Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The crystal structures of the four E,Z,E isomers of 1-(4-alk­oxy­phen­yl)-6-(4-nitro­phen­yl)hexa-1,3,5-triene, namely (E,Z,E)-1-(4-methoxy­phen­yl)-6-(4-nitro­phen­yl)hexa-1,3,5-triene, C19H17NO3, (E,Z,E)-1-(4-ethoxy­phen­yl)-6-(4-nitro­phen­yl)hexa-1,3,5-triene, C20H19NO3, (E,Z,E)-1-(4-nitro­phen­yl)-6-(4-n-propoxyphen­yl)hexa-1,3,5-triene, C21H21NO3, and (E,Z,E)-1-(4-n-butoxy­phen­yl)-6-(4-nitro­phen­yl)hexa-1,3,5-triene, C22H23NO3, have been determined. Inter­molecular N...O dipole inter­actions between the nitro groups are observed for the meth­oxy derivative, while for the eth­oxy derivative, two adjacent mol­ecules are linked at both ends through N...O dipole–dipole inter­actions between the N atom of the nitro group and the O atom of the eth­oxy group to form a supra­molecular ring-like structure. In the crystal structures of the n-prop­oxy and n-but­oxy derivatives, the shortest inter­molecular distances are those between the two O atoms of the alk­oxy groups. Thus, the nearest two mol­ecules form an S-shaped supra­molecular dimer in these crystal structures.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270107005690/av3067sup1.cif
Contains datablocks I, II, III, IV, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270107005690/av3067Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270107005690/av3067IIsup3.hkl
Contains datablock II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270107005690/av3067IIIsup4.hkl
Contains datablock III

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270107005690/av3067IVsup5.hkl
Contains datablock IV

CCDC references: 641817; 641818; 641819; 641820

Comment top

π-Conjugated bent molecules are attracting increased attention at the current time (Yamaguchi et al., 2005; Ros et al., 2005). We have recently reported the crystal structure and photophysical properties of a series of (E,E,E)-1-(4-alkoxyphenyl)-6-(4-nitrophenyl)hexa-1,3,5-trienes, namely the methoxy, ethoxy, n-propoxy and n-butoxy compounds (Sonoda et al., 2006). In the course of our study, we obtained single crystals of their E,Z,E isomers [(I)–(IV)], whose crystal structures we describe here. To the best of our knowledge, the crystal structure of 1,6-diphenylhexa-1,3,5-triene (DPH) having the E,Z,E configuration at the triene double bonds has not been reported so far. Our data can be compared with those for dibenzo[18]annulene incorporating two (E,Z,E)-DPH units (Michels et al., 1994).

For compounds (I), (III) and (IV), only one independent molecule is present in the asymmetric unit, while for compound (II), two crystallographically independent molecules, A and B, are contained in the unit cell (Figs. 1–4). Selected geometric parameters for (I)–(IV) are given in Table 1.

Bond-length alternation is one of the most important structural parameters that correlate tightly with the electronic and optical properties of one-dimensional conjugated compounds, such as polyene and polyyne, since it strongly affects the band gaps of these molecules (Yang & Kertesz, 2006). In the present compounds, the averaged values of bond-length alternation (δr, the difference between C—C single- and CC double-bond lengths) in the hexatriene chain are 0.107 Å for (I), 0.103 and 0.091 Å for molecules A and B of (II), respectively, 0.101 Å for (III), and 0.104 Å for (IV). The value of δr for (E)-polyacetylene, the polyene with an infinite chain length, has been determined spectroscopically to be 0.08 Å (Yannoni & Clarke, 1983). The bond alternation is thus more distinctly observed in trienes (I)–(IV) than in polyacetylene, as expected. Interestingly, the single- and double-bond lengths and the resulting δr values of (I)–(IV) are not greatly different from those of their E,E,E counterparts. In the crystal of the E,E,E isomer of (I), for example, the single-bond lengths are 1.434 (5)–1.460 (5) Å, the double-bond lengths are 1.333 (5)–1.345 (5) Å, and the values of δr are 0.101 and 0.114 Å for the two crystallographically independent molecules (Sonoda et al., 2006).

The geometries of the isolated molecule of (I) were optimized by ab initio calculations. The GAUSSIAN03 program was used for ab initio calculations (Frisch et al., 2004). The lengths of single bonds in the MP2/6–31G* (Møller & Plesset, 1934) level geometries (C4—C7 = 1.460 Å, C8—C9 = C10—C11 = 1.441 Å and C12—C13 = 1.459 Å) agree well with the values determined from the crystal structure, although the calculated lengths of the double bonds (C7—C8 = C11—C12 = 1.358 Å and C9—C10 = 1.364 Å) are slightly longer than those found in the crystal. The value of δr = 0.090 Å obtained from the calculation is in reasonable agreement with that from the crystal structure determination. It should be noted that the calculation at the HF/6–31G* level yields a considerably large value of δr (0.133 Å). A similar trend has been reported for polyacetylene oligomers (Choi et al., 1997; Jacquemin et al., 2005).

The C—C—C internal bond angles in the hexatriene chain are all somewhat wider than 120° for all structures, which minimizes the steric hindrance between the C5—H and C8—H atoms, between the C8—H and C11—H atoms, and between the C11—H and C18—H atoms.

The torsion angle of the single bond between the aromatic ring and the triene chain is different for each molecule. The angles C5—C4—C7—C8 [-0.7 (2)°] in (I) and C25—C24—C27—C28 [20.9 (11)°] in (II) display the minimum and the maximum deviations from values of 0 or 180° in these molecules, respectively. The optimized geometry of an isolated molecule of (I) is such that the C5—C4—C7—C8 and C11—C12—C13—C18 torsion angles are -22.65 and -18.93°. Ab initio calculations of 4,4'-disubstituted DPHs show that the torsional potential is very shallow when the torsion angle is -30–30° (Tsuzuki, 2003). It is therefore very probable that the torsion angle will have a different value depending on the packing force in each crystal. Other torsion angles in the triene chains are almost 0 or 180° for all four compounds, indicating that the triene planes are nearly planar for conjugation.

Figs. 5–8 show the crystal structures of (I)–(IV). For all compounds, the neighboring molecules have head-to-tail orientation. This results from donor–acceptor substitution on the rings, as the calculated dipole moment of (I) is 6.38 D (MP2/6–311G**//MP2/6–31G* level).

In the crystal structure of (I), attractive N···O interactions between the nitro groups are observed. The nearest two nitro groups are in a parallel arrangement, which allows the overlap of the N—O dipoles (Szezesna & Urbańczyk-Lipkowska, 2002; Zeller & Hunter, 2004). The parallel arrangement is also observed in the E,E,E isomer of (I); however, the shortest intermolecular distance between the N and O atoms in (I) [O1···N1iii = 3.417 (2) Å; symmetry code: (iii) -x + 2, -y + 1, -z + 2] is considerably larger than the N···O distance of 2.938 (4) Å in its E,E,E isomer (Sonoda et al., 2006).

In the crystal structure of (II), two adjacent molecules are linked at both ends through N···O dipole interactions between the N atom of the nitro group and the O atom of the ethoxy group to form a supramolecular ring-like structure. The intermolecular distances between the N and O atoms are 3.392 (9) Å [O6···N1iii: symmetry code: (iii) x, y, z + 1] and 3.427 (9) Å [O3···N2iii; symmetry code: (iii) x, y, z + 1]. These supramolecular rings are piled up along the c axis. The least-squares plane defined by the molecule (x, y, z) makes an angle of 56.47 (3)° with the least-squares plane defined by the molecule with symmetry code (x + 1/2, -y, z).

In the crystal structures of (III) and (IV), the shortest intermolecular distances are those between the two O atoms of the alkoxy groups: O3···O3ii = 4.284 (2) Å [symmetry code: (ii) -x + 1, -y + 1, -z + 2] for (III), and O3···O3ii = 3.832 (2) Å [symmetry code: (ii) -x, -y + 2, -z] for (IV). Thus, the nearest two molecules form an S-shaped supramolecular dimer in these crystal structures.

Related literature top

For related literature, see: Choi et al. (1997); Frisch et al. (2004); Jacquemin et al. (2005); Møller & Plesset (1934); Michels et al. (1994); Ros et al. (2005); Sonoda et al. (2006); Szezesna & Urbańczyk-Lipkowska (2002); Tsuzuki (2003); Yamaguchi et al. (2005); Yang & Kertesz (2006); Yannoni & Clarke (1983); Zeller & Hunter (2004).

Experimental top

Compounds (I)–(IV) were prepared by the Wittig reactions of the triphenylphosphonium salt of (E)-4-nitrocinnamyl bromide and (E)-4-alkoxycinnamaldehydes (Sonoda et al., 2006). The reaction gave a mixture of E,Z,E and E,E,E isomers as a crude product, from which the E,E,E isomer was removed by recrystallization from toluene. Toluene was evaporated from the mother liquor under reduced pressure, and the resulting isomeric mixture (predominantly E,Z,E) was dissolved in an appropriate solvent [acetonitrile for (I) and dichloromethane–toluene for (II)–(IV)]. Crystals suitable for X-ray diffraction were obtained from these solutions by slow evaporation at room temperature in the dark. The melting points of (I)–(IV) could not be determined, probably because of thermal conversion to the E,E,E isomers in the solid state. 1H NMR (CDCl3, 300 MHz): for (I), δ 8.20 (2H, d, J = 8.9 Hz, arom.), 7.58 (2H, d, J = 8.6 Hz, arom.), 7.44 (2H, d, J = 8.6 Hz, arom.), 7.24 (1H, dd, J = 15.8 and 11.6 Hz, triene), 6.90 (2H, d, J = 8.9 Hz, arom.), 6.56–6.68 (3H, m, triene), 6.36 (1H, apparently (app.) t, J = 11.1 Hz, triene), 6.21 (1H, app. t, J = 11.4 Hz, triene), 3.84 (3H, s, OCH3); for (II), δ 8.19 (2H, d, J = 8.8 Hz, arom.), 7.58 (2H, d, J = 8.8 Hz, arom.), 7.43 (2H, d, J = 8.9 Hz, arom.), 7.23 (1H, dd, J = 15.4 and 11.5 Hz, triene), 6.89 (2H, d, J = 8.8 Hz, arom.), 6.56–6.67 (3H, m, triene), 6.36 (1H, app. t, J = 11.3 Hz, triene), 6.20 (1H, app. t, J = 11.4 Hz, triene), 4.07 (2H, q, J = 7.0 Hz, OCH2), 1.43 (3H, t, J = 7.0 Hz, CH3); for (III), δ 8.20 (2H, d, J = 8.7 Hz, arom.), 7.58 (2H, d, J = 8.8 Hz, arom.), 7.43 (2H, d, J = 8.7 Hz, arom.), 7.23 (1H, dd, J = 15.4 and 10.9 Hz, triene), 6.89 (2H, d, J = 8.8 Hz, arom.), 6.56–6.67 (3H, m, triene), 6.36 (1H, app. t, J = 11.1 Hz, triene), 6.20 (1H, app. t, J = 11.0 Hz, triene), 3.94 (2H, t, J = 6.6 Hz, OCH2), 1.76–1.87 (2H, m, CH2Me), 1.04 (3H, t, J = 7.4 Hz, CH3); for (IV), δ 8.20 (2H, d, J = 8.5 Hz, arom.), 7.58 (2H, d, J = 8.9 Hz, arom.), 7.42 (2H, d, J = 8.7 Hz, arom.), 7.23 (1H, dd, J = 15.5 and 11.3 Hz, triene), 6.89 (2H, d, J = 8.6 Hz, arom.), 6.56–6.67 (3H, m, triene), 6.36 (1H, app. t, J = 11.0 Hz, triene), 6.20 (1H, app. t, J = 11.0 Hz, triene), 3.99 (2H, t, J = 6.4 Hz, OCH2), 1.73–1.83 (2H, m, CH2Et), 1.44–1.57 (2H, m, CH2Me), 0.99 (3H, t, J = 7.4 Hz, CH3).

Refinement top

All H atoms were located by geometric considerations and refined as riding on their carrier atoms.

Computing details top

For all compounds, data collection: SMART (Bruker, 2001). Cell refinement: SMART [or SAINT?] for (I), (III), (IV); SMART for (II). For all compounds, data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Sheldrick, 2000); software used to prepare material for publication: SHELXTL.

Figures top
[Figure 1] Fig. 1. A view of the molecular structure and the atom-numbering scheme of the independent molecule in (I). Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii.
[Figure 2] Fig. 2. A view of the molecular structure and the atom-numbering scheme of the independent molecules in (II). Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii.
[Figure 3] Fig. 3. A view of the molecular structure and the atom-numbering scheme of the independent molecule in (III). Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii.
[Figure 4] Fig. 4. A view of the molecular structure and the atom-numbering scheme of the independent molecule in (IV). Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii.
[Figure 5] Fig. 5. A partial view of the molecular packing in (I). Dotted lines indicate the shortest O···N intermolecular distance [O1i···N1ii = 3.417 (2) Å; symmetry codes: (i) -x + 3/2, -y + 3/2, z - 1/2; (ii) x - 1/2, y + 1/2, -z + 3/2].
[Figure 6] Fig. 6. A partial view of the molecular packing in (II). Dotted lines indicate the intermolecular distances between the N atom of the nitro group and the O atom of the ethoxy group [O6i···N1ii = 3.392 (9) Å and N2i··· O3ii = 3.427 (9) Å; symmetry codes: (i) -x + 1, -y + 1, z + 1/2; (ii) -x + 1, -y + 1, z - 1/2].
[Figure 7] Fig. 7. A partial view of the molecular packing in (III). Dotted lines indicate the shortest O···O intermolecular distances [O3i···O3ii = O3iii···O3iv = O3v···O3vi = 4.284 (2) Å; symmetry codes: (i) x, y, z; (ii) -x + 1, -y + 1, -z + 2; (iii) -x + 1, y - 1/2, -z + 3/2; (iv) x, -y + 1/2, z - 1/2; (v) x, y, z - 1; (vi) -x + 1, -y + 1, -z + 1].
[Figure 8] Fig. 8. A partial view of the molecular packing in (IV). Dashed lines indicate the shortest O···O intermolecular distances [O3i···O3ii = O3iii···O3iv = O3v···O3vi = O3vii···O3viii = 3.832 (2) Å; symmetry codes: (i) x, y, z; (ii) -x, -y + 2, -z; (iii) -x + 1, y - 1/2, -z + 1/2; (iv) x + 1, -y + 3/2, z + 1/2; (v) x + 1, y, z + 1; (vi) -x + 1, -y + 2, -z + 1; (vii) x, -y + 3/2, z + 1/2; (viii) -x, y - 1/2, -z + 1/2].
(I) (E,Z,E)-1-(4-methoxyphenyl)-6-(4-nitrophenyl)hexa-1,3,5-triene top
Crystal data top
C19H17NO3F(000) = 1296
Mr = 307.34Dx = 1.297 Mg m3
Orthorhombic, PbcnMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2n 2abCell parameters from 5293 reflections
a = 13.0541 (11) Åθ = 2.4–27.6°
b = 6.9672 (6) ŵ = 0.09 mm1
c = 34.604 (3) ÅT = 183 K
V = 3147.2 (5) Å3Rectangular, orange
Z = 80.30 × 0.10 × 0.04 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
3715 independent reflections
Radiation source: rotating anode2905 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
Detector resolution: 8.366 pixels mm-1θmax = 28.3°, θmin = 1.2°
ϕ and ω scansh = 1617
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
k = 89
Tmin = 0.914, Tmax = 0.997l = 3445
18236 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.136H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0827P)2 + 0.2636P]
where P = (Fo2 + 2Fc2)/3
3715 reflections(Δ/σ)max = 0.005
209 parametersΔρmax = 0.24 e Å3
0 restraintsΔρmin = 0.19 e Å3
Crystal data top
C19H17NO3V = 3147.2 (5) Å3
Mr = 307.34Z = 8
Orthorhombic, PbcnMo Kα radiation
a = 13.0541 (11) ŵ = 0.09 mm1
b = 6.9672 (6) ÅT = 183 K
c = 34.604 (3) Å0.30 × 0.10 × 0.04 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
3715 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2905 reflections with I > 2σ(I)
Tmin = 0.914, Tmax = 0.997Rint = 0.026
18236 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0430 restraints
wR(F2) = 0.136H-atom parameters constrained
S = 1.07Δρmax = 0.24 e Å3
3715 reflectionsΔρmin = 0.19 e Å3
209 parameters
Special details top

Experimental. Sheldrick, G. M. (1996). SADABS, program for scaling and correction of area detector data. University of Göttingen, Germany.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.88041 (10)0.5098 (2)0.95611 (4)0.0397 (3)
C20.86381 (11)0.7040 (2)0.96131 (4)0.0456 (4)
H20.85720.75680.98650.055*
C30.85708 (11)0.8192 (2)0.92906 (4)0.0433 (3)
H30.84540.95290.93230.052*
C40.86695 (9)0.7449 (2)0.89172 (4)0.0377 (3)
C50.88609 (11)0.54830 (19)0.88796 (4)0.0400 (3)
H50.89470.49490.86290.048*
C60.89277 (10)0.4309 (2)0.91968 (4)0.0409 (3)
H60.90570.29760.91670.049*
C70.85465 (10)0.87210 (19)0.85869 (4)0.0413 (3)
H70.84101.00300.86440.050*
C80.86025 (10)0.8263 (2)0.82117 (4)0.0397 (3)
H80.87750.69800.81450.048*
C90.84162 (10)0.96038 (19)0.79042 (4)0.0422 (3)
H90.82651.08860.79780.051*
C100.84339 (10)0.92345 (19)0.75229 (4)0.0416 (3)
H100.82701.02770.73570.050*
C110.86719 (9)0.74411 (19)0.73368 (4)0.0376 (3)
H110.88980.63980.74920.045*
C120.85890 (10)0.71789 (19)0.69554 (4)0.0381 (3)
H120.83780.82640.68100.046*
C130.87831 (9)0.54296 (18)0.67359 (4)0.0350 (3)
C140.85294 (10)0.53563 (19)0.63447 (4)0.0390 (3)
H140.82610.64750.62250.047*
C150.86538 (10)0.3715 (2)0.61254 (4)0.0402 (3)
H150.84650.37090.58600.048*
C160.90548 (9)0.20826 (18)0.62948 (4)0.0374 (3)
C170.93447 (10)0.21290 (18)0.66831 (4)0.0383 (3)
H170.96420.10250.67990.046*
C180.92020 (10)0.37636 (18)0.68995 (4)0.0369 (3)
H180.93910.37640.71650.044*
C190.89107 (13)0.0236 (3)0.57142 (4)0.0530 (4)
H19A0.81820.05560.56900.079*
H19B0.90260.10770.56220.079*
H19C0.93170.11320.55590.079*
N10.88338 (10)0.3837 (2)0.98965 (3)0.0478 (3)
O10.87144 (11)0.45429 (19)1.02176 (3)0.0714 (4)
O20.89724 (11)0.21154 (17)0.98479 (3)0.0650 (4)
O30.92112 (8)0.03779 (15)0.61096 (3)0.0490 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0354 (6)0.0482 (8)0.0355 (7)0.0007 (6)0.0010 (5)0.0042 (5)
C20.0469 (8)0.0523 (9)0.0375 (8)0.0003 (6)0.0011 (6)0.0146 (6)
C30.0459 (7)0.0402 (7)0.0438 (8)0.0005 (6)0.0005 (6)0.0107 (6)
C40.0312 (6)0.0415 (7)0.0403 (7)0.0024 (5)0.0019 (5)0.0050 (6)
C50.0439 (7)0.0415 (7)0.0347 (7)0.0018 (6)0.0059 (5)0.0075 (5)
C60.0439 (7)0.0407 (7)0.0380 (7)0.0025 (6)0.0036 (5)0.0066 (5)
C70.0399 (7)0.0365 (7)0.0474 (8)0.0010 (5)0.0036 (6)0.0047 (6)
C80.0379 (7)0.0358 (7)0.0454 (8)0.0019 (5)0.0027 (5)0.0037 (5)
C90.0438 (7)0.0340 (7)0.0489 (8)0.0039 (5)0.0032 (6)0.0002 (6)
C100.0424 (7)0.0364 (6)0.0461 (8)0.0033 (5)0.0021 (6)0.0057 (6)
C110.0379 (6)0.0336 (6)0.0413 (7)0.0012 (5)0.0009 (5)0.0061 (5)
C120.0382 (7)0.0352 (7)0.0408 (7)0.0002 (5)0.0006 (5)0.0073 (5)
C130.0329 (6)0.0367 (7)0.0356 (7)0.0026 (5)0.0005 (5)0.0073 (5)
C140.0382 (7)0.0410 (7)0.0378 (7)0.0018 (5)0.0020 (5)0.0114 (6)
C150.0396 (7)0.0511 (8)0.0300 (7)0.0027 (6)0.0024 (5)0.0063 (6)
C160.0363 (6)0.0398 (7)0.0360 (7)0.0029 (5)0.0025 (5)0.0002 (5)
C170.0421 (7)0.0364 (7)0.0365 (7)0.0020 (5)0.0014 (5)0.0076 (5)
C180.0409 (7)0.0387 (7)0.0310 (6)0.0009 (5)0.0031 (5)0.0061 (5)
C190.0554 (9)0.0641 (10)0.0395 (8)0.0074 (7)0.0014 (7)0.0100 (7)
N10.0505 (7)0.0578 (8)0.0352 (6)0.0031 (6)0.0021 (5)0.0044 (5)
O10.1087 (11)0.0737 (9)0.0317 (6)0.0128 (7)0.0002 (6)0.0076 (5)
O20.0999 (10)0.0511 (7)0.0442 (7)0.0088 (6)0.0002 (6)0.0003 (5)
O30.0607 (6)0.0471 (6)0.0393 (6)0.0035 (5)0.0029 (4)0.0075 (4)
Geometric parameters (Å, º) top
C1—C21.382 (2)C11—H110.9500
C1—C61.3845 (18)C12—C131.4582 (19)
C1—N11.4564 (19)C12—H120.9500
C2—C31.377 (2)C13—C141.3948 (19)
C2—H20.9500C13—C181.4024 (17)
C3—C41.3978 (18)C14—C151.382 (2)
C3—H30.9500C14—H140.9500
C4—C51.3985 (19)C15—C161.3825 (18)
C4—C71.455 (2)C15—H150.9500
C5—C61.372 (2)C16—O31.3648 (16)
C5—H50.9500C16—C171.3964 (19)
C6—H60.9500C17—C181.3757 (19)
C7—C81.339 (2)C17—H170.9500
C7—H70.9500C18—H180.9500
C8—C91.4369 (19)C19—O31.4270 (18)
C8—H80.9500C19—H19A0.9800
C9—C101.345 (2)C19—H19B0.9800
C9—H90.9500C19—H19C0.9800
C10—C111.4397 (19)N1—O21.2246 (18)
C10—H100.9500N1—O11.2250 (16)
C11—C121.3367 (18)
C2—C1—C6121.69 (14)C10—C11—H11118.6
C2—C1—N1119.41 (13)C11—C12—C13127.90 (12)
C6—C1—N1118.88 (14)C11—C12—H12116.0
C3—C2—C1118.36 (13)C13—C12—H12116.0
C3—C2—H2120.8C14—C13—C18117.01 (12)
C1—C2—H2120.8C14—C13—C12119.66 (11)
C2—C3—C4121.81 (13)C18—C13—C12123.32 (12)
C2—C3—H3119.1C15—C14—C13122.37 (12)
C4—C3—H3119.1C15—C14—H14118.8
C3—C4—C5117.74 (13)C13—C14—H14118.8
C3—C4—C7119.35 (13)C14—C15—C16119.50 (12)
C5—C4—C7122.89 (12)C14—C15—H15120.3
C6—C5—C4121.38 (13)C16—C15—H15120.3
C6—C5—H5119.3O3—C16—C15124.99 (12)
C4—C5—H5119.3O3—C16—C17115.56 (11)
C5—C6—C1118.98 (13)C15—C16—C17119.45 (12)
C5—C6—H6120.5C18—C17—C16120.42 (12)
C1—C6—H6120.5C18—C17—H17119.8
C8—C7—C4127.61 (13)C16—C17—H17119.8
C8—C7—H7116.2C17—C18—C13121.21 (12)
C4—C7—H7116.2C17—C18—H18119.4
C7—C8—C9123.62 (13)C13—C18—H18119.4
C7—C8—H8118.2O3—C19—H19A109.5
C9—C8—H8118.2O3—C19—H19B109.5
C10—C9—C8126.83 (13)H19A—C19—H19B109.5
C10—C9—H9116.6O3—C19—H19C109.5
C8—C9—H9116.6H19A—C19—H19C109.5
C9—C10—C11127.50 (13)H19B—C19—H19C109.5
C9—C10—H10116.2O2—N1—O1122.46 (14)
C11—C10—H10116.2O2—N1—C1119.03 (12)
C12—C11—C10122.88 (12)O1—N1—C1118.51 (14)
C12—C11—H11118.6C16—O3—C19117.99 (11)
C6—C1—C2—C31.6 (2)C11—C12—C13—C187.0 (2)
N1—C1—C2—C3177.35 (12)C18—C13—C14—C151.67 (19)
C1—C2—C3—C40.2 (2)C12—C13—C14—C15177.17 (12)
C2—C3—C4—C51.2 (2)C13—C14—C15—C160.8 (2)
C2—C3—C4—C7177.31 (13)C14—C15—C16—O3179.79 (12)
C3—C4—C5—C61.4 (2)C14—C15—C16—C171.14 (19)
C7—C4—C5—C6177.06 (13)O3—C16—C17—C18178.69 (12)
C4—C5—C6—C10.1 (2)C15—C16—C17—C182.15 (19)
C2—C1—C6—C51.4 (2)C16—C17—C18—C131.2 (2)
N1—C1—C6—C5177.53 (12)C14—C13—C18—C170.64 (19)
C3—C4—C7—C8179.20 (13)C12—C13—C18—C17178.15 (12)
C5—C4—C7—C80.7 (2)C2—C1—N1—O2179.37 (14)
C4—C7—C8—C9176.58 (12)C6—C1—N1—O20.4 (2)
C7—C8—C9—C10178.23 (14)C2—C1—N1—O10.3 (2)
C8—C9—C10—C112.0 (2)C6—C1—N1—O1179.33 (14)
C9—C10—C11—C12174.50 (14)C15—C16—O3—C192.08 (19)
C10—C11—C12—C13178.43 (12)C17—C16—O3—C19178.81 (12)
C11—C12—C13—C14171.77 (13)
(II) (E,Z,E)-1-(4-ethoxyphenyl)-6-(4-nitrophenyl)hexa-1,3,5-triene top
Crystal data top
C20H19NO3F(000) = 1360
Mr = 321.36Dx = 1.265 Mg m3
Orthorhombic, Pca21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2acCell parameters from 946 reflections
a = 18.914 (9) Åθ = 2.3–24.4°
b = 6.880 (3) ŵ = 0.09 mm1
c = 25.927 (11) ÅT = 183 K
V = 3374 (3) Å3Rectangular, orange
Z = 80.30 × 0.10 × 0.03 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
2972 independent reflections
Radiation source: rotating unit1583 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.135
Detector resolution: 8.366 pixels mm-1θmax = 25.0°, θmin = 1.6°
ϕ and ω scansh = 2219
Absorption correction: multi-scan
(SADABS; Sheldrick 1996)
k = 78
Tmin = 0.933, Tmax = 0.998l = 3030
11787 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.064Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.155H-atom parameters constrained
S = 0.92 w = 1/[σ2(Fo2) + (0.0531P)2]
where P = (Fo2 + 2Fc2)/3
2972 reflections(Δ/σ)max = 0.003
435 parametersΔρmax = 0.19 e Å3
1 restraintΔρmin = 0.20 e Å3
Crystal data top
C20H19NO3V = 3374 (3) Å3
Mr = 321.36Z = 8
Orthorhombic, Pca21Mo Kα radiation
a = 18.914 (9) ŵ = 0.09 mm1
b = 6.880 (3) ÅT = 183 K
c = 25.927 (11) Å0.30 × 0.10 × 0.03 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
2972 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick 1996)
1583 reflections with I > 2σ(I)
Tmin = 0.933, Tmax = 0.998Rint = 0.135
11787 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0641 restraint
wR(F2) = 0.155H-atom parameters constrained
S = 0.92Δρmax = 0.19 e Å3
2972 reflectionsΔρmin = 0.20 e Å3
435 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.3896 (4)1.1009 (12)1.0080 (3)0.0429 (19)
C20.3283 (4)1.1630 (12)0.9856 (3)0.046 (2)
H20.31091.29110.99060.055*
C30.2923 (4)1.0269 (12)0.9548 (3)0.046 (2)
H30.24951.06570.93860.055*
C40.3161 (3)0.8406 (11)0.9469 (3)0.0397 (18)
C50.3782 (3)0.7860 (12)0.9713 (3)0.050 (2)
H50.39500.65660.96760.060*
C60.4159 (3)0.9148 (12)1.0009 (3)0.0468 (19)
H60.45940.87701.01620.056*
C70.2765 (3)0.7124 (11)0.9126 (3)0.0407 (19)
H70.23000.75220.90370.049*
C80.2991 (3)0.5434 (11)0.8921 (3)0.0407 (19)
H80.34560.49900.89940.049*
C90.2535 (4)0.4287 (11)0.8592 (3)0.0453 (19)
H90.20690.47610.85390.054*
C100.2707 (4)0.2612 (12)0.8353 (3)0.050 (2)
H100.23540.20640.81370.060*
C110.3366 (4)0.1552 (12)0.8385 (3)0.0442 (19)
H110.37490.21030.85720.053*
C120.3453 (4)0.0193 (12)0.8159 (3)0.0460 (19)
H120.30610.06480.79640.055*
C130.4061 (4)0.1473 (11)0.8171 (3)0.0421 (19)
C140.4035 (4)0.3243 (11)0.7903 (3)0.0438 (19)
H140.36140.35710.77230.053*
C150.4590 (4)0.4516 (11)0.7890 (3)0.0439 (19)
H150.45510.57010.77040.053*
C160.5207 (4)0.4067 (11)0.8150 (3)0.0424 (19)
C170.5253 (4)0.2315 (12)0.8424 (3)0.048 (2)
H170.56730.19970.86080.057*
C180.4692 (4)0.1068 (12)0.8426 (3)0.045 (2)
H180.47330.01250.86090.054*
C190.5769 (4)0.6955 (11)0.7850 (3)0.050 (2)
H19A0.56750.66140.74860.060*
H19B0.53800.77990.79730.060*
C200.6463 (5)0.8012 (13)0.7893 (4)0.079 (3)
H20A0.68400.72050.77480.119*
H20B0.64350.92400.77030.119*
H20C0.65640.82800.82570.119*
C210.5910 (3)0.5610 (12)0.0304 (3)0.0410 (19)
C220.6498 (4)0.6266 (11)0.0036 (3)0.0411 (19)
H220.66570.75690.00710.049*
C230.6848 (3)0.4960 (12)0.0287 (3)0.0409 (18)
H230.72620.53700.04630.049*
C240.6610 (3)0.3121 (12)0.0354 (3)0.0397 (19)
C250.6027 (3)0.2474 (11)0.0067 (3)0.0444 (19)
H250.58760.11610.00940.053*
C260.5670 (4)0.3746 (12)0.0256 (3)0.049 (2)
H260.52640.33280.04420.059*
C270.6992 (4)0.1802 (12)0.0704 (3)0.0423 (19)
H270.74600.21760.07910.051*
C280.6761 (3)0.0134 (12)0.0917 (3)0.044 (2)
H280.63090.03400.08180.053*
C290.7158 (4)0.0955 (12)0.1282 (3)0.0467 (19)
H290.76090.04460.13680.056*
C300.6973 (4)0.2619 (13)0.1520 (3)0.053 (2)
H300.73000.30940.17680.063*
C310.6346 (3)0.3771 (11)0.1449 (3)0.0406 (18)
H310.59790.33030.12320.049*
C320.6268 (4)0.5532 (12)0.1689 (3)0.0432 (19)
H320.66450.59340.19060.052*
C330.5674 (3)0.6846 (10)0.1647 (2)0.0346 (17)
C340.5695 (4)0.8555 (12)0.1930 (3)0.0440 (19)
H340.61000.88030.21370.053*
C350.5154 (4)0.9927 (12)0.1925 (3)0.0455 (19)
H350.51931.10990.21160.055*
C360.4558 (4)0.9536 (12)0.1633 (3)0.0450 (19)
C370.4520 (4)0.7843 (12)0.1341 (3)0.046 (2)
H370.41090.75830.11420.055*
C380.5066 (4)0.6556 (12)0.1336 (3)0.0466 (19)
H380.50390.54410.11210.056*
C390.3993 (4)1.2473 (11)0.1912 (4)0.056 (2)
H39A0.43841.33280.17980.067*
H39B0.40731.21310.22790.067*
C400.3306 (4)1.3494 (14)0.1854 (4)0.084 (3)
H40A0.33221.43320.15480.126*
H40B0.32161.42890.21610.126*
H40C0.29271.25360.18140.126*
N10.4304 (4)1.2402 (11)1.0395 (3)0.0567 (18)
N20.5519 (4)0.7003 (11)0.0627 (3)0.0541 (19)
O10.4013 (3)1.3938 (10)1.0511 (2)0.0761 (19)
O20.4899 (3)1.1938 (9)1.0535 (2)0.0694 (19)
O30.5800 (2)0.5236 (7)0.8155 (2)0.0479 (13)
O40.5801 (3)0.8518 (9)0.0741 (2)0.0740 (18)
O50.4919 (3)0.6508 (8)0.0770 (2)0.0673 (16)
O60.3976 (2)1.0752 (8)0.1604 (2)0.0538 (14)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.044 (4)0.053 (6)0.031 (4)0.003 (4)0.002 (3)0.005 (4)
C20.053 (5)0.044 (5)0.041 (5)0.007 (4)0.008 (3)0.009 (4)
C30.038 (4)0.061 (6)0.039 (5)0.007 (4)0.002 (3)0.005 (4)
C40.040 (4)0.037 (5)0.042 (5)0.005 (3)0.009 (3)0.001 (4)
C50.038 (4)0.047 (6)0.065 (6)0.009 (3)0.008 (4)0.002 (4)
C60.035 (4)0.056 (6)0.049 (5)0.008 (4)0.003 (3)0.006 (4)
C70.036 (4)0.043 (5)0.043 (5)0.002 (3)0.005 (3)0.008 (4)
C80.036 (4)0.045 (5)0.041 (5)0.004 (3)0.002 (3)0.005 (4)
C90.048 (4)0.042 (5)0.046 (5)0.005 (4)0.012 (4)0.006 (4)
C100.062 (5)0.048 (6)0.039 (5)0.009 (4)0.009 (4)0.006 (4)
C110.056 (5)0.048 (6)0.028 (4)0.008 (4)0.000 (3)0.003 (4)
C120.050 (4)0.055 (6)0.034 (4)0.012 (4)0.003 (3)0.005 (4)
C130.058 (5)0.043 (5)0.026 (4)0.011 (4)0.006 (3)0.002 (4)
C140.043 (4)0.053 (6)0.036 (4)0.011 (4)0.001 (3)0.004 (4)
C150.049 (5)0.048 (5)0.035 (4)0.011 (4)0.000 (4)0.005 (4)
C160.049 (5)0.051 (6)0.028 (4)0.011 (4)0.004 (3)0.003 (4)
C170.049 (4)0.056 (6)0.037 (5)0.018 (4)0.002 (3)0.014 (4)
C180.049 (4)0.052 (6)0.035 (4)0.008 (4)0.003 (3)0.013 (4)
C190.055 (5)0.041 (5)0.053 (5)0.006 (4)0.005 (4)0.003 (4)
C200.088 (7)0.057 (7)0.092 (8)0.011 (5)0.019 (5)0.029 (6)
C210.034 (4)0.051 (6)0.038 (5)0.001 (3)0.001 (3)0.003 (4)
C220.052 (4)0.033 (5)0.039 (5)0.009 (3)0.009 (3)0.010 (4)
C230.033 (4)0.057 (6)0.032 (4)0.005 (4)0.001 (3)0.007 (4)
C240.027 (4)0.057 (6)0.035 (4)0.009 (3)0.004 (3)0.004 (4)
C250.054 (4)0.047 (5)0.033 (4)0.001 (4)0.005 (4)0.004 (4)
C260.046 (4)0.058 (6)0.043 (5)0.009 (4)0.001 (3)0.006 (4)
C270.037 (4)0.046 (6)0.044 (5)0.000 (4)0.003 (3)0.011 (4)
C280.037 (4)0.056 (6)0.040 (5)0.001 (4)0.008 (3)0.013 (4)
C290.044 (4)0.045 (6)0.050 (5)0.002 (4)0.002 (4)0.005 (4)
C300.059 (5)0.059 (7)0.040 (5)0.001 (4)0.001 (4)0.016 (4)
C310.046 (4)0.047 (5)0.029 (4)0.003 (3)0.004 (3)0.007 (4)
C320.058 (5)0.049 (6)0.023 (4)0.004 (4)0.000 (3)0.002 (4)
C330.057 (4)0.026 (5)0.020 (4)0.009 (3)0.004 (3)0.002 (3)
C340.046 (4)0.047 (5)0.039 (5)0.020 (4)0.003 (3)0.004 (4)
C350.043 (4)0.043 (5)0.051 (5)0.008 (4)0.002 (4)0.001 (4)
C360.049 (5)0.048 (6)0.038 (5)0.001 (4)0.006 (4)0.005 (4)
C370.044 (4)0.055 (6)0.040 (4)0.014 (4)0.011 (3)0.002 (4)
C380.062 (5)0.045 (5)0.033 (5)0.005 (4)0.005 (4)0.004 (4)
C390.079 (6)0.030 (5)0.058 (6)0.003 (4)0.013 (4)0.006 (4)
C400.065 (6)0.083 (8)0.104 (8)0.026 (5)0.024 (5)0.022 (6)
N10.065 (5)0.060 (6)0.046 (4)0.002 (4)0.006 (4)0.003 (4)
N20.057 (5)0.062 (6)0.042 (4)0.005 (4)0.001 (3)0.003 (4)
O10.097 (5)0.062 (5)0.069 (4)0.012 (4)0.007 (3)0.015 (4)
O20.059 (4)0.083 (5)0.067 (5)0.006 (3)0.019 (3)0.001 (3)
O30.055 (3)0.037 (3)0.052 (4)0.004 (2)0.008 (2)0.006 (3)
O40.082 (4)0.067 (5)0.073 (5)0.013 (3)0.013 (3)0.020 (4)
O50.058 (4)0.077 (4)0.067 (4)0.009 (3)0.008 (3)0.010 (4)
O60.051 (3)0.049 (4)0.061 (4)0.003 (2)0.012 (2)0.013 (3)
Geometric parameters (Å, º) top
C1—C21.366 (10)C21—N21.470 (10)
C1—C61.386 (10)C22—C231.395 (10)
C1—N11.476 (10)C22—H220.9500
C2—C31.407 (11)C23—C241.354 (10)
C2—H20.9500C23—H230.9500
C3—C41.374 (10)C24—C251.405 (10)
C3—H30.9500C24—C271.472 (10)
C4—C51.387 (9)C25—C261.387 (10)
C4—C71.459 (10)C25—H250.9500
C5—C61.371 (11)C26—H260.9500
C5—H50.9500C27—C281.345 (10)
C6—H60.9500C27—H270.9500
C7—C81.347 (10)C28—C291.421 (11)
C7—H70.9500C28—H280.9500
C8—C91.447 (10)C29—C301.347 (11)
C8—H80.9500C29—H290.9500
C9—C101.348 (10)C30—C311.439 (10)
C9—H90.9500C30—H300.9500
C10—C111.446 (10)C31—C321.370 (10)
C10—H100.9500C31—H310.9500
C11—C121.347 (10)C32—C331.446 (10)
C11—H110.9500C32—H320.9500
C12—C131.449 (10)C33—C341.386 (10)
C12—H120.9500C33—C381.418 (9)
C13—C181.392 (9)C34—C351.392 (10)
C13—C141.403 (10)C34—H340.9500
C14—C151.367 (10)C35—C361.384 (10)
C14—H140.9500C35—H350.9500
C15—C161.383 (9)C36—O61.385 (9)
C15—H150.9500C36—C371.390 (10)
C16—O31.380 (8)C37—C381.359 (10)
C16—C171.402 (10)C37—H370.9500
C17—C181.366 (10)C38—H380.9500
C17—H170.9500C39—O61.428 (9)
C18—H180.9500C39—C401.486 (10)
C19—O31.423 (9)C39—H39A0.9900
C19—C201.505 (10)C39—H39B0.9900
C19—H19A0.9900C40—H40A0.9800
C19—H19B0.9900C40—H40B0.9800
C20—H20A0.9800C40—H40C0.9800
C20—H20B0.9800N1—O21.224 (8)
C20—H20C0.9800N1—O11.230 (8)
C21—C261.366 (10)N2—O41.209 (8)
C21—C221.387 (10)N2—O51.241 (8)
C2—C1—C6122.4 (7)C21—C22—H22120.9
C2—C1—N1118.4 (7)C23—C22—H22120.9
C6—C1—N1119.1 (7)C24—C23—C22121.5 (7)
C1—C2—C3116.4 (7)C24—C23—H23119.3
C1—C2—H2121.8C22—C23—H23119.3
C3—C2—H2121.8C23—C24—C25119.2 (7)
C4—C3—C2123.2 (7)C23—C24—C27119.6 (6)
C4—C3—H3118.4C25—C24—C27121.1 (7)
C2—C3—H3118.4C26—C25—C24120.2 (7)
C3—C4—C5117.5 (7)C26—C25—H25119.9
C3—C4—C7119.1 (7)C24—C25—H25119.9
C5—C4—C7123.3 (7)C21—C26—C25119.1 (7)
C6—C5—C4121.4 (7)C21—C26—H26120.5
C6—C5—H5119.3C25—C26—H26120.5
C4—C5—H5119.3C28—C27—C24128.3 (7)
C5—C6—C1119.1 (7)C28—C27—H27115.9
C5—C6—H6120.5C24—C27—H27115.9
C1—C6—H6120.5C27—C28—C29123.5 (7)
C8—C7—C4126.8 (7)C27—C28—H28118.3
C8—C7—H7116.6C29—C28—H28118.3
C4—C7—H7116.6C30—C29—C28128.1 (7)
C7—C8—C9120.9 (7)C30—C29—H29116.0
C7—C8—H8119.6C28—C29—H29116.0
C9—C8—H8119.6C29—C30—C31128.6 (8)
C10—C9—C8126.4 (7)C29—C30—H30115.7
C10—C9—H9116.8C31—C30—H30115.7
C8—C9—H9116.8C32—C31—C30121.2 (7)
C9—C10—C11127.7 (7)C32—C31—H31119.4
C9—C10—H10116.1C30—C31—H31119.4
C11—C10—H10116.1C31—C32—C33127.0 (7)
C12—C11—C10122.0 (7)C31—C32—H32116.5
C12—C11—H11119.0C33—C32—H32116.5
C10—C11—H11119.0C34—C33—C38116.4 (7)
C11—C12—C13129.0 (7)C34—C33—C32117.8 (6)
C11—C12—H12115.5C38—C33—C32125.8 (7)
C13—C12—H12115.5C33—C34—C35123.2 (7)
C18—C13—C14116.0 (7)C33—C34—H34118.4
C18—C13—C12124.7 (7)C35—C34—H34118.4
C14—C13—C12119.3 (6)C36—C35—C34118.2 (7)
C15—C14—C13122.8 (7)C36—C35—H35120.9
C15—C14—H14118.6C34—C35—H35120.9
C13—C14—H14118.6C35—C36—O6124.0 (7)
C14—C15—C16119.5 (7)C35—C36—C37120.2 (7)
C14—C15—H15120.2O6—C36—C37115.9 (6)
C16—C15—H15120.2C38—C37—C36120.7 (6)
O3—C16—C15124.1 (7)C38—C37—H37119.6
O3—C16—C17116.5 (6)C36—C37—H37119.6
C15—C16—C17119.4 (7)C37—C38—C33121.3 (7)
C18—C17—C16119.6 (7)C37—C38—H38119.4
C18—C17—H17120.2C33—C38—H38119.4
C16—C17—H17120.2O6—C39—C40108.4 (7)
C17—C18—C13122.6 (8)O6—C39—H39A110.0
C17—C18—H18118.7C40—C39—H39A110.0
C13—C18—H18118.7O6—C39—H39B110.0
O3—C19—C20108.9 (6)C40—C39—H39B110.0
O3—C19—H19A109.9H39A—C39—H39B108.4
C20—C19—H19A109.9C39—C40—H40A109.5
O3—C19—H19B109.9C39—C40—H40B109.5
C20—C19—H19B109.9H40A—C40—H40B109.5
H19A—C19—H19B108.3C39—C40—H40C109.5
C19—C20—H20A109.5H40A—C40—H40C109.5
C19—C20—H20B109.5H40B—C40—H40C109.5
H20A—C20—H20B109.5O2—N1—O1124.3 (7)
C19—C20—H20C109.5O2—N1—C1118.4 (7)
H20A—C20—H20C109.5O1—N1—C1117.3 (7)
H20B—C20—H20C109.5O4—N2—O5124.5 (7)
C26—C21—C22121.7 (7)O4—N2—C21118.7 (7)
C26—C21—N2119.8 (7)O5—N2—C21116.8 (7)
C22—C21—N2118.4 (7)C16—O3—C19116.5 (5)
C21—C22—C23118.1 (7)C36—O6—C39116.9 (6)
C6—C1—C2—C30.4 (10)C22—C21—C26—C250.5 (11)
N1—C1—C2—C3178.2 (6)N2—C21—C26—C25177.2 (7)
C1—C2—C3—C40.1 (11)C24—C25—C26—C212.4 (11)
C2—C3—C4—C50.8 (11)C23—C24—C27—C28162.7 (7)
C2—C3—C4—C7177.6 (6)C25—C24—C27—C2820.9 (11)
C3—C4—C5—C62.2 (11)C24—C27—C28—C29175.1 (7)
C7—C4—C5—C6176.1 (7)C27—C28—C29—C30179.2 (7)
C4—C5—C6—C12.7 (12)C28—C29—C30—C313.4 (14)
C2—C1—C6—C51.8 (11)C29—C30—C31—C32173.8 (7)
N1—C1—C6—C5179.5 (7)C30—C31—C32—C33179.1 (7)
C3—C4—C7—C8165.1 (7)C31—C32—C33—C34179.1 (6)
C5—C4—C7—C813.2 (12)C31—C32—C33—C381.6 (11)
C4—C7—C8—C9178.9 (7)C38—C33—C34—C351.1 (10)
C7—C8—C9—C10177.8 (7)C32—C33—C34—C35179.5 (7)
C8—C9—C10—C112.7 (13)C33—C34—C35—C361.7 (11)
C9—C10—C11—C12174.6 (7)C34—C35—C36—O6178.3 (7)
C10—C11—C12—C13177.1 (7)C34—C35—C36—C372.1 (11)
C11—C12—C13—C181.3 (12)C35—C36—C37—C380.2 (11)
C11—C12—C13—C14179.9 (7)O6—C36—C37—C38179.3 (7)
C18—C13—C14—C150.3 (10)C36—C37—C38—C333.1 (11)
C12—C13—C14—C15179.0 (7)C34—C33—C38—C373.5 (10)
C13—C14—C15—C160.0 (11)C32—C33—C38—C37177.1 (7)
C14—C15—C16—O3179.0 (6)C2—C1—N1—O2169.9 (7)
C14—C15—C16—C170.3 (10)C6—C1—N1—O28.0 (10)
O3—C16—C17—C18178.5 (7)C2—C1—N1—O112.1 (10)
C15—C16—C17—C180.8 (11)C6—C1—N1—O1170.1 (7)
C16—C17—C18—C131.1 (11)C26—C21—N2—O4166.6 (7)
C14—C13—C18—C170.8 (10)C22—C21—N2—O416.5 (10)
C12—C13—C18—C17179.5 (7)C26—C21—N2—O512.0 (10)
C26—C21—C22—C230.5 (10)C22—C21—N2—O5164.8 (6)
N2—C21—C22—C23177.2 (6)C15—C16—O3—C193.0 (10)
C21—C22—C23—C242.5 (10)C17—C16—O3—C19176.2 (6)
C22—C23—C24—C254.4 (10)C20—C19—O3—C16178.7 (7)
C22—C23—C24—C27179.1 (6)C35—C36—O6—C392.2 (10)
C23—C24—C25—C264.3 (10)C37—C36—O6—C39178.3 (7)
C27—C24—C25—C26179.3 (6)C40—C39—O6—C36176.2 (8)
(III) (E,Z,E)-1-(4-nitrophenyl)-6-(4-n-propoxyphenyl)hexa-1,3,5-triene top
Crystal data top
C21H21NO3F(000) = 712
Mr = 335.39Dx = 1.251 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 5309 reflections
a = 15.3615 (11) Åθ = 2.4–28.3°
b = 6.8341 (5) ŵ = 0.08 mm1
c = 17.6625 (12) ÅT = 223 K
β = 106.215 (1)°Rectangular, red
V = 1780.5 (2) Å30.45 × 0.20 × 0.20 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
4007 independent reflections
Radiation source: rotating unit3307 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
Detector resolution: 8.366 pixels mm-1θmax = 28.3°, θmin = 1.4°
ϕ and ω scansh = 1920
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
k = 98
Tmin = 0.873, Tmax = 0.984l = 1923
10440 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.116H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0623P)2 + 0.288P]
where P = (Fo2 + 2Fc2)/3
4007 reflections(Δ/σ)max < 0.001
227 parametersΔρmax = 0.21 e Å3
0 restraintsΔρmin = 0.23 e Å3
Crystal data top
C21H21NO3V = 1780.5 (2) Å3
Mr = 335.39Z = 4
Monoclinic, P21/cMo Kα radiation
a = 15.3615 (11) ŵ = 0.08 mm1
b = 6.8341 (5) ÅT = 223 K
c = 17.6625 (12) Å0.45 × 0.20 × 0.20 mm
β = 106.215 (1)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
4007 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3307 reflections with I > 2σ(I)
Tmin = 0.873, Tmax = 0.984Rint = 0.023
10440 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.116H-atom parameters constrained
S = 1.03Δρmax = 0.21 e Å3
4007 reflectionsΔρmin = 0.23 e Å3
227 parameters
Special details top

Experimental. Sheldrick, G. M. (1996). SADABS, program for scaling and correction of area detector data. University of Göttingen, Germany.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.17887 (8)0.68308 (18)0.40969 (7)0.0405 (3)
C20.20386 (8)0.87765 (19)0.40620 (7)0.0429 (3)
H20.24930.92650.36300.052*
C30.16058 (7)0.99830 (18)0.46754 (7)0.0402 (3)
H30.17681.13120.46550.048*
C40.09321 (7)0.92933 (16)0.53273 (6)0.0345 (2)
C50.07023 (8)0.73096 (17)0.53382 (7)0.0409 (3)
H50.02540.68040.57710.049*
C60.11210 (9)0.60887 (18)0.47269 (7)0.0438 (3)
H60.09550.47630.47370.053*
C70.05072 (7)1.06399 (17)0.59595 (6)0.0364 (2)
H70.07451.19160.59190.044*
C80.01881 (7)1.02554 (17)0.65954 (6)0.0361 (2)
H80.04410.89930.66500.043*
C90.05648 (7)1.16771 (17)0.71968 (6)0.0378 (2)
H90.03221.29480.71150.045*
C100.12334 (7)1.13672 (17)0.78683 (7)0.0386 (3)
H100.14061.24480.82060.046*
C110.17121 (7)0.95658 (17)0.81245 (7)0.0385 (3)
H110.16100.84930.77780.046*
C120.23005 (7)0.93722 (17)0.88440 (7)0.0385 (3)
H120.23931.04960.91630.046*
C130.28125 (7)0.76450 (16)0.91922 (7)0.0366 (2)
C140.33490 (8)0.77312 (18)0.99706 (7)0.0430 (3)
H140.33860.89181.02470.052*
C150.38306 (8)0.61317 (18)1.03520 (7)0.0431 (3)
H150.41860.62371.08780.052*
C160.37845 (7)0.43777 (17)0.99523 (7)0.0381 (3)
C170.32796 (8)0.42800 (17)0.91590 (7)0.0393 (3)
H170.32690.31120.88750.047*
C180.28010 (8)0.58754 (17)0.87928 (7)0.0389 (3)
H180.24580.57770.82630.047*
C190.47326 (8)0.27455 (18)1.10809 (7)0.0431 (3)
H19A0.43540.31471.14170.052*
H19B0.52230.37021.11430.052*
C200.51229 (9)0.0758 (2)1.13229 (8)0.0511 (3)
H20A0.54670.03271.09620.061*
H20B0.46300.01781.12870.061*
C210.57402 (10)0.0784 (2)1.21601 (9)0.0634 (4)
H21A0.62270.17161.21970.095*
H21B0.59940.05101.22990.095*
H21C0.53940.11631.25190.095*
N10.22321 (8)0.55365 (18)0.34488 (6)0.0530 (3)
O10.29183 (7)0.61106 (19)0.29632 (7)0.0761 (4)
O20.18905 (9)0.39308 (17)0.34138 (6)0.0775 (4)
O30.41971 (6)0.26844 (12)1.02721 (5)0.0447 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0431 (6)0.0442 (6)0.0348 (6)0.0008 (5)0.0120 (5)0.0042 (5)
C20.0394 (6)0.0495 (7)0.0370 (6)0.0090 (5)0.0059 (5)0.0002 (5)
C30.0402 (6)0.0390 (6)0.0399 (6)0.0098 (5)0.0088 (5)0.0005 (5)
C40.0347 (5)0.0379 (6)0.0325 (5)0.0032 (4)0.0121 (4)0.0010 (4)
C50.0483 (6)0.0385 (6)0.0340 (6)0.0070 (5)0.0081 (5)0.0034 (5)
C60.0562 (7)0.0354 (6)0.0392 (6)0.0053 (5)0.0121 (5)0.0008 (5)
C70.0390 (5)0.0355 (6)0.0360 (6)0.0043 (4)0.0127 (4)0.0007 (4)
C80.0399 (5)0.0347 (6)0.0347 (5)0.0029 (4)0.0122 (4)0.0018 (4)
C90.0424 (6)0.0338 (6)0.0377 (6)0.0021 (4)0.0122 (5)0.0007 (4)
C100.0433 (6)0.0362 (6)0.0362 (6)0.0031 (5)0.0107 (5)0.0033 (4)
C110.0410 (6)0.0366 (6)0.0363 (6)0.0029 (5)0.0082 (5)0.0011 (4)
C120.0399 (6)0.0363 (6)0.0376 (6)0.0070 (4)0.0082 (5)0.0013 (4)
C130.0348 (5)0.0371 (6)0.0356 (6)0.0073 (4)0.0058 (4)0.0023 (4)
C140.0470 (6)0.0370 (6)0.0386 (6)0.0076 (5)0.0017 (5)0.0034 (5)
C150.0449 (6)0.0418 (6)0.0343 (6)0.0071 (5)0.0027 (5)0.0002 (5)
C160.0358 (5)0.0394 (6)0.0366 (6)0.0051 (4)0.0061 (4)0.0033 (5)
C170.0426 (6)0.0389 (6)0.0343 (6)0.0052 (5)0.0071 (5)0.0019 (4)
C180.0404 (6)0.0427 (6)0.0303 (5)0.0063 (5)0.0044 (4)0.0001 (4)
C190.0421 (6)0.0460 (7)0.0356 (6)0.0059 (5)0.0015 (5)0.0038 (5)
C200.0507 (7)0.0500 (8)0.0459 (7)0.0010 (6)0.0024 (6)0.0076 (6)
C210.0630 (8)0.0682 (10)0.0487 (8)0.0002 (7)0.0014 (7)0.0179 (7)
N10.0642 (7)0.0516 (7)0.0402 (6)0.0015 (5)0.0099 (5)0.0085 (5)
O10.0662 (7)0.0855 (8)0.0591 (7)0.0083 (6)0.0112 (5)0.0247 (6)
O20.1151 (9)0.0488 (6)0.0550 (6)0.0114 (6)0.0010 (6)0.0145 (5)
O30.0494 (5)0.0407 (5)0.0370 (4)0.0009 (4)0.0005 (4)0.0028 (3)
Geometric parameters (Å, º) top
C1—C21.3806 (18)C13—C141.3928 (16)
C1—C61.3821 (17)C13—C181.3977 (16)
C1—N11.4565 (16)C14—C151.3848 (17)
C2—C31.3760 (17)C14—H140.9400
C2—H20.9400C15—C161.3829 (17)
C3—C41.3977 (15)C15—H150.9400
C3—H30.9400C16—O31.3638 (14)
C4—C51.3996 (16)C16—C171.4009 (16)
C4—C71.4535 (15)C17—C181.3719 (16)
C5—C61.3739 (17)C17—H170.9400
C5—H50.9400C18—H180.9400
C6—H60.9400C19—O31.4362 (14)
C7—C81.3422 (15)C19—C201.4980 (18)
C7—H70.9400C19—H19A0.9800
C8—C91.4366 (16)C19—H19B0.9800
C8—H80.9400C20—C211.5176 (19)
C9—C101.3514 (16)C20—H20A0.9800
C9—H90.9400C20—H20B0.9800
C10—C111.4405 (16)C21—H21A0.9700
C10—H100.9400C21—H21B0.9700
C11—C121.3446 (15)C21—H21C0.9700
C11—H110.9400N1—O11.2230 (15)
C12—C131.4560 (16)N1—O21.2253 (16)
C12—H120.9400
C2—C1—C6121.60 (11)C18—C13—C12123.99 (10)
C2—C1—N1119.13 (11)C15—C14—C13122.36 (11)
C6—C1—N1119.27 (11)C15—C14—H14118.8
C3—C2—C1118.35 (11)C13—C14—H14118.8
C3—C2—H2120.8C16—C15—C14119.45 (11)
C1—C2—H2120.8C16—C15—H15120.3
C2—C3—C4122.03 (11)C14—C15—H15120.3
C2—C3—H3119.0O3—C16—C15124.92 (10)
C4—C3—H3119.0O3—C16—C17115.93 (10)
C3—C4—C5117.63 (10)C15—C16—C17119.15 (11)
C3—C4—C7119.32 (10)C18—C17—C16120.51 (11)
C5—C4—C7123.05 (10)C18—C17—H17119.7
C6—C5—C4121.10 (11)C16—C17—H17119.7
C6—C5—H5119.4C17—C18—C13121.34 (10)
C4—C5—H5119.4C17—C18—H18119.3
C5—C6—C1119.28 (11)C13—C18—H18119.3
C5—C6—H6120.4O3—C19—C20109.26 (10)
C1—C6—H6120.4O3—C19—H19A109.8
C8—C7—C4126.91 (11)C20—C19—H19A109.8
C8—C7—H7116.5O3—C19—H19B109.8
C4—C7—H7116.5C20—C19—H19B109.8
C7—C8—C9123.26 (11)H19A—C19—H19B108.3
C7—C8—H8118.4C19—C20—C21111.03 (12)
C9—C8—H8118.4C19—C20—H20A109.4
C10—C9—C8126.40 (11)C21—C20—H20A109.4
C10—C9—H9116.8C19—C20—H20B109.4
C8—C9—H9116.8C21—C20—H20B109.4
C9—C10—C11127.29 (11)H20A—C20—H20B108.0
C9—C10—H10116.4C20—C21—H21A109.5
C11—C10—H10116.4C20—C21—H21B109.5
C12—C11—C10122.04 (11)H21A—C21—H21B109.5
C12—C11—H11119.0C20—C21—H21C109.5
C10—C11—H11119.0H21A—C21—H21C109.5
C11—C12—C13128.34 (11)H21B—C21—H21C109.5
C11—C12—H12115.8O1—N1—O2123.32 (12)
C13—C12—H12115.8O1—N1—C1118.60 (12)
C14—C13—C18117.09 (10)O2—N1—C1118.08 (11)
C14—C13—C12118.92 (10)C16—O3—C19117.27 (9)
C6—C1—C2—C30.11 (18)C18—C13—C14—C152.19 (18)
N1—C1—C2—C3179.30 (11)C12—C13—C14—C15177.69 (11)
C1—C2—C3—C40.43 (18)C13—C14—C15—C160.12 (19)
C2—C3—C4—C50.29 (17)C14—C15—C16—O3177.26 (11)
C2—C3—C4—C7179.40 (10)C14—C15—C16—C172.54 (18)
C3—C4—C5—C60.39 (17)O3—C16—C17—C18176.71 (10)
C7—C4—C5—C6179.92 (11)C15—C16—C17—C183.11 (17)
C4—C5—C6—C10.91 (18)C16—C17—C18—C130.99 (17)
C2—C1—C6—C50.78 (18)C14—C13—C18—C171.61 (17)
N1—C1—C6—C5179.96 (11)C12—C13—C18—C17178.26 (10)
C3—C4—C7—C8175.01 (11)O3—C19—C20—C21176.62 (11)
C5—C4—C7—C85.31 (18)C2—C1—N1—O112.90 (18)
C4—C7—C8—C9179.65 (10)C6—C1—N1—O1167.89 (12)
C7—C8—C9—C10176.68 (11)C2—C1—N1—O2166.30 (13)
C8—C9—C10—C110.23 (19)C6—C1—N1—O212.90 (18)
C9—C10—C11—C12172.82 (11)C15—C16—O3—C191.22 (17)
C10—C11—C12—C13178.20 (10)C17—C16—O3—C19178.98 (9)
C11—C12—C13—C14176.22 (11)C20—C19—O3—C16179.74 (10)
C11—C12—C13—C183.65 (19)
(IV) (E,Z,E)-1-(4-n-butoxyphenyl)-6-(4-nitrophenyl)hexa-1,3,5-triene top
Crystal data top
C22H23NO3F(000) = 744
Mr = 349.41Dx = 1.222 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 5402 reflections
a = 17.0571 (10) Åθ = 2.4–28.1°
b = 6.7244 (4) ŵ = 0.08 mm1
c = 17.2095 (10) ÅT = 183 K
β = 105.884 (1)°Rectangular, orange
V = 1898.54 (19) Å30.40 × 0.15 × 0.04 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
4309 independent reflections
Radiation source: rotating unit3596 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.019
Detector resolution: 8.366 pixels mm-1θmax = 28.2°, θmin = 2.4°
ϕ and ω scansh = 2120
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
k = 84
Tmin = 0.888, Tmax = 0.997l = 2021
11363 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.130H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0687P)2 + 0.3548P]
where P = (Fo2 + 2Fc2)/3
4309 reflections(Δ/σ)max = 0.001
236 parametersΔρmax = 0.21 e Å3
0 restraintsΔρmin = 0.26 e Å3
Crystal data top
C22H23NO3V = 1898.54 (19) Å3
Mr = 349.41Z = 4
Monoclinic, P21/cMo Kα radiation
a = 17.0571 (10) ŵ = 0.08 mm1
b = 6.7244 (4) ÅT = 183 K
c = 17.2095 (10) Å0.40 × 0.15 × 0.04 mm
β = 105.884 (1)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
4309 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3596 reflections with I > 2σ(I)
Tmin = 0.888, Tmax = 0.997Rint = 0.019
11363 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0460 restraints
wR(F2) = 0.130H-atom parameters constrained
S = 1.05Δρmax = 0.21 e Å3
4309 reflectionsΔρmin = 0.26 e Å3
236 parameters
Special details top

Experimental. Sheldrick, G. M. (1996). SADABS, program for scaling and correction of area detector data. University of Göttingen, Germany.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.66312 (7)0.82779 (19)0.58353 (7)0.0379 (3)
C20.69457 (8)0.6376 (2)0.58700 (8)0.0447 (3)
H20.74070.59990.62940.054*
C30.65767 (8)0.50399 (19)0.52772 (7)0.0416 (3)
H30.67900.37300.52960.050*
C40.58955 (7)0.55577 (17)0.46470 (7)0.0335 (2)
C50.56058 (7)0.75163 (18)0.46264 (7)0.0360 (3)
H50.51520.79160.41980.043*
C60.59677 (7)0.88668 (18)0.52161 (7)0.0373 (3)
H60.57651.01860.51980.045*
C70.55240 (7)0.40636 (17)0.40463 (7)0.0360 (3)
H70.57860.28050.40950.043*
C80.48492 (7)0.42851 (17)0.34316 (7)0.0355 (3)
H80.45760.55300.33710.043*
C90.45174 (7)0.27339 (18)0.28592 (7)0.0376 (3)
H90.47690.14640.29610.045*
C100.38838 (7)0.29124 (18)0.21929 (7)0.0379 (3)
H100.37300.17480.18750.045*
C110.34151 (7)0.46822 (18)0.19116 (7)0.0378 (3)
H110.34960.58150.22540.045*
C120.28687 (7)0.47921 (18)0.11832 (7)0.0370 (3)
H120.27960.36260.08590.044*
C130.23756 (7)0.65117 (18)0.08378 (7)0.0356 (3)
C140.19030 (7)0.64741 (19)0.00360 (7)0.0406 (3)
H140.19110.53190.02800.049*
C150.14211 (8)0.8074 (2)0.03142 (8)0.0435 (3)
H150.11100.80140.08640.052*
C160.13960 (8)0.97538 (19)0.01405 (8)0.0426 (3)
C170.18606 (8)0.9823 (2)0.09453 (8)0.0453 (3)
H170.18451.09730.12610.054*
C180.23406 (8)0.82371 (19)0.12820 (7)0.0417 (3)
H180.26560.83120.18290.050*
C190.04326 (9)1.1428 (2)0.09347 (8)0.0521 (3)
H19A0.00441.03020.10260.063*
H19B0.07721.13050.13160.063*
C200.00246 (9)1.3378 (2)0.10661 (9)0.0545 (4)
H20A0.03831.34420.07010.065*
H20B0.03721.44850.09220.065*
C210.05353 (11)1.3651 (3)0.19259 (10)0.0738 (5)
H21A0.09181.25190.20800.089*
H21B0.01761.36520.22910.089*
C220.10171 (11)1.5589 (3)0.20315 (12)0.0838 (6)
H22A0.13671.56010.16650.126*
H22B0.13551.56970.25910.126*
H22C0.06391.67150.19070.126*
N10.70014 (7)0.97044 (18)0.64688 (7)0.0492 (3)
O10.76613 (8)0.9295 (2)0.69331 (7)0.0785 (4)
O20.66309 (7)1.12423 (15)0.65132 (6)0.0616 (3)
O30.09348 (6)1.14076 (15)0.01225 (6)0.0558 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0412 (6)0.0404 (6)0.0327 (6)0.0011 (5)0.0112 (5)0.0004 (5)
C20.0418 (6)0.0485 (7)0.0392 (6)0.0107 (5)0.0035 (5)0.0037 (5)
C30.0433 (6)0.0389 (6)0.0415 (6)0.0118 (5)0.0096 (5)0.0042 (5)
C40.0361 (5)0.0360 (6)0.0315 (5)0.0056 (5)0.0145 (4)0.0050 (4)
C50.0382 (6)0.0371 (6)0.0324 (6)0.0079 (5)0.0093 (4)0.0039 (4)
C60.0431 (6)0.0347 (6)0.0354 (6)0.0069 (5)0.0127 (5)0.0037 (5)
C70.0429 (6)0.0318 (6)0.0365 (6)0.0064 (5)0.0166 (5)0.0045 (4)
C80.0416 (6)0.0329 (6)0.0353 (6)0.0038 (5)0.0162 (5)0.0028 (4)
C90.0457 (6)0.0321 (6)0.0387 (6)0.0042 (5)0.0175 (5)0.0014 (5)
C100.0450 (6)0.0341 (6)0.0378 (6)0.0004 (5)0.0171 (5)0.0030 (5)
C110.0410 (6)0.0349 (6)0.0392 (6)0.0009 (5)0.0141 (5)0.0033 (5)
C120.0378 (6)0.0358 (6)0.0395 (6)0.0033 (5)0.0138 (5)0.0040 (5)
C130.0336 (6)0.0363 (6)0.0374 (6)0.0050 (5)0.0108 (4)0.0012 (5)
C140.0371 (6)0.0429 (7)0.0409 (6)0.0038 (5)0.0090 (5)0.0070 (5)
C150.0389 (6)0.0500 (7)0.0383 (6)0.0033 (5)0.0052 (5)0.0016 (5)
C160.0414 (6)0.0385 (6)0.0453 (7)0.0019 (5)0.0076 (5)0.0040 (5)
C170.0522 (7)0.0370 (6)0.0431 (7)0.0016 (5)0.0070 (6)0.0043 (5)
C180.0465 (7)0.0392 (6)0.0360 (6)0.0019 (5)0.0059 (5)0.0023 (5)
C190.0496 (8)0.0602 (9)0.0433 (7)0.0073 (6)0.0072 (6)0.0050 (6)
C200.0507 (8)0.0525 (8)0.0576 (8)0.0036 (6)0.0100 (6)0.0116 (7)
C210.0629 (10)0.1044 (15)0.0563 (9)0.0327 (10)0.0202 (8)0.0215 (9)
C220.0665 (11)0.1091 (16)0.0836 (12)0.0365 (11)0.0341 (9)0.0475 (12)
N10.0572 (7)0.0494 (7)0.0377 (6)0.0008 (5)0.0076 (5)0.0020 (5)
O10.0676 (7)0.0828 (9)0.0645 (7)0.0102 (6)0.0167 (6)0.0209 (6)
O20.0853 (8)0.0427 (6)0.0500 (6)0.0064 (5)0.0068 (5)0.0070 (4)
O30.0639 (6)0.0435 (5)0.0494 (6)0.0067 (4)0.0024 (5)0.0027 (4)
Geometric parameters (Å, º) top
C1—C21.3815 (18)C13—C181.3997 (17)
C1—C61.3831 (16)C14—C151.3875 (18)
C1—N11.4597 (16)C14—H140.9500
C2—C31.3759 (18)C15—C161.3815 (19)
C2—H20.9500C15—H150.9500
C3—C41.3991 (16)C16—O31.3658 (16)
C3—H30.9500C16—C171.3957 (17)
C4—C51.4038 (16)C17—C181.3727 (18)
C4—C71.4564 (17)C17—H170.9500
C5—C61.3759 (17)C18—H180.9500
C5—H50.9500C19—O31.4257 (16)
C6—H60.9500C19—C201.511 (2)
C7—C81.3415 (16)C19—H19A0.9900
C7—H70.9500C19—H19B0.9900
C8—C91.4400 (17)C20—C211.509 (2)
C8—H80.9500C20—H20A0.9900
C9—C101.3486 (17)C20—H20B0.9900
C9—H90.9500C21—C221.525 (3)
C10—C111.4415 (17)C21—H21A0.9900
C10—H100.9500C21—H21B0.9900
C11—C121.3438 (17)C22—H22A0.9800
C11—H110.9500C22—H22B0.9800
C12—C131.4575 (17)C22—H22C0.9800
C12—H120.9500N1—O11.2203 (15)
C13—C141.3948 (16)N1—O21.2252 (16)
C2—C1—C6121.63 (12)C13—C14—H14119.0
C2—C1—N1119.50 (11)C16—C15—C14119.64 (11)
C6—C1—N1118.86 (11)C16—C15—H15120.2
C3—C2—C1118.63 (11)C14—C15—H15120.2
C3—C2—H2120.7O3—C16—C15125.63 (12)
C1—C2—H2120.7O3—C16—C17114.87 (12)
C2—C3—C4121.77 (11)C15—C16—C17119.49 (12)
C2—C3—H3119.1C18—C17—C16120.26 (12)
C4—C3—H3119.1C18—C17—H17119.9
C3—C4—C5117.71 (11)C16—C17—H17119.9
C3—C4—C7119.09 (11)C17—C18—C13121.55 (11)
C5—C4—C7123.19 (10)C17—C18—H18119.2
C6—C5—C4121.12 (11)C13—C18—H18119.2
C6—C5—H5119.4O3—C19—C20107.60 (12)
C4—C5—H5119.4O3—C19—H19A110.2
C5—C6—C1119.13 (11)C20—C19—H19A110.2
C5—C6—H6120.4O3—C19—H19B110.2
C1—C6—H6120.4C20—C19—H19B110.2
C8—C7—C4126.58 (11)H19A—C19—H19B108.5
C8—C7—H7116.7C21—C20—C19112.84 (14)
C4—C7—H7116.7C21—C20—H20A109.0
C7—C8—C9123.43 (11)C19—C20—H20A109.0
C7—C8—H8118.3C21—C20—H20B109.0
C9—C8—H8118.3C19—C20—H20B109.0
C10—C9—C8126.20 (11)H20A—C20—H20B107.8
C10—C9—H9116.9C20—C21—C22111.61 (16)
C8—C9—H9116.9C20—C21—H21A109.3
C9—C10—C11126.92 (11)C22—C21—H21A109.3
C9—C10—H10116.5C20—C21—H21B109.3
C11—C10—H10116.5C22—C21—H21B109.3
C12—C11—C10122.55 (11)H21A—C21—H21B108.0
C12—C11—H11118.7C21—C22—H22A109.5
C10—C11—H11118.7C21—C22—H22B109.5
C11—C12—C13126.84 (11)H22A—C22—H22B109.5
C11—C12—H12116.6C21—C22—H22C109.5
C13—C12—H12116.6H22A—C22—H22C109.5
C14—C13—C18117.12 (11)H22B—C22—H22C109.5
C14—C13—C12120.12 (11)O1—N1—O2123.29 (12)
C18—C13—C12122.75 (11)O1—N1—C1118.27 (12)
C15—C14—C13121.93 (12)O2—N1—C1118.44 (11)
C15—C14—H14119.0C16—O3—C19118.02 (11)
C6—C1—C2—C31.0 (2)C18—C13—C14—C150.43 (18)
N1—C1—C2—C3178.52 (11)C12—C13—C14—C15179.56 (11)
C1—C2—C3—C40.1 (2)C13—C14—C15—C160.74 (19)
C2—C3—C4—C51.34 (18)C14—C15—C16—O3178.39 (12)
C2—C3—C4—C7178.90 (11)C14—C15—C16—C170.43 (19)
C3—C4—C5—C61.47 (17)O3—C16—C17—C18179.11 (12)
C7—C4—C5—C6178.77 (10)C15—C16—C17—C180.2 (2)
C4—C5—C6—C10.41 (18)C16—C17—C18—C130.5 (2)
C2—C1—C6—C50.87 (18)C14—C13—C18—C170.18 (18)
N1—C1—C6—C5178.66 (10)C12—C13—C18—C17178.93 (12)
C3—C4—C7—C8176.45 (11)O3—C19—C20—C21175.82 (13)
C5—C4—C7—C83.80 (18)C19—C20—C21—C22177.56 (14)
C4—C7—C8—C9179.96 (10)C2—C1—N1—O112.57 (19)
C7—C8—C9—C10174.14 (11)C6—C1—N1—O1167.89 (13)
C8—C9—C10—C110.7 (2)C2—C1—N1—O2166.69 (13)
C9—C10—C11—C12170.46 (12)C6—C1—N1—O212.85 (18)
C10—C11—C12—C13178.94 (11)C15—C16—O3—C190.0 (2)
C11—C12—C13—C14172.53 (11)C17—C16—O3—C19178.88 (12)
C11—C12—C13—C188.39 (19)C20—C19—O3—C16178.64 (11)

Experimental details

(I)(II)(III)(IV)
Crystal data
Chemical formulaC19H17NO3C20H19NO3C21H21NO3C22H23NO3
Mr307.34321.36335.39349.41
Crystal system, space groupOrthorhombic, PbcnOrthorhombic, Pca21Monoclinic, P21/cMonoclinic, P21/c
Temperature (K)183183223183
a, b, c (Å)13.0541 (11), 6.9672 (6), 34.604 (3)18.914 (9), 6.880 (3), 25.927 (11)15.3615 (11), 6.8341 (5), 17.6625 (12)17.0571 (10), 6.7244 (4), 17.2095 (10)
α, β, γ (°)90, 90, 9090, 90, 9090, 106.215 (1), 9090, 105.884 (1), 90
V3)3147.2 (5)3374 (3)1780.5 (2)1898.54 (19)
Z8844
Radiation typeMo KαMo KαMo KαMo Kα
µ (mm1)0.090.090.080.08
Crystal size (mm)0.30 × 0.10 × 0.040.30 × 0.10 × 0.030.45 × 0.20 × 0.200.40 × 0.15 × 0.04
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Bruker SMART CCD area-detector
diffractometer
Bruker SMART CCD area-detector
diffractometer
Bruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Multi-scan
(SADABS; Sheldrick 1996)
Multi-scan
(SADABS; Sheldrick, 1996)
Multi-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.914, 0.9970.933, 0.9980.873, 0.9840.888, 0.997
No. of measured, independent and
observed [I > 2σ(I)] reflections
18236, 3715, 2905 11787, 2972, 1583 10440, 4007, 3307 11363, 4309, 3596
Rint0.0260.1350.0230.019
(sin θ/λ)max1)0.6660.5950.6660.666
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.136, 1.07 0.064, 0.155, 0.92 0.041, 0.116, 1.03 0.046, 0.130, 1.05
No. of reflections3715297240074309
No. of parameters209435227236
No. of restraints0100
H-atom treatmentH-atom parameters constrainedH-atom parameters constrainedH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.24, 0.190.19, 0.200.21, 0.230.21, 0.26

Computer programs: SMART (Bruker, 2001), SMART [or SAINT?], SMART, SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 1990), SHELXL97 (Sheldrick, 1997), SHELXTL (Sheldrick, 2000), SHELXTL.

Selected geometric parameters (Å, °) for (I)–(IV). top
(I)(II)(III)(IV)
C4—C71.455 (2)1.459 (10)1.4535 (15)1.4564 (17)
C7—C81.339 (2)1.347 (10)1.3422 (15)1.3415 (16)
C8—C91.4369 (19)1.447 (10)1.4366 (16)1.4400 (17)
C9—C101.345 (2)1.348 (10)1.3514 (16)1.3486 (17)
C10—C111.4397 (19)1.446 (10)1.4405 (16)1.4415 (17)
C11—C121.3367 (18)1.347 (10)1.3446 (15)1.3438 (17)
C12—C131.4582 (19)1.449 (10)1.4560 (16)1.4575 (17)
C24—C271.472 (10)
C27—C281.345 (10)
C28—C291.421 (11)
C29—C301.347 (11)
C30—C311.439 (10)
C31—C321.370 (10)
C32—C331.446 (10)
C5—C4—C7—C8-0.7 (2)-13.2 (12)5.31 (18)-3.80 (18)
C11—C12—C13—C18-7.0 (2)-1.3 (12)3.65 (19)-8.39 (19)
C25—C24—C27—C2820.9 (11)
C31—C32—C33—C38-1.6 (11)
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds