relevant enzymatic changes can be probed and tracked during time-resolved crystallographic experiments.

Supporting information


GH7 cellobiohydrolase MX damage series data

Subscribe to Journal of Applied Crystallography

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 

Terms and conditions of use
Contact us

Follow J. Appl. Cryst.
Sign up for e-alerts
Follow J. Appl. Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds