Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The structural characterization of 1H-pyrrolo­[2,3-b]­pyridine-3-acetic acid (alternative name: 7-aza­indole-3-acetic acid), C9H8N2O2, reveals similar molecular geometry, i.e. with the side chain perpendicular to the 7-aza­indole ring, to that of the natural plant growth hormone indole-3-acetic acid (auxin) and its alkyl­ated and halogenated derivatives.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270100007101/av1034sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270100007101/av1034Isup2.hkl
Contains datablock I

CCDC reference: 150357

Comment top

From the discovery of (hetero)auxin as an endogenous growth factor of grass colepotiles (Went, 1927), its gradual acceptance as a universal plant hormone (Thimann, 1977) and its eventual identification as indole-3-acetic acid (IAA) (Bandurski & Schulze, 1974), a multitude of auxin-like plant growth regulators have been synthesized (Jönsson, 1961; Schneider & Wightman, 1978). In most cases, their structures deviate significantly from that of the endogenous hormone and their overall biological properties diverge accordingly. 1H-Pyrrolo[2,3-b]pyridine-3-acetic acid, (I), retains the auxin activity of IAA (Thimann, 1958), and is thus expected to bind to the proteins involved in the auxin response with about the same efficiency. The structurally similar 7-azatryptophan has been extensively used as a molecular probe in protein biochemistry, mostly exploiting the distinctive fluorescence properties contributed by the 7-azaindole ring system (Smirnov et al., 1997). These properties are shared by (I) and, in conjunction with NMR spectroscopy, should enable the monitoring of auxin-protein interactions without interference by endogenous IAA. Such studies will, however, only afford readily interpretable results if the molecular size and geometry correspond closely to that of the natural auxin. Here we show that this is indeed the case. \sch

Compound (I) has no stereogenic centre but crystallizes in the noncentrosymmetric group Pna21 with two conformers per asymmetric unit, molecules A and B. Their molecular structures differ slightly in the conformation of the side chain.

The overall conformation of the molecule can be described by two torsion angles. C2—C3—C8—C9 [91.5 (6) and 101.3 (6)° for molecules A and B, respectively; in Tables 1 and 2, the suffix 2 indicates molecule B] defines the relative orientation of the side chain towards the aromatic plane, whereas the orientation of the carboxylic acid group is given by the angle C3—C8—C9—O2 [−119.5 (5) and −107.0 (5)° for A and B, respectively]. The aromatic 7-azaindole nucleus is planar in both molecules, with maximum deviations of 0.010 (4) (molecule A) and 0.007 (5) Å (molecule B) for C3 from the best least-squares plane defined by C31/C4/C5/C6/N2/C71/N1/C2/C3. The molecular geometry of the 7-azaindole moiety is characterized by shortening of the C6—N2 [1.345 (6) and 1.335 (6) Å in A and B, respectively] and N2—C71 bonds [1.329 (6) and 1.334 (6) Å for A and B, respectively], and shrinkage of the C6—N2—C71 angle [114.3 (4) and 114.7 (4)° for A and B, respectively]. The same type of distortion has been observed previously in the phenyl part of the indole moiety around C7 (reference?), but with the substitution of C with N in (I) this distortion becomes more pronounced.

The crystal packing in (I) is determined by two types of hydrogen bonds, N—H···O and O—H···N. These hydrogen bonds form an eight-membered ring, graph-set notation R22(8) (Bernstein et al., 1995), between two neighbouring molecules of the same conformer (A···A, B···B). This pattern is a part of the infinite C(7) (N—H···O) and C(10) (O—H···N) chains running along a.

Experimental top

Compound (I) was synthesized from 1H-pyrrolo[2,3-b]pyridine (7-azaindole) via 3-(dimethylaminomethyl)-1-H-pyrrolo[2,3-b]pyridine (7-azagramine) and 1H-pyrrolo[2,3-b]pyridine-3-acetonitrile (7-azaindole-3-acetonitrile) (Robison & Robison, 1955, 1956). Crystals of (I) were grown by evaporation from a solution in EtOH:H2O (1:1 v/v) over 4 d. A representative crystal was selected for the crystallographic investigation reported here.

Refinement top

All H atoms were calculated geometrically and refined using the SHELXL97 (Sheldrick, 1997) riding model.

Computing details top

Data collection: CAD-4 Software (Enraf-Nonius, 1989); cell refinement: CAD-4 Software; data reduction: HELENA (Spek, 1997a); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97; molecular graphics: PLATON97 (Spek, 1997b) and ORTEP (Johnson, 1965); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. A molecular view of (I) with the atom-numbering scheme for molecule A. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii.
[Figure 2] Fig. 2. The crystal structure of (I), with the hydrogen-bonding scheme shown as dashed lines.
7-azaindole-3-acetic acid top
Crystal data top
C9H8N2O2Dx = 1.422 (1) Mg m3
Mr = 176.17Cu Kα radiation, λ = 1.54184 Å
Orthorhombic, Pna21Cell parameters from 25 reflections
a = 14.9965 (7) Åθ = 11–19°
b = 4.2170 (3) ŵ = 0.86 mm1
c = 26.022 (1) ÅT = 293 K
V = 1645.64 (15) Å3Needle, colourless
Z = 80.15 × 0.08 × 0.06 mm
F(000) = 736
Data collection top
Enraf-Nonius CAD4
diffractometer
992 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.017
Graphite monochromatorθmax = 74.2°, θmin = 3.4°
ω/2θ scansh = 180
Absorption correction: ψ-scan
(PLATON97; Spek, 1997b)
k = 50
Tmin = 0.88, Tmax = 0.95l = 032
1762 measured reflections3 standard reflections every 87 reflections
1584 independent reflections intensity decay: 0.8%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.041H-atom parameters constrained
wR(F2) = 0.104Calculated w = 1/[σ2(Fo2) + (0.0508P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.91(Δ/σ)max = 0.001
1584 reflectionsΔρmax = 0.15 e Å3
237 parametersΔρmin = 0.20 e Å3
0 restraintsAbsolute structure: Flack (1983)
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.0 (5)
Crystal data top
C9H8N2O2V = 1645.64 (15) Å3
Mr = 176.17Z = 8
Orthorhombic, Pna21Cu Kα radiation
a = 14.9965 (7) ŵ = 0.86 mm1
b = 4.2170 (3) ÅT = 293 K
c = 26.022 (1) Å0.15 × 0.08 × 0.06 mm
Data collection top
Enraf-Nonius CAD4
diffractometer
992 reflections with I > 2σ(I)
Absorption correction: ψ-scan
(PLATON97; Spek, 1997b)
Rint = 0.017
Tmin = 0.88, Tmax = 0.953 standard reflections every 87 reflections
1762 measured reflections intensity decay: 0.8%
1584 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.041H-atom parameters constrained
wR(F2) = 0.104Δρmax = 0.15 e Å3
S = 0.91Δρmin = 0.20 e Å3
1584 reflectionsAbsolute structure: Flack (1983)
237 parametersAbsolute structure parameter: 0.0 (5)
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C310.4789 (3)0.3875 (10)0.21329 (16)0.0393 (10)
C40.4889 (3)0.2704 (12)0.1642 (2)0.0530 (12)
H40.53780.14630.15540.064*
C50.4242 (4)0.3427 (13)0.1286 (2)0.0572 (13)
H50.42900.26530.09520.069*
C60.3523 (4)0.5297 (13)0.1421 (2)0.0543 (12)
H60.31050.57740.11680.065*
N20.3391 (2)0.6469 (9)0.18957 (15)0.0455 (10)
C710.4026 (3)0.5737 (11)0.22313 (17)0.0411 (11)
N10.4037 (2)0.6671 (9)0.27306 (15)0.0457 (10)
H10.36430.78260.28800.055*
C20.4794 (3)0.5436 (11)0.29547 (19)0.0465 (12)
H20.49590.57510.32950.056*
C30.5266 (3)0.3688 (11)0.26079 (17)0.0416 (11)
C80.6128 (3)0.2005 (11)0.2706 (2)0.0506 (12)
H8A0.61450.00940.24990.061*
H8B0.61490.13700.30640.061*
C90.6942 (3)0.3968 (11)0.2588 (2)0.0452 (11)
O10.6991 (2)0.4892 (9)0.21113 (13)0.0564 (8)
H1A0.74540.58900.20680.085*
O20.7487 (2)0.4621 (10)0.29103 (15)0.0698 (11)
C3120.2850 (3)0.5514 (9)0.48132 (17)0.0392 (11)
C420.2689 (3)0.6192 (12)0.53230 (19)0.0509 (12)
H420.21960.73950.54180.061*
C520.3270 (4)0.5062 (14)0.56906 (19)0.0604 (13)
H520.31670.54650.60370.072*
C620.4005 (3)0.3331 (13)0.55409 (19)0.0583 (14)
H620.43910.26200.57960.070*
N220.4198 (2)0.2607 (9)0.50541 (16)0.0465 (10)
C7120.3619 (3)0.3718 (10)0.47085 (17)0.0418 (11)
N120.3675 (2)0.3284 (9)0.41905 (14)0.0453 (10)
H120.40850.22520.40310.054*
C220.2964 (3)0.4773 (12)0.39685 (19)0.0459 (11)
H220.28510.48110.36170.055*
C320.2444 (3)0.6189 (11)0.43277 (18)0.0419 (11)
C820.1614 (3)0.8106 (11)0.4237 (2)0.0531 (14)
H82A0.16060.88300.38830.064*
H82B0.16240.99620.44570.064*
C920.0772 (3)0.6229 (11)0.4343 (2)0.0475 (12)
O120.0647 (2)0.5692 (9)0.48320 (13)0.0657 (11)
H12A0.01900.46480.48710.099*
O220.0288 (2)0.5275 (9)0.40090 (14)0.0687 (11)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C310.039 (2)0.034 (2)0.045 (3)0.0079 (18)0.001 (2)0.003 (2)
C40.045 (3)0.053 (3)0.061 (3)0.001 (2)0.005 (3)0.014 (2)
C50.059 (3)0.067 (4)0.045 (3)0.000 (3)0.001 (3)0.016 (2)
C60.048 (3)0.070 (3)0.045 (3)0.005 (2)0.007 (2)0.006 (2)
N20.039 (2)0.054 (2)0.044 (2)0.0074 (17)0.000 (2)0.0017 (18)
C710.030 (2)0.053 (3)0.040 (3)0.0080 (18)0.003 (2)0.003 (2)
N10.037 (2)0.056 (2)0.043 (2)0.0008 (17)0.0074 (18)0.0082 (18)
C20.038 (3)0.054 (3)0.047 (3)0.010 (2)0.000 (2)0.003 (2)
C30.035 (2)0.043 (2)0.046 (3)0.0046 (19)0.003 (2)0.000 (2)
C80.050 (3)0.047 (3)0.055 (3)0.004 (2)0.007 (3)0.011 (2)
C90.037 (2)0.048 (3)0.051 (3)0.005 (2)0.000 (2)0.007 (2)
O10.047 (2)0.075 (2)0.0473 (19)0.0084 (18)0.0003 (17)0.0083 (18)
O20.0544 (19)0.093 (3)0.062 (3)0.020 (2)0.008 (2)0.021 (2)
C3120.034 (2)0.040 (2)0.043 (2)0.0109 (18)0.004 (2)0.003 (2)
C420.049 (3)0.057 (3)0.046 (3)0.002 (2)0.009 (3)0.007 (2)
C520.061 (3)0.082 (4)0.037 (3)0.008 (3)0.005 (3)0.008 (3)
C620.055 (3)0.074 (4)0.045 (3)0.006 (3)0.006 (3)0.004 (2)
N220.039 (2)0.053 (2)0.048 (2)0.0030 (18)0.002 (2)0.0031 (19)
C7120.035 (3)0.047 (2)0.043 (3)0.007 (2)0.006 (2)0.000 (2)
N120.0333 (19)0.061 (3)0.041 (2)0.0004 (17)0.0042 (19)0.0053 (18)
C220.044 (3)0.056 (3)0.037 (2)0.007 (2)0.003 (2)0.000 (2)
C320.040 (2)0.039 (2)0.047 (3)0.0101 (19)0.002 (2)0.003 (2)
C820.046 (3)0.042 (3)0.072 (4)0.001 (2)0.004 (3)0.008 (2)
C920.040 (3)0.043 (2)0.060 (4)0.009 (2)0.002 (3)0.007 (2)
O120.048 (2)0.093 (3)0.056 (2)0.0171 (19)0.0004 (19)0.007 (2)
O220.056 (2)0.096 (3)0.054 (2)0.019 (2)0.008 (2)0.013 (2)
Geometric parameters (Å, º) top
C31—C41.378 (6)C312—C421.378 (6)
C31—C711.410 (6)C312—C7121.407 (6)
C31—C31.431 (6)C312—C321.431 (6)
C4—C51.375 (7)C42—C521.378 (7)
C5—C61.382 (7)C52—C621.378 (7)
C6—N21.345 (6)C62—N221.335 (6)
N2—C711.329 (6)N22—C7121.334 (6)
C71—N11.358 (6)C712—N121.363 (6)
N1—C21.377 (5)N12—C221.366 (6)
C2—C31.364 (6)C22—C321.355 (6)
C3—C81.497 (6)C32—C821.503 (6)
C8—C91.505 (6)C82—C921.515 (7)
C9—O21.204 (5)C92—O221.202 (6)
C9—O11.301 (6)C92—O121.306 (6)
O1···C313.329 (5)C5···H62v2.9345
O1···N2i2.662 (5)C6···H1Aiv2.8265
O2···C22ii3.395 (5)C6···H42x3.0786
O2···N1i2.840 (5)C9···H1i2.9852
O12···N22iii2.644 (5)C9···H8Avi2.8557
O12···C3123.305 (5)C32···H82Bviii2.9190
O12···C423.325 (5)C52···H6xi3.0114
O22···N12iii2.886 (5)C62···H12Avii2.7890
O22···C2iv3.369 (5)C71···H1Aiv2.7865
O1···H52v2.8097C92···H12iii3.0353
O1···H8Avi2.7263C92···H82Bviii2.9506
O2···H22vii2.6785C312···O123.305 (5)
O2···H1i2.0419C712···H12Avii2.7830
O12···H422.8698H1···C9iv2.9852
O22···H8Biii2.8633H1···O2iv2.0419
O22···H2iv2.5496H1···H222.5894
O22···H12iii2.0961H1A···C6i2.8265
N1···O2iv2.840 (5)H1A···N2i1.8484
N2···C9iv3.416 (6)H1A···C71i2.7865
N2···O1iv2.662 (5)H2···O22i2.5496
N12···O22vii2.886 (5)H6···C52xii3.0114
N22···O12vii2.644 (5)H6···H42x2.4601
N22···C92vii3.408 (6)H8A···C2viii3.0628
N2···H1Aiv1.8484H8A···C3viii3.0196
N22···H12Avii1.8292H8A···C9viii2.8557
C2···O22i3.369 (5)H8A···O1viii2.7263
C2···C8vi3.479 (6)H8B···O22vii2.8633
C4···C71viii3.558 (7)H12···O22vii2.0961
C5···C62v3.541 (7)H12···C92vii3.0353
C8···C2viii3.479 (6)H12A···N22iii1.8292
C9···N2i3.416 (6)H12A···C62iii2.7890
C22···C82viii3.534 (7)H12A···C712iii2.7830
C22···O2iii3.395 (5)H22···O2iii2.6785
C31···O13.329 (5)H22···H12.5894
C42···O123.325 (5)H42···O122.8698
C62···C5ix3.541 (7)H42···C6ii3.0786
C71···C4vi3.558 (7)H42···H6ii2.4601
C82···C22vi3.534 (7)H52···O1ix2.8097
C92···N22iii3.408 (6)H62···C5ix2.9345
C2···H8Avi3.0628H82B···C32vi2.9190
C3···H8Avi3.0196H82B···C92vi2.9506
C4—C31—C71117.2 (4)C42—C312—C712116.2 (4)
C4—C31—C3136.6 (4)C42—C312—C32137.3 (4)
C71—C31—C3106.2 (4)C712—C312—C32106.6 (4)
C5—C4—C31117.9 (5)C52—C42—C312119.1 (5)
C4—C5—C6120.4 (5)C42—C52—C62119.5 (5)
N2—C6—C5123.9 (5)N22—C62—C52124.3 (5)
C71—N2—C6114.3 (4)C712—N22—C62114.7 (4)
N2—C71—N1124.8 (4)N22—C712—N12125.4 (4)
N2—C71—C31126.3 (4)N22—C712—C312126.3 (4)
N1—C71—C31109.0 (4)N12—C712—C312108.3 (4)
C71—N1—C2107.8 (4)C712—N12—C22108.0 (4)
C3—C2—N1110.6 (4)C32—C22—N12111.1 (4)
C2—C3—C31106.4 (4)C22—C32—C312106.1 (4)
C2—C3—C8126.3 (4)C22—C32—C82127.2 (5)
C31—C3—C8127.3 (4)C312—C32—C82126.7 (4)
C3—C8—C9113.9 (4)C32—C82—C92112.4 (4)
O2—C9—O1123.9 (4)O22—C92—O12124.0 (5)
O2—C9—C8122.2 (5)O22—C92—C82123.1 (5)
O1—C9—C8113.9 (4)O12—C92—C82112.8 (5)
C2—C3—C8—C991.5 (6)C31—C3—C8—C986.4 (6)
C3—C8—C9—O2119.5 (5)C31—C4—C5—C60.6 (8)
C22—C32—C82—C92101.3 (6)C5—C4—C31—C3178.7 (5)
C32—C82—C92—O22107.0 (5)C5—C4—C31—C710.1 (7)
C71—N1—C2—C30.6 (5)C4—C5—C6—N21.3 (9)
C2—N1—C71—C310.1 (5)C3—C8—C9—O159.9 (5)
C2—N1—C71—N2179.6 (4)C4—C31—C71—N1179.8 (4)
C6—N2—C71—N1179.6 (4)C3—C31—C71—N10.8 (5)
C71—N2—C6—C51.3 (7)C4—C31—C71—N20.1 (7)
C6—N2—C71—C310.8 (7)C3—C31—C71—N2178.9 (4)
C712—N12—C22—C320.3 (6)N12—C22—C32—C82178.8 (4)
C22—N12—C712—C3120.3 (4)N12—C22—C32—C3120.7 (5)
C22—N12—C712—N22179.9 (4)C22—C32—C312—C7120.9 (5)
C712—N22—C62—C520.4 (8)C312—C32—C82—C9279.3 (6)
C62—N22—C712—N12180.0 (4)C82—C32—C312—C420.2 (9)
C62—N22—C712—C3120.2 (7)C82—C32—C312—C712178.6 (4)
N1—C2—C3—C8179.3 (4)C22—C32—C312—C42179.7 (5)
N1—C2—C3—C311.1 (5)C312—C42—C52—C621.1 (8)
C2—C3—C31—C4179.9 (8)C52—C42—C312—C32179.5 (5)
C8—C3—C31—C71179.3 (4)C52—C42—C312—C7120.8 (7)
C8—C3—C31—C41.8 (9)C42—C52—C62—N220.9 (9)
C2—C3—C31—C711.1 (5)C32—C82—C92—O1271.2 (5)
Symmetry codes: (i) x+1/2, y+3/2, z; (ii) x+1/2, y+1/2, z+1/2; (iii) x1/2, y+1/2, z; (iv) x1/2, y+3/2, z; (v) x+1, y+1, z1/2; (vi) x, y+1, z; (vii) x+1/2, y+1/2, z; (viii) x, y1, z; (ix) x+1, y+1, z+1/2; (x) x+1/2, y1/2, z1/2; (xi) x, y, z+1/2; (xii) x, y, z1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O2iv0.862.042.840 (5)154
O1—H1A···N2i0.821.852.662 (5)171
N12—H12···O22vii0.862.102.886 (5)152
O12—H12A···N22iii0.821.832.644 (5)172
C2—H2···O22i0.932.553.369 (5)147
Symmetry codes: (i) x+1/2, y+3/2, z; (iii) x1/2, y+1/2, z; (iv) x1/2, y+3/2, z; (vii) x+1/2, y+1/2, z.

Experimental details

Crystal data
Chemical formulaC9H8N2O2
Mr176.17
Crystal system, space groupOrthorhombic, Pna21
Temperature (K)293
a, b, c (Å)14.9965 (7), 4.2170 (3), 26.022 (1)
V3)1645.64 (15)
Z8
Radiation typeCu Kα
µ (mm1)0.86
Crystal size (mm)0.15 × 0.08 × 0.06
Data collection
DiffractometerEnraf-Nonius CAD4
diffractometer
Absorption correctionψ-scan
(PLATON97; Spek, 1997b)
Tmin, Tmax0.88, 0.95
No. of measured, independent and
observed [I > 2σ(I)] reflections
1762, 1584, 992
Rint0.017
(sin θ/λ)max1)0.624
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.104, 0.91
No. of reflections1584
No. of parameters237
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.15, 0.20
Absolute structureFlack (1983)
Absolute structure parameter0.0 (5)

Computer programs: CAD-4 Software (Enraf-Nonius, 1989), CAD-4 Software, HELENA (Spek, 1997a), SHELXS97 (Sheldrick, 1997), SHELXL97, PLATON97 (Spek, 1997b) and ORTEP (Johnson, 1965).

Selected geometric parameters (Å, º) top
C31—C41.378 (6)C312—C421.378 (6)
C31—C711.410 (6)C312—C7121.407 (6)
C31—C31.431 (6)C312—C321.431 (6)
C4—C51.375 (7)C42—C521.378 (7)
C5—C61.382 (7)C52—C621.378 (7)
C6—N21.345 (6)C62—N221.335 (6)
N2—C711.329 (6)N22—C7121.334 (6)
C71—N11.358 (6)C712—N121.363 (6)
N1—C21.377 (5)N12—C221.366 (6)
C2—C31.364 (6)C22—C321.355 (6)
C3—C81.497 (6)C32—C821.503 (6)
C8—C91.505 (6)C82—C921.515 (7)
C9—O21.204 (5)C92—O221.202 (6)
C9—O11.301 (6)C92—O121.306 (6)
C4—C31—C71117.2 (4)C42—C312—C712116.2 (4)
C4—C31—C3136.6 (4)C42—C312—C32137.3 (4)
C71—C31—C3106.2 (4)C712—C312—C32106.6 (4)
C5—C4—C31117.9 (5)C52—C42—C312119.1 (5)
C4—C5—C6120.4 (5)C42—C52—C62119.5 (5)
N2—C6—C5123.9 (5)N22—C62—C52124.3 (5)
C71—N2—C6114.3 (4)C712—N22—C62114.7 (4)
N2—C71—N1124.8 (4)N22—C712—N12125.4 (4)
N2—C71—C31126.3 (4)N22—C712—C312126.3 (4)
N1—C71—C31109.0 (4)N12—C712—C312108.3 (4)
C71—N1—C2107.8 (4)C712—N12—C22108.0 (4)
C3—C2—N1110.6 (4)C32—C22—N12111.1 (4)
C2—C3—C31106.4 (4)C22—C32—C312106.1 (4)
C2—C3—C8126.3 (4)C22—C32—C82127.2 (5)
C31—C3—C8127.3 (4)C312—C32—C82126.7 (4)
C3—C8—C9113.9 (4)C32—C82—C92112.4 (4)
O2—C9—O1123.9 (4)O22—C92—O12124.0 (5)
O2—C9—C8122.2 (5)O22—C92—C82123.1 (5)
O1—C9—C8113.9 (4)O12—C92—C82112.8 (5)
C2—C3—C8—C991.5 (6)C22—C32—C82—C92101.3 (6)
C3—C8—C9—O2119.5 (5)C32—C82—C92—O22107.0 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O2i0.8592.0422.840 (5)154.2
O1—H1A···N2ii0.8211.8482.662 (5)170.7
N12—H12···O22iii0.8602.0962.886 (5)152.4
O12—H12A···N22iv0.8211.8292.644 (5)171.9
Symmetry codes: (i) x1/2, y+3/2, z; (ii) x+1/2, y+3/2, z; (iii) x+1/2, y+1/2, z; (iv) x1/2, y+1/2, z.
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds