Buy article online - an online subscription or single-article purchase is required to access this article.
In the crystal structures of two cyclic trihydroxamic acid derivatives containing the same substructure unit,
viz. 1,3,5-trihydroxy-1,3,5-triazinane-2,4,6-trione dihydrate, C
3H
3N
3O
6·2H
2O, (I), and 1,3,5-benzyloxy-1,3,5-triazinane-2,4,6-trione, C
24H
21N
3O
6, (II), there is no significant difference in the geometric parameters. In (I), there are 11 hydrogen bonds of the O—H
O type interconnecting the molecules in a three-dimensional network, while in (II) there are only two weak C—H
O hydrogen bonds. The results of IR spectroscopic analysis are in good agreement with the crystallographic study.
Supporting information
CCDC references: 634901; 634902
Compounds (I) and (II) were synthesized by the previously published procedure (Butula et al., 2000). The structure and purity was confirmed by means of thin layer chromatography, FT–IR and NMR analysis. Compound (I) was crystallized from a saturated acetone/diethyl ether (9:1) solution and (II) from a saturated acetone/diethyl ether (1:1) solution by slow evaporation at room temperature (a beaker containing the solution was covered with aluminium foil to slow down evaporation). Colorless crystals of good quality were obtained after three weeks, and these were stable for months when exposed to the atmosphere.
The positions of H atoms were obtained from a difference Fourier map and they were included in the refinement process with isotropic displacement parameters.
Data collection: CrysAlis CCD (Oxford Diffraction, 2003) for (I); CrysAlis CCD (Oxford Diffraction,2003) for (II). For both compounds, cell refinement: CrysAlis CCD. Data reduction: CrysAlis CCD [or ERD?] (Oxford Diffraction, 2003) for (I); CrysAlis CCD [or RED?] (Oxford Diffraction,2003) for (II). For both compounds, program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997). Molecular graphics: ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2006) for (I); ORTEP-3 (Farrugia, 1997) for (II). For both compounds, software used to prepare material for publication: PLATON (Spek, 2003).
(I) 1,3,5-trihydroxy-1,3,5-triazinane-2,4,6-trione dihydrate
top
Crystal data top
C3H3N3O6·2H2O | Z = 4 |
Mr = 213.12 | F(000) = 440 |
Monoclinic, P21/a | Dx = 1.953 Mg m−3 |
Hall symbol: -P 2yab | Mo Kα radiation, λ = 0.71073 Å |
a = 7.5109 (12) Å | µ = 0.20 mm−1 |
b = 11.9244 (17) Å | T = 113 K |
c = 8.1794 (12) Å | Prism, colourless |
β = 98.405 (13)° | 0.50 × 0.43 × 0.36 mm |
V = 724.70 (19) Å3 | |
Data collection top
Oxford Diffraction Xcalibur CCD diffractometer | 1451 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.015 |
Graphite monochromator | θmax = 27.5°, θmin = 4.9° |
ω scans | h = −9→9 |
4408 measured reflections | k = −15→14 |
1634 independent reflections | l = −10→10 |
Refinement top
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.034 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.088 | All H-atom parameters refined |
S = 1.12 | w = 1/[σ2(Fo2) + (0.0432P)2 + 0.3604P] where P = (Fo2 + 2Fc2)/3 |
1634 reflections | (Δ/σ)max = 0.001 |
157 parameters | Δρmax = 0.28 e Å−3 |
0 restraints | Δρmin = −0.23 e Å−3 |
Crystal data top
C3H3N3O6·2H2O | V = 724.70 (19) Å3 |
Mr = 213.12 | Z = 4 |
Monoclinic, P21/a | Mo Kα radiation |
a = 7.5109 (12) Å | µ = 0.20 mm−1 |
b = 11.9244 (17) Å | T = 113 K |
c = 8.1794 (12) Å | 0.50 × 0.43 × 0.36 mm |
β = 98.405 (13)° | |
Data collection top
Oxford Diffraction Xcalibur CCD diffractometer | 1451 reflections with I > 2σ(I) |
4408 measured reflections | Rint = 0.015 |
1634 independent reflections | |
Refinement top
R[F2 > 2σ(F2)] = 0.034 | 0 restraints |
wR(F2) = 0.088 | All H-atom parameters refined |
S = 1.12 | Δρmax = 0.28 e Å−3 |
1634 reflections | Δρmin = −0.23 e Å−3 |
157 parameters | |
Special details top
Experimental. The IR spectra were recorded on an FT–IR Perkin Elmer Paragon 500 spectrometer from samples dispersed in KBr pellets. |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top | x | y | z | Uiso*/Ueq | |
C1 | 0.36122 (16) | 0.40859 (10) | 0.89150 (15) | 0.0139 (3) | |
C2 | 0.28211 (16) | 0.48736 (11) | 0.61008 (15) | 0.0146 (3) | |
C3 | 0.46792 (16) | 0.31608 (10) | 0.65255 (14) | 0.0135 (3) | |
N1 | 0.28310 (14) | 0.48697 (9) | 0.77898 (12) | 0.0147 (2) | |
N2 | 0.37338 (14) | 0.39749 (9) | 0.55594 (12) | 0.0144 (2) | |
N3 | 0.45038 (14) | 0.32555 (9) | 0.81811 (12) | 0.0150 (2) | |
O1 | 0.35424 (12) | 0.41340 (8) | 1.03799 (11) | 0.0168 (2) | |
H1O | 0.106 (3) | 0.5854 (19) | 0.808 (3) | 0.043 (6)* | |
O2 | 0.20627 (13) | 0.55864 (8) | 0.52094 (11) | 0.0196 (2) | |
H2O | 0.289 (3) | 0.3624 (19) | 0.343 (3) | 0.043 (6)* | |
O3 | 0.55397 (12) | 0.24296 (8) | 0.59886 (11) | 0.0179 (2) | |
H3O | 0.482 (3) | 0.1863 (18) | 0.892 (3) | 0.035 (5)* | |
O1N | 0.22109 (13) | 0.58290 (8) | 0.84687 (11) | 0.0192 (2) | |
O2N | 0.38927 (13) | 0.39594 (8) | 0.38972 (10) | 0.0162 (2) | |
O3N | 0.53911 (13) | 0.24573 (8) | 0.92203 (11) | 0.0173 (2) | |
O1W | 0.11192 (14) | 0.55977 (9) | 0.18084 (12) | 0.0209 (2) | |
H11W | 0.190 (3) | 0.5272 (19) | 0.130 (3) | 0.044 (6)* | |
H12W | 0.152 (3) | 0.5594 (18) | 0.279 (3) | 0.038 (5)* | |
O2W | 0.40866 (13) | 0.79979 (9) | 0.73166 (12) | 0.0194 (2) | |
H21W | 0.437 (3) | 0.7617 (19) | 0.657 (3) | 0.039 (5)* | |
H22W | 0.405 (3) | 0.756 (2) | 0.805 (3) | 0.044 (6)* | |
Atomic displacement parameters (Å2) top | U11 | U22 | U33 | U12 | U13 | U23 |
C1 | 0.0128 (5) | 0.0141 (6) | 0.0146 (5) | −0.0028 (4) | 0.0019 (4) | −0.0015 (4) |
C2 | 0.0130 (5) | 0.0170 (6) | 0.0139 (6) | −0.0026 (5) | 0.0023 (4) | −0.0001 (4) |
C3 | 0.0135 (5) | 0.0139 (6) | 0.0131 (6) | −0.0040 (4) | 0.0026 (4) | −0.0018 (4) |
N1 | 0.0159 (5) | 0.0156 (5) | 0.0130 (5) | 0.0024 (4) | 0.0028 (4) | −0.0026 (4) |
N2 | 0.0170 (5) | 0.0170 (5) | 0.0096 (5) | −0.0002 (4) | 0.0031 (4) | −0.0006 (4) |
N3 | 0.0182 (5) | 0.0147 (5) | 0.0117 (5) | 0.0022 (4) | 0.0012 (4) | 0.0011 (4) |
O1 | 0.0191 (5) | 0.0202 (5) | 0.0115 (4) | −0.0005 (3) | 0.0031 (3) | −0.0009 (3) |
O2 | 0.0214 (5) | 0.0215 (5) | 0.0154 (4) | 0.0047 (4) | 0.0015 (3) | 0.0022 (4) |
O3 | 0.0217 (5) | 0.0175 (5) | 0.0150 (4) | 0.0021 (4) | 0.0045 (3) | −0.0012 (3) |
O1N | 0.0195 (5) | 0.0201 (5) | 0.0182 (4) | 0.0061 (4) | 0.0031 (3) | −0.0038 (4) |
O2N | 0.0191 (5) | 0.0219 (5) | 0.0077 (4) | −0.0026 (4) | 0.0029 (3) | −0.0012 (3) |
O3N | 0.0219 (5) | 0.0153 (5) | 0.0136 (4) | 0.0026 (4) | −0.0020 (3) | 0.0020 (3) |
O1W | 0.0247 (5) | 0.0241 (5) | 0.0138 (5) | 0.0064 (4) | 0.0029 (4) | −0.0006 (4) |
O2W | 0.0260 (5) | 0.0187 (5) | 0.0135 (5) | 0.0046 (4) | 0.0030 (4) | −0.0005 (4) |
Geometric parameters (Å, º) top
C1—O1 | 1.2084 (15) | N2—O2N | 1.3822 (13) |
C1—N1 | 1.3808 (16) | N3—O3N | 1.3809 (13) |
C1—N3 | 1.3814 (16) | O1N—H1O | 0.88 (2) |
C2—O2 | 1.2071 (16) | O2N—H2O | 0.89 (2) |
C2—N2 | 1.3802 (16) | O3N—H3O | 0.84 (2) |
C2—N1 | 1.3804 (16) | O1W—H11W | 0.86 (3) |
C3—O3 | 1.2063 (15) | O1W—H12W | 0.82 (2) |
C3—N2 | 1.3809 (16) | O2W—H21W | 0.82 (2) |
C3—N3 | 1.3843 (16) | O2W—H22W | 0.80 (2) |
N1—O1N | 1.3825 (14) | | |
| | | |
C1—N1—O1N | 115.33 (10) | N3—O3N—H3O | 102.8 (14) |
C1—N3—C3 | 127.27 (11) | O1—C1—N1 | 123.54 (11) |
C2—N1—C1 | 127.48 (11) | O1—C1—N3 | 124.02 (11) |
C2—N1—O1N | 116.54 (10) | O2—C2—N1 | 122.65 (12) |
C2—N2—C3 | 126.91 (10) | O2—C2—N2 | 124.47 (11) |
C2—N2—O2N | 116.42 (10) | O3—C3—N2 | 123.93 (11) |
C3—N2—O2N | 116.22 (10) | O3—C3—N3 | 123.25 (11) |
N1—C1—N3 | 112.43 (10) | O3N—N3—C1 | 116.61 (10) |
N1—O1N—H1O | 104.9 (15) | O3N—N3—C3 | 116.04 (10) |
N2—C2—N1 | 112.87 (10) | H11W—O1W—H12W | 107 (2) |
N2—C3—N3 | 112.80 (10) | H21W—O2W—H22W | 104 (2) |
N2—O2N—H2O | 104.0 (14) | | |
Hydrogen-bond geometry (Å, º) top
D—H···A | D—H | H···A | D···A | D—H···A |
O1N—H1O···O1Wi | 0.88 (2) | 2.39 (2) | 3.0060 (15) | 127 (2) |
O1N—H1O···O2Wii | 0.88 (2) | 2.05 (2) | 2.7758 (15) | 140 (2) |
O2N—H2O···O2Wiii | 0.89 (2) | 1.69 (2) | 2.5803 (14) | 175 (2) |
O3N—H3O···O1Wiii | 0.85 (2) | 1.73 (2) | 2.5754 (15) | 173 (2) |
O1W—H11W···O1iv | 0.86 (2) | 2.05 (2) | 2.8889 (15) | 165 (2) |
O1W—H11W···O1Niv | 0.86 (2) | 2.45 (2) | 2.9775 (14) | 120 (2) |
O1W—H12W···O2 | 0.82 (2) | 1.96 (2) | 2.7685 (14) | 170 (2) |
O2W—H21W···O2Nv | 0.81 (2) | 2.35 (2) | 3.0294 (15) | 141 (2) |
O2W—H21W···O3v | 0.81 (2) | 2.11 (2) | 2.8052 (14) | 144 (2) |
O2W—H22W···O1N | 0.80 (2) | 2.54 (2) | 3.1543 (15) | 136 (2) |
O2W—H22W···O3Nvi | 0.80 (2) | 2.21 (2) | 2.8544 (14) | 138 (2) |
Symmetry codes: (i) −x, −y+1, −z+1; (ii) x−1/2, −y+3/2, z; (iii) −x+1/2, y−1/2, −z+1; (iv) x, y, z−1; (v) −x+1, −y+1, −z+1; (vi) −x+1, −y+1, −z+2. |
(II) 1,3,5-benzyloxy-1,3,5-triazinane-2,4,6-trione
top
Crystal data top
C24H21N3O6 | V = 1073.8 (5) Å3 |
Mr = 447.44 | Z = 2 |
Triclinic, P1 | F(000) = 468 |
Hall symbol: -P 1 | Dx = 1.384 Mg m−3 |
a = 7.765 (2) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 12.139 (3) Å | µ = 0.10 mm−1 |
c = 12.783 (3) Å | T = 113 K |
α = 66.36 (2)° | Prism, colourless |
β = 76.78 (2)° | 0.82 × 0.68 × 0.44 mm |
γ = 82.79 (2)° | |
Data collection top
Oxford Diffraction Xcalibur CCD diffractometer | 3183 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.022 |
Graphite monochromator | θmax = 27.0°, θmin = 4.6° |
ω scans | h = −9→9 |
8404 measured reflections | k = −15→15 |
4600 independent reflections | l = −16→16 |
Refinement top
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.055 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.167 | All H-atom parameters refined |
S = 1.05 | w = 1/[σ2(Fo2) + (0.1119P)2] where P = (Fo2 + 2Fc2)/3 |
4600 reflections | (Δ/σ)max < 0.001 |
382 parameters | Δρmax = 0.53 e Å−3 |
0 restraints | Δρmin = −0.35 e Å−3 |
Crystal data top
C24H21N3O6 | γ = 82.79 (2)° |
Mr = 447.44 | V = 1073.8 (5) Å3 |
Triclinic, P1 | Z = 2 |
a = 7.765 (2) Å | Mo Kα radiation |
b = 12.139 (3) Å | µ = 0.10 mm−1 |
c = 12.783 (3) Å | T = 113 K |
α = 66.36 (2)° | 0.82 × 0.68 × 0.44 mm |
β = 76.78 (2)° | |
Data collection top
Oxford Diffraction Xcalibur CCD diffractometer | 3183 reflections with I > 2σ(I) |
8404 measured reflections | Rint = 0.022 |
4600 independent reflections | |
Refinement top
R[F2 > 2σ(F2)] = 0.055 | 0 restraints |
wR(F2) = 0.167 | All H-atom parameters refined |
S = 1.05 | Δρmax = 0.53 e Å−3 |
4600 reflections | Δρmin = −0.35 e Å−3 |
382 parameters | |
Special details top
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top | x | y | z | Uiso*/Ueq | |
C1 | 0.8588 (2) | 0.82131 (14) | 0.06410 (14) | 0.0220 (4) | |
C2 | 0.7641 (2) | 1.03328 (15) | −0.04282 (14) | 0.0230 (4) | |
C3 | 0.6172 (2) | 0.92207 (15) | 0.16315 (15) | 0.0249 (4) | |
C11 | 0.9340 (2) | 0.89208 (18) | −0.20064 (16) | 0.0302 (4) | |
H11A | 0.924 (3) | 0.802 (2) | −0.1598 (17) | 0.033 (5)* | |
H11B | 0.817 (3) | 0.9311 (18) | −0.2107 (17) | 0.033 (5)* | |
C12 | 1.0661 (2) | 0.92506 (16) | −0.31238 (15) | 0.0260 (4) | |
C13 | 1.1794 (2) | 0.84032 (19) | −0.34206 (18) | 0.0337 (4) | |
H13 | 1.169 (3) | 0.758 (2) | −0.2854 (18) | 0.032 (5)* | |
C14 | 1.2971 (3) | 0.8745 (2) | −0.44955 (19) | 0.0401 (5) | |
H14 | 1.374 (3) | 0.8143 (19) | −0.4721 (19) | 0.041 (6)* | |
C15 | 1.3014 (2) | 0.9929 (2) | −0.52610 (18) | 0.0369 (5) | |
H15 | 1.385 (3) | 1.017 (2) | −0.605 (2) | 0.049 (6)* | |
C16 | 1.1900 (3) | 1.07803 (19) | −0.49648 (17) | 0.0358 (5) | |
H16 | 1.196 (3) | 1.1678 (19) | −0.5558 (18) | 0.034 (5)* | |
C17 | 1.0731 (2) | 1.04489 (17) | −0.39132 (16) | 0.0297 (4) | |
H17 | 0.992 (3) | 1.101 (2) | −0.3667 (19) | 0.041 (6)* | |
C21 | 0.6012 (2) | 1.20535 (17) | 0.08107 (19) | 0.0305 (4) | |
H21A | 0.695 (3) | 1.2410 (18) | 0.0214 (18) | 0.031 (5)* | |
H21B | 0.639 (3) | 1.1573 (19) | 0.1587 (19) | 0.039 (5)* | |
C22 | 0.4584 (2) | 1.29766 (15) | 0.08718 (15) | 0.0248 (4) | |
C23 | 0.3920 (2) | 1.37283 (17) | −0.01112 (17) | 0.0317 (4) | |
H23 | 0.445 (3) | 1.3603 (18) | −0.0805 (18) | 0.030 (5)* | |
C24 | 0.2580 (3) | 1.45742 (17) | −0.0032 (2) | 0.0398 (5) | |
H24 | 0.218 (3) | 1.508 (2) | −0.075 (2) | 0.063 (7)* | |
C25 | 0.1894 (3) | 1.46835 (18) | 0.1022 (2) | 0.0410 (5) | |
H25 | 0.098 (3) | 1.534 (2) | 0.1043 (18) | 0.041 (6)* | |
C26 | 0.2553 (3) | 1.39466 (19) | 0.1995 (2) | 0.0391 (5) | |
H26 | 0.203 (3) | 1.404 (2) | 0.276 (2) | 0.057 (7)* | |
C27 | 0.3877 (2) | 1.30899 (17) | 0.19298 (17) | 0.0301 (4) | |
H27 | 0.427 (3) | 1.2532 (19) | 0.2657 (19) | 0.038 (5)* | |
C31 | 0.8050 (3) | 0.70820 (17) | 0.33618 (17) | 0.0322 (4) | |
H31A | 0.755 (3) | 0.7739 (19) | 0.3628 (18) | 0.033 (5)* | |
H31B | 0.932 (3) | 0.7212 (18) | 0.2911 (18) | 0.036 (5)* | |
C32 | 0.7795 (2) | 0.58482 (15) | 0.42814 (15) | 0.0267 (4) | |
C33 | 0.6716 (2) | 0.56619 (18) | 0.53571 (16) | 0.0321 (4) | |
H33 | 0.607 (3) | 0.632 (2) | 0.5504 (19) | 0.043 (6)* | |
C34 | 0.6493 (3) | 0.4502 (2) | 0.61965 (18) | 0.0412 (5) | |
H34 | 0.579 (3) | 0.442 (2) | 0.691 (2) | 0.047 (6)* | |
C35 | 0.7336 (3) | 0.35286 (19) | 0.59678 (19) | 0.0406 (5) | |
H35 | 0.724 (3) | 0.272 (2) | 0.652 (2) | 0.053 (7)* | |
C36 | 0.8403 (3) | 0.37212 (19) | 0.4892 (2) | 0.0403 (5) | |
H36 | 0.904 (3) | 0.303 (2) | 0.4707 (19) | 0.044 (6)* | |
C37 | 0.8642 (2) | 0.48661 (17) | 0.40526 (17) | 0.0327 (4) | |
H37 | 0.946 (3) | 0.5002 (18) | 0.3276 (19) | 0.035 (5)* | |
N1 | 0.87062 (18) | 0.93029 (13) | −0.03050 (12) | 0.0239 (3) | |
N2 | 0.64202 (18) | 1.02157 (12) | 0.05813 (12) | 0.0236 (3) | |
N3 | 0.72844 (18) | 0.82497 (12) | 0.15710 (12) | 0.0243 (3) | |
O1 | 0.95215 (15) | 0.73418 (11) | 0.06547 (11) | 0.0295 (3) | |
O2 | 0.77767 (17) | 1.12336 (11) | −0.13051 (11) | 0.0317 (3) | |
O3 | 0.51260 (16) | 0.92042 (12) | 0.24918 (11) | 0.0329 (3) | |
O1N | 1.00136 (14) | 0.93721 (11) | −0.12697 (10) | 0.0255 (3) | |
O2N | 0.52359 (15) | 1.11809 (10) | 0.05381 (11) | 0.0270 (3) | |
O3N | 0.69860 (15) | 0.71741 (10) | 0.25166 (10) | 0.0274 (3) | |
Atomic displacement parameters (Å2) top | U11 | U22 | U33 | U12 | U13 | U23 |
C1 | 0.0202 (8) | 0.0242 (8) | 0.0244 (8) | −0.0028 (6) | −0.0050 (6) | −0.0113 (7) |
C2 | 0.0212 (8) | 0.0253 (9) | 0.0254 (9) | −0.0006 (6) | −0.0059 (7) | −0.0121 (7) |
C3 | 0.0225 (8) | 0.0268 (9) | 0.0277 (9) | −0.0036 (7) | −0.0037 (7) | −0.0126 (7) |
C11 | 0.0281 (9) | 0.0392 (11) | 0.0291 (10) | −0.0076 (8) | −0.0031 (7) | −0.0185 (8) |
C12 | 0.0220 (8) | 0.0338 (9) | 0.0261 (9) | −0.0024 (7) | −0.0041 (7) | −0.0155 (7) |
C13 | 0.0322 (10) | 0.0356 (11) | 0.0400 (11) | 0.0037 (8) | −0.0119 (8) | −0.0203 (9) |
C14 | 0.0259 (9) | 0.0593 (14) | 0.0491 (12) | 0.0051 (9) | −0.0066 (9) | −0.0375 (12) |
C15 | 0.0261 (9) | 0.0577 (13) | 0.0339 (11) | −0.0104 (9) | 0.0006 (8) | −0.0258 (10) |
C16 | 0.0373 (10) | 0.0434 (12) | 0.0289 (10) | −0.0132 (9) | −0.0034 (8) | −0.0144 (9) |
C17 | 0.0287 (9) | 0.0357 (10) | 0.0298 (10) | −0.0018 (8) | −0.0048 (7) | −0.0180 (8) |
C21 | 0.0229 (9) | 0.0320 (10) | 0.0450 (11) | −0.0004 (7) | −0.0061 (8) | −0.0241 (9) |
C22 | 0.0197 (8) | 0.0229 (8) | 0.0327 (9) | −0.0035 (6) | −0.0020 (7) | −0.0125 (7) |
C23 | 0.0298 (9) | 0.0316 (10) | 0.0346 (10) | −0.0051 (7) | −0.0062 (8) | −0.0127 (8) |
C24 | 0.0373 (11) | 0.0266 (10) | 0.0513 (13) | −0.0031 (8) | −0.0185 (10) | −0.0050 (9) |
C25 | 0.0297 (10) | 0.0304 (10) | 0.0695 (15) | 0.0045 (8) | −0.0101 (10) | −0.0276 (10) |
C26 | 0.0300 (10) | 0.0473 (12) | 0.0499 (12) | 0.0000 (8) | −0.0016 (9) | −0.0326 (10) |
C27 | 0.0277 (9) | 0.0325 (10) | 0.0311 (10) | −0.0031 (7) | −0.0024 (7) | −0.0145 (8) |
C31 | 0.0383 (11) | 0.0289 (10) | 0.0306 (10) | −0.0066 (8) | −0.0121 (8) | −0.0082 (8) |
C32 | 0.0268 (9) | 0.0282 (9) | 0.0243 (9) | −0.0035 (7) | −0.0081 (7) | −0.0070 (7) |
C33 | 0.0291 (9) | 0.0387 (11) | 0.0299 (10) | −0.0006 (8) | −0.0058 (8) | −0.0148 (8) |
C34 | 0.0346 (10) | 0.0619 (14) | 0.0240 (10) | −0.0179 (10) | −0.0018 (8) | −0.0108 (10) |
C35 | 0.0396 (11) | 0.0328 (11) | 0.0423 (12) | −0.0109 (9) | −0.0181 (9) | 0.0008 (9) |
C36 | 0.0362 (11) | 0.0331 (11) | 0.0531 (13) | 0.0022 (8) | −0.0158 (10) | −0.0154 (10) |
C37 | 0.0289 (9) | 0.0331 (10) | 0.0345 (10) | −0.0014 (7) | −0.0033 (8) | −0.0131 (8) |
N1 | 0.0213 (7) | 0.0273 (8) | 0.0226 (7) | −0.0011 (5) | 0.0002 (6) | −0.0114 (6) |
N2 | 0.0222 (7) | 0.0212 (7) | 0.0275 (7) | 0.0030 (5) | −0.0050 (6) | −0.0106 (6) |
N3 | 0.0242 (7) | 0.0228 (7) | 0.0230 (7) | −0.0004 (5) | −0.0029 (6) | −0.0067 (6) |
O1 | 0.0283 (6) | 0.0273 (7) | 0.0347 (7) | 0.0032 (5) | −0.0072 (5) | −0.0145 (5) |
O2 | 0.0381 (7) | 0.0281 (7) | 0.0267 (7) | −0.0014 (5) | −0.0060 (5) | −0.0082 (6) |
O3 | 0.0301 (7) | 0.0374 (7) | 0.0303 (7) | −0.0024 (5) | 0.0021 (5) | −0.0160 (6) |
O1N | 0.0213 (6) | 0.0336 (7) | 0.0238 (6) | −0.0036 (5) | 0.0007 (5) | −0.0154 (5) |
O2N | 0.0220 (6) | 0.0243 (6) | 0.0400 (7) | 0.0049 (5) | −0.0085 (5) | −0.0182 (5) |
O3N | 0.0315 (7) | 0.0249 (6) | 0.0221 (6) | −0.0069 (5) | −0.0060 (5) | −0.0030 (5) |
Geometric parameters (Å, º) top
C1—O1 | 1.201 (2) | C22—C27 | 1.393 (3) |
C1—N1 | 1.385 (2) | C23—C24 | 1.384 (3) |
C1—N3 | 1.386 (2) | C23—H23 | 0.95 (2) |
C2—O2 | 1.206 (2) | C24—C25 | 1.383 (3) |
C2—N2 | 1.383 (2) | C24—H24 | 0.98 (3) |
C2—N1 | 1.383 (2) | C25—C26 | 1.376 (3) |
C3—O3 | 1.203 (2) | C25—H25 | 1.00 (2) |
C3—N3 | 1.389 (2) | C26—C27 | 1.381 (3) |
C3—N2 | 1.392 (2) | C26—H26 | 1.01 (3) |
C11—O1N | 1.474 (2) | C27—H27 | 0.99 (2) |
C11—C12 | 1.493 (3) | C31—O3N | 1.466 (2) |
C11—H11A | 1.01 (2) | C31—C32 | 1.490 (3) |
C11—H11B | 0.98 (2) | C31—H31A | 0.99 (2) |
C12—C13 | 1.382 (3) | C31—H31B | 1.02 (2) |
C12—C17 | 1.398 (3) | C32—C33 | 1.384 (3) |
C13—C14 | 1.400 (3) | C32—C37 | 1.391 (3) |
C13—H13 | 0.97 (2) | C33—C34 | 1.388 (3) |
C14—C15 | 1.376 (3) | C33—H33 | 0.95 (2) |
C14—H14 | 0.98 (2) | C34—C35 | 1.381 (3) |
C15—C16 | 1.378 (3) | C34—H34 | 0.92 (2) |
C15—H15 | 1.02 (2) | C35—C36 | 1.380 (3) |
C16—C17 | 1.376 (3) | C35—H35 | 0.95 (3) |
C16—H16 | 1.05 (2) | C36—C37 | 1.376 (3) |
C17—H17 | 0.97 (2) | C36—H36 | 1.00 (2) |
C21—O2N | 1.469 (2) | C37—H37 | 1.01 (2) |
C21—C22 | 1.486 (2) | O1N—N1 | 1.3872 (17) |
C21—H21A | 0.93 (2) | O2N—N2 | 1.3865 (17) |
C21—H21B | 1.02 (2) | O3N—N3 | 1.3789 (18) |
C22—C23 | 1.391 (3) | | |
| | | |
O1—C1—N1 | 123.72 (15) | C23—C24—H24 | 116.3 (16) |
O1—C1—N3 | 124.07 (15) | C26—C25—C24 | 119.65 (18) |
N1—C1—N3 | 112.21 (14) | C26—C25—H25 | 121.5 (12) |
O2—C2—N2 | 123.88 (15) | C24—C25—H25 | 118.7 (12) |
O2—C2—N1 | 124.14 (15) | C25—C26—C27 | 120.48 (19) |
N2—C2—N1 | 111.96 (14) | C25—C26—H26 | 118.4 (14) |
O3—C3—N3 | 123.94 (16) | C27—C26—H26 | 121.1 (14) |
O3—C3—N2 | 124.12 (15) | C26—C27—C22 | 120.31 (18) |
N3—C3—N2 | 111.94 (14) | C26—C27—H27 | 118.8 (12) |
O1N—C11—C12 | 105.94 (14) | C22—C27—H27 | 120.8 (12) |
O1N—C11—H11A | 108.6 (12) | O3N—C31—C32 | 105.74 (14) |
C12—C11—H11A | 111.5 (12) | O3N—C31—H31A | 103.9 (12) |
O1N—C11—H11B | 107.2 (12) | C32—C31—H31A | 114.5 (12) |
C12—C11—H11B | 112.9 (12) | O3N—C31—H31B | 105.7 (11) |
H11A—C11—H11B | 110.5 (16) | C32—C31—H31B | 112.8 (12) |
C13—C12—C17 | 118.61 (17) | H31A—C31—H31B | 113.1 (17) |
C13—C12—C11 | 122.12 (17) | C33—C32—C37 | 119.40 (17) |
C17—C12—C11 | 119.25 (16) | C33—C32—C31 | 121.07 (16) |
C12—C13—C14 | 120.23 (19) | C37—C32—C31 | 119.52 (17) |
C12—C13—H13 | 116.1 (12) | C32—C33—C34 | 119.93 (19) |
C14—C13—H13 | 123.6 (12) | C32—C33—H33 | 120.1 (14) |
C15—C14—C13 | 120.20 (18) | C34—C33—H33 | 119.9 (14) |
C15—C14—H14 | 119.3 (13) | C35—C34—C33 | 120.6 (2) |
C13—C14—H14 | 120.5 (13) | C35—C34—H34 | 122.2 (15) |
C14—C15—C16 | 119.82 (19) | C33—C34—H34 | 117.2 (15) |
C14—C15—H15 | 119.7 (13) | C36—C35—C34 | 119.16 (19) |
C16—C15—H15 | 120.4 (13) | C36—C35—H35 | 117.8 (15) |
C17—C16—C15 | 120.29 (19) | C34—C35—H35 | 123.0 (15) |
C17—C16—H16 | 121.1 (11) | C37—C36—C35 | 120.9 (2) |
C15—C16—H16 | 118.6 (11) | C37—C36—H36 | 118.4 (13) |
C16—C17—C12 | 120.84 (17) | C35—C36—H36 | 120.7 (13) |
C16—C17—H17 | 123.3 (13) | C36—C37—C32 | 120.04 (19) |
C12—C17—H17 | 115.8 (13) | C36—C37—H37 | 120.4 (12) |
O2N—C21—C22 | 105.83 (13) | C32—C37—H37 | 119.5 (12) |
O2N—C21—H21A | 109.2 (12) | N1—O1N—C11 | 109.33 (12) |
C22—C21—H21A | 109.5 (12) | N2—O2N—C21 | 109.90 (12) |
O2N—C21—H21B | 105.6 (12) | N3—O3N—C31 | 109.64 (12) |
C22—C21—H21B | 113.2 (12) | C2—N1—C1 | 128.05 (14) |
H21A—C21—H21B | 113.1 (17) | C2—N1—O1N | 115.19 (13) |
C23—C22—C27 | 118.98 (16) | C1—N1—O1N | 116.72 (13) |
C23—C22—C21 | 121.14 (17) | C2—N2—O2N | 116.70 (13) |
C27—C22—C21 | 119.87 (17) | C2—N2—C3 | 127.98 (14) |
C24—C23—C22 | 120.14 (19) | O2N—N2—C3 | 115.24 (13) |
C24—C23—H23 | 124.8 (12) | O3N—N3—C1 | 115.89 (13) |
C22—C23—H23 | 115.1 (12) | O3N—N3—C3 | 116.35 (13) |
C25—C24—C23 | 120.43 (19) | C1—N3—C3 | 127.62 (14) |
C25—C24—H24 | 123.3 (16) | | |
Hydrogen-bond geometry (Å, º) top
D—H···A | D—H | H···A | D···A | D—H···A |
C15—H15···O3i | 1.02 (2) | 2.54 (2) | 3.350 (3) | 136 (2) |
C25—H25···O1ii | 1.00 (3) | 2.46 (3) | 3.423 (3) | 161 (2) |
Symmetry codes: (i) x+1, y, z−1; (ii) x−1, y+1, z. |
Experimental details
| (I) | (II) |
Crystal data |
Chemical formula | C3H3N3O6·2H2O | C24H21N3O6 |
Mr | 213.12 | 447.44 |
Crystal system, space group | Monoclinic, P21/a | Triclinic, P1 |
Temperature (K) | 113 | 113 |
a, b, c (Å) | 7.5109 (12), 11.9244 (17), 8.1794 (12) | 7.765 (2), 12.139 (3), 12.783 (3) |
α, β, γ (°) | 90, 98.405 (13), 90 | 66.36 (2), 76.78 (2), 82.79 (2) |
V (Å3) | 724.70 (19) | 1073.8 (5) |
Z | 4 | 2 |
Radiation type | Mo Kα | Mo Kα |
µ (mm−1) | 0.20 | 0.10 |
Crystal size (mm) | 0.50 × 0.43 × 0.36 | 0.82 × 0.68 × 0.44 |
|
Data collection |
Diffractometer | Oxford Diffraction Xcalibur CCD diffractometer | Oxford Diffraction Xcalibur CCD diffractometer |
Absorption correction | – | – |
No. of measured, independent and observed [I > 2σ(I)] reflections | 4408, 1634, 1451 | 8404, 4600, 3183 |
Rint | 0.015 | 0.022 |
(sin θ/λ)max (Å−1) | 0.650 | 0.639 |
|
Refinement |
R[F2 > 2σ(F2)], wR(F2), S | 0.034, 0.088, 1.12 | 0.055, 0.167, 1.05 |
No. of reflections | 1634 | 4600 |
No. of parameters | 157 | 382 |
H-atom treatment | All H-atom parameters refined | All H-atom parameters refined |
Δρmax, Δρmin (e Å−3) | 0.28, −0.23 | 0.53, −0.35 |
Selected geometric parameters (Å, º) for (I) topC1—O1 | 1.2084 (15) | C2—N1 | 1.3804 (16) |
C1—N1 | 1.3808 (16) | C3—O3 | 1.2063 (15) |
C1—N3 | 1.3814 (16) | C3—N2 | 1.3809 (16) |
C2—O2 | 1.2071 (16) | C3—N3 | 1.3843 (16) |
C2—N2 | 1.3802 (16) | | |
| | | |
C1—N3—C3 | 127.27 (11) | N1—C1—N3 | 112.43 (10) |
C2—N1—C1 | 127.48 (11) | N2—C2—N1 | 112.87 (10) |
C2—N2—C3 | 126.91 (10) | N2—C3—N3 | 112.80 (10) |
Hydrogen-bond geometry (Å, º) for (I) top
D—H···A | D—H | H···A | D···A | D—H···A |
O1N—H1O···O1Wi | 0.88 (2) | 2.39 (2) | 3.0060 (15) | 127 (2) |
O1N—H1O···O2Wii | 0.88 (2) | 2.05 (2) | 2.7758 (15) | 140 (2) |
O2N—H2O···O2Wiii | 0.89 (2) | 1.69 (2) | 2.5803 (14) | 175 (2) |
O3N—H3O···O1Wiii | 0.85 (2) | 1.73 (2) | 2.5754 (15) | 173 (2) |
O1W—H11W···O1iv | 0.86 (2) | 2.05 (2) | 2.8889 (15) | 165 (2) |
O1W—H11W···O1Niv | 0.86 (2) | 2.45 (2) | 2.9775 (14) | 120 (2) |
O1W—H12W···O2 | 0.82 (2) | 1.96 (2) | 2.7685 (14) | 170 (2) |
O2W—H21W···O2Nv | 0.81 (2) | 2.35 (2) | 3.0294 (15) | 141 (2) |
O2W—H21W···O3v | 0.81 (2) | 2.11 (2) | 2.8052 (14) | 144 (2) |
O2W—H22W···O1N | 0.80 (2) | 2.54 (2) | 3.1543 (15) | 136 (2) |
O2W—H22W···O3Nvi | 0.80 (2) | 2.21 (2) | 2.8544 (14) | 138 (2) |
Symmetry codes: (i) −x, −y+1, −z+1; (ii) x−1/2, −y+3/2, z; (iii) −x+1/2, y−1/2, −z+1; (iv) x, y, z−1; (v) −x+1, −y+1, −z+1; (vi) −x+1, −y+1, −z+2. |
Selected geometric parameters (Å, º) for (II) topC1—O1 | 1.201 (2) | C2—N1 | 1.383 (2) |
C1—N1 | 1.385 (2) | C3—O3 | 1.203 (2) |
C1—N3 | 1.386 (2) | C3—N3 | 1.389 (2) |
C2—O2 | 1.206 (2) | C3—N2 | 1.392 (2) |
C2—N2 | 1.383 (2) | | |
| | | |
N1—C1—N3 | 112.21 (14) | C2—N1—C1 | 128.05 (14) |
N2—C2—N1 | 111.96 (14) | C2—N2—C3 | 127.98 (14) |
N3—C3—N2 | 111.94 (14) | C1—N3—C3 | 127.62 (14) |
Hydrogen-bond geometry (Å, º) for (II) top
D—H···A | D—H | H···A | D···A | D—H···A |
C15—H15···O3i | 1.02 (2) | 2.54 (2) | 3.350 (3) | 136 (2) |
C25—H25···O1ii | 1.00 (3) | 2.46 (3) | 3.423 (3) | 161 (2) |
Symmetry codes: (i) x+1, y, z−1; (ii) x−1, y+1, z. |
Subscribe to Acta Crystallographica Section C: Structural Chemistry
The full text of this article is available to subscribers to the journal.
If you have already registered and are using a computer listed in your registration details, please email
support@iucr.org for assistance.
The compound 1,3,5-trihydroxy-1,3,5-triazinane-2,4,6-trione has recently been applied as an aerobic oxidation catalyst (Hirai et al., 2003, 2004). Jadrijević-Mladar Takač et al. (2006 or 2004???) reported for it and its derivatives (acetyl and pivaloyl esters) physico-chemical analyses and properties such as pKa, FT–IR, NMR, MS and TGA, and indicated some metal binding properties. Caira et al. (2006) investigated the ability of this compound to act as a host for a series of solvents. Among other triazinones and numerous cyclic amines, it has already been involved in the investigation of sulfur dioxide removal from fluids containing SO2 (Christiansen et al. 1992). On the other hand, using pharmacophore query developed through a molecular modeling study of a class of known HIV-1 integrase inhibitors, the O-substituted derivative 1,3,5-trihydroxmethyl-1,3,5-triazinane-2,4,6-trione, has been observed as one of the four most potent candidates (IC50 < 30 µmol dm−3), with the triazinone molecule being a promising lead compound for the development of new anti-AIDS drugs.
Although the structure of 1,3,5-trihydroxy-1,3,5-triazinane-2,4,6-trione hosting three DMF molecules has already been published (Caira et al., 2006), no X-ray data for 1,3,5-trihydroxy-1,3,5-triazinane-2,4,6-trione dihydrate, (I), has been published so far. Therefore, as part of our work on the structure evaluation of hydroxamic acids (Matković-Čalogović et al., 2003; Đilović et al., 2006), in this paper we present the crystal structures of (I) and its precursor 1,3,5-benzyloxy-1,3,5-triazinane-2,4,6-trione, (II), as examples of unsubstituted and substituted cyclic trihydroxamic acids.
The molecular geometries and atom labelling schemes for (I) and (II) are shown in Figs. 1 and 2. There is no significant difference in the bond distances and angles in (I) and (II) (Tables 1 and 3). The geometric parameters are comparable to the corresponding values reported in the literature (Larsen, 1976; Đilović et al., 2006). The six-membered heterocyclic rings are almost planar [the largest displacements of the C and N atoms from the mean plane of triazine rings are, respectively, 0.031 (1) and 0.023 (1) Å for (I), and 0.024 (1) and 0.029 (1) Å for (II)] but show considerable deviation from the ideal hexagonal form. The internal C—N—C angles are considerably greater than 120° [the minimal and maximal values are 126.91 (10) and 128.05 (14)°], while the internal N—C—N angles are smaller than 120° [the minimum and maximum values are 111.94 (14) and 112.87 (10)°]. Thus, aromaticity is achieved only by the contribution of lone-pair electrons located at the N atoms.
The crystal packing of (I) is characterized by strong hydrogen-bonding interactions between the host and water molecules (Fig. 3 and Table 2). Voids in the crystal structure of the host molecule are occupied by water molecules which `transfer' the hydrogen-bond interactions throughout the crystal structure, interconnecting the molecules into an infinite three-dimensional framework.
Comparison of N,N',N''-tribenzyloxydicarbonimidic diamide (Đilović et al., 2006) with (II) reveals a difference in the crystal packing of two molecules containing the (CO)2NOCH2C6H5 substructure unit in non-cyclic and cyclic system, respectively. Because of the conformation, molecules of (II) are packed into `stepwise' chains with dominating weak hydrogen interactions (Fig. 4 and Table 4) and relatively close H···H contacts (2.283 Å). Chains parallel to the crystallographic plane (111) are connected through π–π (3.340 Å) and C—H···π interactions (2.891 Å). The presence of additional conformational freedom in the non-cyclic system results in sheets of centrosymmetric dimers, which are interconnected by strong hydrogen bonds. In addition to the above-mentioned interactions, C—H···π contacts between the terminal phenyl groups and weaker hydrogen interactions are also present in the crystal structure.