Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
In the mol­ecule of the title 1,5-disubstituted tetrazole, C13H17N5, the tetrazole and benzene rings are not coplanar, having a dihedral angle of 42.96 (5)° between them. The piperidine fragment adopts a chair conformation, and there is a non-classical intramolecular contact between the benzene H atom and the piperidine N atom. Intermolecular C—H...π interactions involving the piperidine C—H groups and the benzene rings are responsible for the formation of two-dimensional networks, extending parallel to the ab plane. These networks are linked together into a three-dimensional polymeric structure via π–π stacking interactions between the tetrazole rings of two adjacent mol­ecules.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270104005554/av1171sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270104005554/av1171Isup2.hkl
Contains datablock I

CCDC reference: 237952

Comment top

This work forms part of a systematic investigation of the molecular and crystal structure of 5-(α-aminoalkyl)tetrazoles, which are of great interest in the field of bioorganic and medicinal chemistry. We previously reported the structures of 5-(piperidiniomethyl)-1-H-tetrazolide (Lyakhov et al., 2002) and the copper(II) chloride complex of N,N-dimethyl-1-(1-methyl-1H-tetrazol-5-yl)methanamine (Ivashkevich et al., 2002). We present here the crystal structure of 1-[(1-phenyl-1H-1,2,3,4-tetrazol-5-yl)methyl]piperidine, (I) (Fig. 1).

The tetrazole and benzene rings are planar to within 0.0012 (7) and 0.0051 (9) Å, respectively, but they are not coplanar, their mean planes being inclined at 42.96 (5)° to one another.

The formal N2=N3 [1.2928 (15) Å] and N4=C5 double bonds [1.3169 (14) Å] are the shortest in the tetrazole ring, while the three remaining ring bonds have legnths in the narrow range 1.3510 (15)–1.3553 (17) Å (Table 1). This geometry is typical of 1,5-disubstituted tetrazoles with alkyl or aryl substitutents. An analysis performed with the Cambridge Structural Database (Version 5.25 of November 2003; Allen, 2002) gave the following mean values of the tetrazole ring bond lengths for such compounds (14 hits): N1—N2 = 1.355 (2) Å, N2=N3 = 1.295 (1) Å, N3—N4 = 1.357 (2) Å, N4=C5 = 1.320 (2) Å and N1—C5 = 1.340 (2) Å. The tetrazole ring bond lengths of (I) fall in the above ranges.

The piperidine fragment has a chair conformation (bond lengths are listed in Table 1).

There is short intramolecular C11—H11···N13 contact, with an H11···N13 distance of 2.648 (13) Å, a C11···N13 distance of 3.4395 (15) Å, and a C11—H11···N13 angle of 138.3 (10)°. This interaction may be resposible for the conformation adopted by the molecule in the solid.

Because of the lack of classical hydrogen-bond donors in the structure of (I), the packing is determined by weaker interactions, namely the C—H···π and ππ contacts.

C—H···π interactions arise, firstly, between piperidine atom H17A of one molecule and the benzene ring of another molecule at (3/2 − x, 1/2 + y, 3/2 − z), and, secondly, between piperidine atom H18A and the benzene ring of the molecule at (1 + x, y, z) (Table 2). These interactions are characterized by C—H···CgBz angles of 139.2 (11) and 152.1 (11)°, and by H···CgBz distances of 3.246 (15) and 2.726 (15) Å, for the interactions involving atoms H17A and H18A, respectively (CgBz is the centroid of the benzene ring). These interactions form two-dimensional networks, extending parallel to the xy plane (Fig. 2).

π···π stacking interactions exist between the tetrazole π-rings of two molecules related by the symmetry transformation (j), (1 − x, −y, 1 − z), with an intercentroid distance, CgTz···CgTzj, of 3.7015 (13) Å (CgTz denotes the centroid of the tetrazole ring). These interactions connect the two-dimensional networks into a three-dimensional polymeric structure.

Experimental top

The title compound was prepared by aminomethylation of 1-phenyltetrazole with piperidine and formaldehide according to the method described by Karavai & Gaponik (1991). A solution of 1-phenyltetrazole (5.8 g, 40 mmol), piperidine (3.5 ml, 40 mmol) and paraform (3 g) in trifluoroacetic acid (50 ml) was heated under reflux for 5 h. The solvent was removed in vacuo, and the residue was treated with an aqueous solution of sodium hydroxide (30%, 20 ml). The title compound was isolated by extraction of the resulting solution with diethyl ether (3 × 30 ml), evaporation of diethyl ether and recrystallization of the residue from ethanol (yield 64%, 6.2 g; m.p. 361 K). 1H NMR (100 MHz, DMSO-d6, p.p.m.): 1.43–1.64 (m, 6H, 3CH2), 2.40 (t, 4H, 2CH2), 3.82 (s, 2H, CH2), 7.58–7.66 (m, 3H, Ph), 7.80–7.88 (m, 2H, Ph). Single crystals of (I) suitable for analysis were grown by slow evaporation from a 2-propanol solution at room temperature in air.

Refinement top

H-atom positions were found from a difference Fourier map and all associated parameters were refined freely [C—H = 0.96 (1)–1.05 (2) Å].

Computing details top

Data collection: R3m software (Nicolet, 1980); cell refinement: R3m software; data reduction: R3m software; program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 1997) and PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. A view of (I), with the atom-numbering scheme and displacement ellipsoids at the 30% probability level. H atoms are shown as spheres of arbitrary radii.
[Figure 2] Fig. 2. A fragment of the crystal structure of (I), showing the two-dimensional network parallel to the xy plane. Dashed lines indicate C—H···π interactions (Table 2). H atoms, with the exception of atoms H17A and H18A, have been omitted.
1-Phenyl-5-(piperidinomethyl)-1H-tetrazole top
Crystal data top
C13H17N5F(000) = 520
Mr = 243.32Dx = 1.260 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 25 reflections
a = 7.7537 (13) Åθ = 12.4–20.3°
b = 10.436 (3) ŵ = 0.08 mm1
c = 15.937 (3) ÅT = 293 K
β = 96.142 (13)°Prism, colourless
V = 1282.2 (5) Å30.54 × 0.50 × 0.46 mm
Z = 4
Data collection top
Nicolet R3m four-circle
diffractometer
Rint = 0.019
Radiation source: fine-focus sealed tubeθmax = 30.1°, θmin = 2.3°
Graphite monochromatorh = 010
ω/2θ scansk = 014
4125 measured reflectionsl = 2222
3746 independent reflections3 standard reflections every 100 reflections
2759 reflections with I > 2σ(I) intensity decay: none
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042All H-atom parameters refined
wR(F2) = 0.120 w = 1/[σ2(Fo2) + (0.0582P)2 + 0.0879P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max < 0.001
3746 reflectionsΔρmax = 0.17 e Å3
232 parametersΔρmin = 0.25 e Å3
0 restraintsExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.480 (16)
Crystal data top
C13H17N5V = 1282.2 (5) Å3
Mr = 243.32Z = 4
Monoclinic, P21/nMo Kα radiation
a = 7.7537 (13) ŵ = 0.08 mm1
b = 10.436 (3) ÅT = 293 K
c = 15.937 (3) Å0.54 × 0.50 × 0.46 mm
β = 96.142 (13)°
Data collection top
Nicolet R3m four-circle
diffractometer
Rint = 0.019
4125 measured reflections3 standard reflections every 100 reflections
3746 independent reflections intensity decay: none
2759 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.120All H-atom parameters refined
S = 1.06Δρmax = 0.17 e Å3
3746 reflectionsΔρmin = 0.25 e Å3
232 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.33395 (12)0.14877 (8)0.53722 (5)0.0455 (2)
N20.23195 (15)0.13018 (10)0.46377 (6)0.0598 (3)
N30.33297 (18)0.13906 (11)0.40455 (6)0.0697 (3)
N40.49897 (16)0.16229 (10)0.43672 (6)0.0632 (3)
C50.49825 (15)0.16835 (9)0.51921 (7)0.0482 (3)
C60.26254 (13)0.13607 (9)0.61587 (6)0.0433 (2)
C70.14675 (15)0.03748 (11)0.62453 (8)0.0513 (3)
H70.1197 (17)0.0218 (14)0.5794 (8)0.063 (4)*
C80.07734 (16)0.02440 (12)0.70039 (8)0.0589 (3)
H80.006 (2)0.0446 (16)0.7068 (9)0.077 (4)*
C90.12399 (16)0.10749 (14)0.76591 (8)0.0610 (3)
H90.0770 (19)0.0923 (15)0.8186 (9)0.078 (4)*
C100.23807 (16)0.20551 (14)0.75615 (7)0.0588 (3)
H100.267 (2)0.2671 (17)0.8010 (10)0.086 (5)*
C110.30840 (14)0.22187 (11)0.68054 (7)0.0502 (3)
H110.3870 (18)0.2920 (13)0.6702 (8)0.060 (3)*
C120.65236 (15)0.19014 (11)0.58159 (7)0.0508 (3)
H12A0.6346 (16)0.1446 (12)0.6349 (8)0.053 (3)*
H12B0.7549 (18)0.1512 (13)0.5579 (8)0.063 (4)*
N130.68014 (11)0.32565 (8)0.60180 (5)0.0441 (2)
C140.73631 (16)0.39423 (11)0.52936 (7)0.0519 (3)
H14A0.6458 (19)0.3857 (13)0.4823 (8)0.064 (4)*
H14B0.849 (2)0.3515 (14)0.5120 (9)0.070 (4)*
C150.76814 (18)0.53468 (12)0.54975 (9)0.0615 (3)
H15A0.8020 (19)0.5799 (15)0.4980 (10)0.076 (4)*
H15B0.657 (2)0.5723 (15)0.5626 (9)0.071 (4)*
C160.90389 (17)0.55095 (14)0.62460 (9)0.0633 (3)
H16A1.017 (2)0.5169 (15)0.6112 (9)0.075 (4)*
H16B0.916 (2)0.6458 (16)0.6392 (11)0.087 (5)*
C170.85428 (18)0.47332 (14)0.69841 (8)0.0622 (3)
H17A0.952 (2)0.4698 (15)0.7459 (9)0.076 (4)*
H17B0.749 (2)0.5138 (15)0.7203 (9)0.074 (4)*
C180.81532 (16)0.33599 (13)0.67374 (8)0.0558 (3)
H18A0.927 (2)0.2922 (14)0.6587 (9)0.073 (4)*
H18B0.7723 (17)0.2852 (14)0.7186 (9)0.067 (4)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0559 (5)0.0387 (4)0.0416 (4)0.0051 (4)0.0036 (4)0.0012 (3)
N20.0790 (7)0.0532 (5)0.0451 (5)0.0160 (5)0.0034 (5)0.0049 (4)
N30.1051 (9)0.0591 (6)0.0450 (5)0.0183 (6)0.0086 (5)0.0077 (4)
N40.0893 (8)0.0526 (6)0.0506 (5)0.0091 (5)0.0208 (5)0.0066 (4)
C50.0622 (6)0.0353 (5)0.0492 (5)0.0007 (4)0.0150 (5)0.0003 (4)
C60.0446 (5)0.0417 (5)0.0434 (5)0.0028 (4)0.0036 (4)0.0014 (4)
C70.0528 (6)0.0427 (5)0.0589 (6)0.0021 (4)0.0085 (5)0.0009 (5)
C80.0524 (6)0.0566 (7)0.0698 (7)0.0006 (5)0.0163 (5)0.0103 (6)
C90.0528 (6)0.0796 (9)0.0519 (6)0.0087 (6)0.0115 (5)0.0098 (6)
C100.0528 (6)0.0760 (8)0.0468 (6)0.0031 (6)0.0019 (5)0.0080 (5)
C110.0477 (5)0.0533 (6)0.0491 (6)0.0027 (5)0.0023 (4)0.0052 (4)
C120.0505 (6)0.0444 (5)0.0588 (6)0.0049 (4)0.0115 (5)0.0085 (5)
N130.0395 (4)0.0463 (5)0.0469 (4)0.0018 (3)0.0073 (3)0.0066 (3)
C140.0538 (6)0.0542 (6)0.0475 (6)0.0066 (5)0.0043 (5)0.0086 (4)
C150.0617 (7)0.0532 (6)0.0679 (7)0.0081 (5)0.0010 (6)0.0115 (6)
C160.0524 (7)0.0644 (8)0.0723 (8)0.0101 (6)0.0033 (6)0.0018 (6)
C170.0549 (7)0.0765 (9)0.0549 (7)0.0032 (6)0.0045 (5)0.0068 (6)
C180.0522 (6)0.0669 (7)0.0477 (6)0.0028 (5)0.0023 (5)0.0097 (5)
Geometric parameters (Å, º) top
N1—C51.3510 (15)C12—H12A0.996 (13)
N1—N21.3546 (12)C12—H12B1.002 (14)
N1—C61.4296 (13)N13—C141.4637 (13)
N2—N31.2928 (15)N13—C181.4724 (14)
N3—N41.3553 (17)C14—C151.5158 (18)
N4—C51.3169 (14)C14—H14A0.975 (14)
C5—C121.4878 (16)C14—H14B1.045 (15)
C6—C71.3821 (15)C15—C161.5136 (19)
C6—C111.3828 (15)C15—H15A1.010 (15)
C7—C81.3816 (17)C15—H15B0.987 (15)
C7—H70.955 (14)C16—C171.5116 (19)
C8—C91.3757 (19)C16—H16A0.989 (16)
C8—H80.981 (16)C16—H16B1.019 (17)
C9—C101.372 (2)C17—C181.508 (2)
C9—H90.963 (15)C17—H17A1.012 (16)
C10—C111.3853 (16)C17—H17B1.013 (15)
C10—H100.970 (17)C18—H18A1.028 (16)
C11—H110.978 (14)C18—H18B0.976 (14)
C12—N131.4613 (15)
C5—N1—N2108.35 (9)C12—N13—C14110.40 (9)
C5—N1—C6131.51 (9)C12—N13—C18108.57 (9)
N2—N1—C6119.95 (9)C14—N13—C18109.35 (9)
N3—N2—N1106.10 (10)N13—C14—C15111.04 (10)
N2—N3—N4111.21 (9)N13—C14—H14A108.2 (8)
C5—N4—N3106.32 (10)C15—C14—H14A109.9 (8)
N4—C5—N1108.03 (11)N13—C14—H14B109.2 (8)
N4—C5—C12125.84 (11)C15—C14—H14B110.3 (8)
N1—C5—C12126.11 (10)H14A—C14—H14B108.1 (11)
C7—C6—C11121.71 (11)C16—C15—C14111.17 (11)
C7—C6—N1118.24 (10)C16—C15—H15A111.8 (9)
C11—C6—N1120.05 (9)C14—C15—H15A109.1 (9)
C8—C7—C6118.62 (11)C16—C15—H15B109.9 (9)
C8—C7—H7121.4 (8)C14—C15—H15B107.6 (9)
C6—C7—H7120.0 (8)H15A—C15—H15B107.0 (12)
C9—C8—C7120.43 (12)C17—C16—C15109.86 (11)
C9—C8—H8120.4 (9)C17—C16—H16A106.3 (9)
C7—C8—H8119.1 (9)C15—C16—H16A110.3 (9)
C10—C9—C8120.28 (11)C17—C16—H16B111.6 (9)
C10—C9—H9122.0 (9)C15—C16—H16B109.3 (10)
C8—C9—H9117.6 (10)H16A—C16—H16B109.4 (13)
C9—C10—C11120.60 (12)C18—C17—C16111.53 (11)
C9—C10—H10120.9 (10)C18—C17—H17A105.9 (9)
C11—C10—H10118.5 (10)C16—C17—H17A111.7 (8)
C6—C11—C10118.35 (11)C18—C17—H17B109.9 (9)
C6—C11—H11118.4 (7)C16—C17—H17B109.1 (9)
C10—C11—H11123.3 (7)H17A—C17—H17B108.7 (11)
N13—C12—C5112.59 (9)N13—C18—C17112.25 (10)
N13—C12—H12A107.7 (7)N13—C18—H18A109.4 (8)
C5—C12—H12A108.8 (7)C17—C18—H18A109.4 (8)
N13—C12—H12B111.8 (8)N13—C18—H18B105.0 (8)
C5—C12—H12B107.4 (8)C17—C18—H18B113.6 (8)
H12A—C12—H12B108.4 (11)H18A—C18—H18B106.9 (12)
C5—N1—N2—N30.24 (12)C7—C8—C9—C100.99 (19)
C6—N1—N2—N3175.69 (9)C8—C9—C10—C110.31 (19)
N1—N2—N3—N40.33 (13)C7—C6—C11—C101.39 (17)
N2—N3—N4—C50.30 (13)N1—C6—C11—C10179.25 (10)
N3—N4—C5—N10.14 (12)C9—C10—C11—C60.86 (18)
N3—N4—C5—C12178.92 (10)N4—C5—C12—N1391.94 (13)
N2—N1—C5—N40.06 (11)N1—C5—C12—N1389.49 (12)
C6—N1—C5—N4174.80 (10)C5—C12—N13—C1469.67 (11)
N2—N1—C5—C12178.73 (9)C5—C12—N13—C18170.48 (9)
C6—N1—C5—C123.99 (17)C12—N13—C14—C15179.20 (9)
C5—N1—C6—C7133.92 (11)C18—N13—C14—C1559.81 (12)
N2—N1—C6—C740.32 (13)N13—C14—C15—C1658.41 (14)
C5—N1—C6—C1146.70 (15)C14—C15—C16—C1753.38 (16)
N2—N1—C6—C11139.06 (10)C15—C16—C17—C1851.90 (15)
C11—C6—C7—C80.73 (17)C12—N13—C18—C17179.29 (10)
N1—C6—C7—C8179.90 (10)C14—N13—C18—C1758.77 (13)
C6—C7—C8—C90.48 (18)C16—C17—C18—N1355.59 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C11—H11···N130.978 (14)2.648 (13)3.4395 (15)138.3 (10)

Experimental details

Crystal data
Chemical formulaC13H17N5
Mr243.32
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)7.7537 (13), 10.436 (3), 15.937 (3)
β (°) 96.142 (13)
V3)1282.2 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.54 × 0.50 × 0.46
Data collection
DiffractometerNicolet R3m four-circle
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
4125, 3746, 2759
Rint0.019
(sin θ/λ)max1)0.705
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.120, 1.06
No. of reflections3746
No. of parameters232
H-atom treatmentAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.17, 0.25

Computer programs: R3m software (Nicolet, 1980), R3m software, SIR97 (Altomare et al., 1999), ORTEP-3 for Windows (Farrugia, 1997), SHELXL97 (Sheldrick, 1997) and PLATON (Spek, 2003).

Selected bond lengths (Å) top
N1—C51.3510 (15)C12—N131.4613 (15)
N1—N21.3546 (12)N13—C141.4637 (13)
N1—C61.4296 (13)N13—C181.4724 (14)
N2—N31.2928 (15)C14—C151.5158 (18)
N3—N41.3553 (17)C15—C161.5136 (19)
N4—C51.3169 (14)C16—C171.5116 (19)
C5—C121.4878 (16)C17—C181.508 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C11—H11···N130.978 (14)2.648 (13)3.4395 (15)138.3 (10)
C—H···π interaction geometry (Å, °). top
D—H···AD—HH···AD···AD—H···A
C17—H17A···CgBzi1.012 (16)3.246 (15)4.0673 (19)139.2 (11)
C18—H18A···CgBzii1.028 (16)2.726 (15)3.6679 (17)152.1 (11)
Symmetry codes: (i) 3/2 − x, 1/2 + y, 3/2 − z; (ii) 1 + x, y, z.
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds