Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The title compound, [Mn7(C2H2N3)8(C2H3O2)4(OH)2]n, is composed of centrosymmetric hepta­nuclear building units with the central Mn atom on an inversion center. In the building block, three MnII ions are held together by one μ3-hydroxide group, two μ2-triazolate (trz) ligands and two μ2-acetate groups, forming an Mn3 cluster. Two Mn3 clusters are bridged by an Mn atom via two μ2-trz ligands and two μ2-O atoms from two acetate ions to construct a hepta­nuclear building block. The hepta­nuclear building units, lying parallel to each other along the b direction, form one-dimensional ladder-like chains and are further inter­linked, resulting in a three-dimensional framework through Mn—Ntrz bonds.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270107056259/av3119sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270107056259/av3119Isup2.hkl
Contains datablock I

CCDC reference: 677205

Comment top

Synthesis of inorganic coordination polymeric complexes has developed rapidly in recent years owing to their fascinating variety of topologies as well as the potential applications in many fields such as catalysis, electrical conductivity, luminescene, magnetism and nonlinear optics (Cao et al., 2002; Janiak, 2003). Ligands used in construction polymers to bridge metals usually contain oxygen or nitrogen donors, in which multitopic carboxylate and pyridine ligands are most extensively exploited as linkers. However, more and more attention is being paid to ligands that could offer alternative tether lengths, different charge-balance requirements and orientations of donor groups, and 1,2,4-triazole is one such ligand (Ouellette et al., 2006). 1,2,4-Triazole and its derivatives are very interesting ligands that can bridge as well as chelate metals, with 1,2-bridging (Milios et al., 2006) or 1,2,4-bridging forms (Ouellette et al., 2006). It can also be used as a monodentate ligand (Li et al., 2007), and most complexes with this ligand exhibit antiferromagnetic coupling (Zhou et al., 2005; Ding et al., 2006).

On the other hand, Mn-based complexes have been widely reported over the past two decades, one of the most important reasons for this interest being their paramagnetic nature. Many exhibit large ground spin states (Jones et al., 2004), many of which are thought to be the origin of the magnetic bistability displayed by single-molecule magnets (Laye & McInnes, 2004).

With this in mind, we decided to introduce MnII into the triazole ligand, considering that such metal-organic frameworks would exhibit unusual magnetic exchanging behavior (Tangoulis et al., 1998). The title complex, (I), was obtained by solvothermal reaction of 1,2,4-triazole (Htrz) with Mn(CH3COO)2·4H2O at 423 K or with Mn(CH3COCHCOCH3)2 at 443 K.

Single crystal structure analysis reveals that complex (I) is composed of heptanuclear [Mn7(trz)8(CH3COO)4(OH)2] building units, which are further interlinked through bonds formed by Mn and N atoms into a three-dimensional polymer. The heptanuclear Mn building unit, consisting of two [Mn3.5(trz)4(CH3COO)2(OH)] subunits with atom Mn4 lying on an inversion center, is centrosymmetric (Fig. 1).

In the asymmetric unit of (I), atoms Mn1, Mn2 and Mn3 are held together by three distinct bridging systems to form an Mn3 cluster, viz. (i) two µ2-bridging acetate ligands, with Mn—O distances of 2.121 (O4—Mn2), 2.175 (O2—Mn3), 2.158 (Mn3—O3) and 2.424 Å (O2—Mn1) [please check; atom labelling used in text and Fig. 1 seems to be different from that used in the CIF, and values of bond lengths and angles quoted in the text do not appear to match those provided in the CIF; s.u. values should also be given for all distances and angles where available], which are within the range 1.857–2.443 Å reported by Ouellette et al. (2006) for a similar compound; (ii) two 1,2-bridging trz ligands, with an Mn3—N5 distance of 2.198 Å, Mn1—N4 of 2.221 Å, Mn1—N1 of 2.250 Å and an Mn2—N2 distance of 2.231 Å, which are slightly longer than those reported by Milios et al. (2006); (iii) the O atom of the tridentate hydroxy group, lying out of the plane defined by the Mn3 triangle by 0.6686 Å, with distances from each of the Mn atoms of 2.2241 (Mn1), 2.1009 (Mn2) and 2.2328 Å (please check values and provide s.u. values) (Mn3), and these are also longer than those in related compounds (Ouellette et al., 2006; Milios et al., 2006). Two Mn3 clusters are bridged by the Mn4 atom via two µ2-trz ligands and two µ2-O atoms from two acetate ions to construct a heptanuclear building block, with an Mn4—O2 distance of 2.240 Å, Mn1—N7 of 2.219 Å and Mn4—N8 of 2.180 Å. To the best of our knowledge, this kind of heptanuclear building block is unprecedented.

In the asymmetric unit of complex (I), four MnII ions have two different coordination modes. Mn1, Mn3 and Mn4 are six-coordinated in a slightly distorted octahedron with coordination angles in the ranges 82.0–98.5° or 166.4–180°. Atom Mn2 possesses a twisted trigonal-bipyramidal geometry, with the equatorial atoms O4, N6 and N2 and axial atoms N12 and O1. The O4—Mn2—N12, N12—Mn2—N2 and N6—Mn2—N2 angles are 83.9, 86.8 and 87.9°, respectively.

The heptanuclear units are aligned along the b direction parallel to each other in a shoulder-to-shoulder fashion, and both sides of the two adjacent units are connected by two trz ligands, resulting in the formation of one-dimension ladder-like chains along the b axis (Fig. 2). Each chain is further interlinked with four other chains by coordination of the remaining N atoms of the trz ligands to the MnII ions in neighboring chains. This leads to the construction of a three-dimensional framework (Fig. 3).

Related literature top

For related literature, see: Cao, Sun, Liang, Hong, Tatsumi & Shi (2002); Ding et al. (2006); Janiak (2003); Jones et al. (2004); Laye & McInnes (2004); Li et al. (2007); Ouellette et al. (2006); Zhou et al. (2005).

Experimental top

The synthesis of complex (I) was achieved by two processes. In the first method, a solution of Htrz (60.1 mg, 0.87 mmol), Mn(CH3COO)2·4H2O (245.3 mg, 1 mmol), triethylamine (0.1 ml), CH3CN (8 ml), EtOH (8 ml) and water (1 ml) was stirred briefly before being moved into a 25 ml autoclave and heated at 423 K for 4 d, followed by slow cooling to room temperature. The product was washed with EtOH and water, and colorless block crystals suitable for X-ray diffraction were collected and dried in air (80 mg, 66% in yield). In the second method, a solution of Htrz (70.1 mg, 1.01 mmol), Mn(CH3COCHCOCH3)2 (253 mg, 1 mmol), NaOH (40 mg, 1 mmol), CH3CN (3 ml), EtOH (9 ml) and water (3 ml) was stirred briefly before being moved into a 25 ml autoclave and heated at 443 K for 3 d, followed by slow cooling to room temperature. The product was washed with EtOH and water, and colorless block crystals suitable for X-ray diffraction were collected and dried in air (65 mg, 43% in yield).

Refinement top

The H atom of the hydroxy group were located in an electron density map and were refined with distance restraints [O—H = 0.84 (6) Å]. The other H atoms were refined as riding on their parent C atoms [Uiso(H) = 1.2Ueq(C)].

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SMART or SAINT (Bruker, 1998); data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997a); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a); molecular graphics: SHELXTL (Sheldrick, 1997b); software used to prepare material for publication: SHELXTL (Sheldrick, 1997b).

Figures top
[Figure 1] Fig. 1. A view of the MnII coordination environment in the polymeric structure of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level and all H atoms have been omitted for clarity. [Symmetry codes: (i) x - 1/2, -y + 3/2, z - 1/2; (ii) -x + 1, -y + 2, -z; (iii) -x + 1/2, y + 1/2, -z + 1/2; (iv) x, y + 1, z; (v) -x, -y + 2, -z; (vi) x, y - 1, z; (vii) -x + 1/2, y - 1/2, -z + 1/2; (viii) x + 1/2, -y + 3/2, z + 1/2.]
[Figure 2] Fig. 2. The ladder-like one-dimensional chain of (I) along the b axis.
[Figure 3] Fig. 3. The three-dimensional packing of (I).
poly[di-µ3-acetato-di-µ2-acetato-di-µ3-hydroxy-octa-µ3– triazolato-heptamanganese(II)] top
Crystal data top
[Mn7(C2H2N3)8(C2H3O2)4(OH)2]Z = 2
Mr = 1199.30F(000) = 1194
Monoclinic, P21/nDx = 1.832 Mg m3
Hall symbol: -P 2ynMo Kα radiation, λ = 0.71073 Å
a = 14.677 (2) Åθ = 1.6–25.0°
b = 9.2626 (15) ŵ = 2.05 mm1
c = 16.990 (3) ÅT = 298 K
β = 109.717 (2)°Block, colorless
V = 2174.3 (6) Å30.22 × 0.20 × 0.17 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
3788 independent reflections
Radiation source: fine-focus sealed tube2800 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.061
phi and ω scansθmax = 25.0°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
h = 1713
Tmin = 0.662, Tmax = 0.723k = 1111
10662 measured reflectionsl = 1820
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.113H atoms treated by a mixture of independent and constrained refinement
S = 1.07 w = 1/[σ2(Fo2) + (0.0507P)2 + 1.8699P]
where P = (Fo2 + 2Fc2)/3
3788 reflections(Δ/σ)max = 0.001
298 parametersΔρmax = 1.12 e Å3
2 restraintsΔρmin = 0.44 e Å3
Crystal data top
[Mn7(C2H2N3)8(C2H3O2)4(OH)2]V = 2174.3 (6) Å3
Mr = 1199.30Z = 2
Monoclinic, P21/nMo Kα radiation
a = 14.677 (2) ŵ = 2.05 mm1
b = 9.2626 (15) ÅT = 298 K
c = 16.990 (3) Å0.22 × 0.20 × 0.17 mm
β = 109.717 (2)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
3788 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
2800 reflections with I > 2σ(I)
Tmin = 0.662, Tmax = 0.723Rint = 0.061
10662 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0382 restraints
wR(F2) = 0.113H atoms treated by a mixture of independent and constrained refinement
S = 1.07Δρmax = 1.12 e Å3
3788 reflectionsΔρmin = 0.44 e Å3
298 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mn10.75874 (4)0.58288 (7)0.05458 (4)0.02058 (18)
Mn21.01098 (5)0.58805 (7)0.19767 (4)0.02079 (18)
Mn30.50000.50000.00000.0217 (2)
Mn40.88824 (5)0.25403 (6)0.13261 (4)0.02212 (18)
N10.8443 (3)0.7891 (4)0.0833 (2)0.0272 (8)
N20.9352 (3)0.7896 (4)0.1424 (2)0.0263 (8)
N30.8961 (3)1.0172 (4)0.1041 (2)0.0317 (9)
N40.6778 (3)0.6400 (4)0.1398 (2)0.0324 (9)
N50.5842 (3)0.6016 (4)0.1177 (2)0.0305 (9)
N60.6240 (3)0.7009 (4)0.2427 (2)0.0346 (9)
N70.6471 (3)0.6946 (4)0.0583 (2)0.0273 (8)
N80.5525 (3)0.6570 (4)0.0762 (2)0.0292 (9)
N90.5613 (3)0.7933 (4)0.1807 (2)0.0313 (9)
N100.8408 (3)0.4749 (4)0.0165 (2)0.0256 (8)
N110.8865 (3)0.3456 (4)0.0123 (2)0.0272 (8)
N120.9242 (3)0.4126 (4)0.0989 (2)0.0257 (8)
O10.8749 (2)0.4857 (3)0.16275 (17)0.0216 (6)
O20.6402 (2)0.3942 (3)0.01183 (19)0.0291 (7)
O30.7334 (2)0.2210 (4)0.0860 (2)0.0438 (9)
O41.1104 (3)0.4285 (4)0.2638 (2)0.0429 (9)
O51.0453 (2)0.2377 (3)0.1882 (2)0.0376 (8)
C10.9622 (3)0.9269 (5)0.1526 (3)0.0305 (10)
H11.02140.95720.18980.037*
C20.8256 (4)0.9262 (5)0.0631 (3)0.0362 (11)
H20.76800.95690.02340.043*
C30.5556 (3)0.6412 (5)0.1802 (3)0.0326 (11)
H30.49270.62790.18010.039*
C40.6986 (4)0.6970 (6)0.2144 (3)0.0454 (14)
H40.75990.73170.24490.054*
C50.5050 (4)0.7173 (5)0.1486 (3)0.0354 (11)
H50.43860.70790.17490.042*
C60.6483 (3)0.7756 (5)0.1216 (3)0.0311 (11)
H60.70460.81700.12510.037*
C70.9344 (3)0.3150 (5)0.0378 (3)0.0306 (10)
H70.97250.23280.03180.037*
C80.8650 (3)0.5084 (5)0.0813 (3)0.0262 (10)
H80.84310.59150.11270.031*
C90.6590 (3)0.2616 (4)0.0307 (3)0.0252 (9)
C100.5874 (4)0.1493 (6)0.0158 (4)0.0509 (15)
H10A0.60240.11860.06400.061*
H10B0.52330.18940.03330.061*
H10C0.59060.06800.02010.061*
C111.1119 (3)0.2985 (5)0.2448 (3)0.0293 (10)
C121.1990 (5)0.2119 (7)0.2903 (4)0.0657 (18)
H12A1.19940.12480.25980.079*
H12B1.19780.18810.34490.079*
H12C1.25620.26700.29560.079*
H150.852 (5)0.482 (8)0.202 (3)0.098*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mn10.0180 (3)0.0224 (3)0.0190 (3)0.0014 (3)0.0033 (3)0.0005 (3)
Mn20.0201 (3)0.0208 (3)0.0186 (3)0.0007 (3)0.0027 (3)0.0017 (3)
Mn30.0190 (5)0.0260 (5)0.0166 (4)0.0020 (4)0.0015 (4)0.0000 (4)
Mn40.0252 (4)0.0183 (3)0.0199 (3)0.0004 (3)0.0038 (3)0.0030 (3)
N10.022 (2)0.0206 (19)0.0319 (19)0.0015 (15)0.0005 (16)0.0008 (16)
N20.024 (2)0.0213 (19)0.0273 (19)0.0018 (15)0.0001 (16)0.0024 (16)
N30.032 (2)0.0176 (19)0.037 (2)0.0012 (17)0.0004 (18)0.0003 (17)
N40.022 (2)0.047 (2)0.0282 (19)0.0059 (18)0.0085 (17)0.0126 (18)
N50.023 (2)0.043 (2)0.0233 (18)0.0021 (18)0.0049 (16)0.0082 (17)
N60.031 (2)0.045 (2)0.0252 (19)0.0030 (19)0.0069 (18)0.0105 (18)
N70.024 (2)0.031 (2)0.0216 (18)0.0012 (16)0.0008 (15)0.0073 (16)
N80.021 (2)0.036 (2)0.0246 (18)0.0021 (17)0.0002 (16)0.0104 (17)
N90.034 (2)0.034 (2)0.0212 (18)0.0029 (18)0.0031 (17)0.0083 (17)
N100.028 (2)0.0251 (19)0.0207 (17)0.0017 (16)0.0045 (16)0.0019 (15)
N110.036 (2)0.0241 (19)0.0228 (18)0.0048 (17)0.0118 (17)0.0036 (16)
N120.028 (2)0.0256 (19)0.0245 (18)0.0013 (16)0.0098 (16)0.0005 (16)
O10.0207 (15)0.0223 (15)0.0200 (14)0.0008 (12)0.0044 (12)0.0025 (12)
O20.0233 (17)0.0239 (16)0.0361 (17)0.0035 (13)0.0046 (14)0.0021 (13)
O30.0241 (19)0.041 (2)0.054 (2)0.0011 (15)0.0035 (17)0.0138 (17)
O40.043 (2)0.0336 (19)0.0390 (18)0.0103 (16)0.0036 (16)0.0024 (16)
O50.0299 (19)0.0368 (19)0.0424 (19)0.0003 (15)0.0074 (16)0.0012 (16)
C10.024 (2)0.025 (2)0.036 (2)0.0014 (19)0.001 (2)0.003 (2)
C20.030 (3)0.025 (2)0.040 (3)0.001 (2)0.006 (2)0.001 (2)
C30.024 (3)0.045 (3)0.026 (2)0.005 (2)0.005 (2)0.006 (2)
C40.025 (3)0.072 (4)0.036 (3)0.012 (3)0.007 (2)0.027 (3)
C50.027 (3)0.044 (3)0.028 (2)0.004 (2)0.001 (2)0.009 (2)
C60.022 (2)0.038 (3)0.028 (2)0.005 (2)0.002 (2)0.003 (2)
C70.036 (3)0.028 (2)0.028 (2)0.007 (2)0.011 (2)0.003 (2)
C80.028 (2)0.024 (2)0.027 (2)0.0039 (19)0.010 (2)0.0048 (19)
C90.020 (2)0.022 (2)0.035 (2)0.0007 (18)0.010 (2)0.0019 (19)
C100.038 (3)0.030 (3)0.069 (4)0.005 (2)0.004 (3)0.004 (3)
C110.025 (2)0.034 (3)0.029 (2)0.001 (2)0.009 (2)0.001 (2)
C120.053 (4)0.048 (3)0.072 (4)0.018 (3)0.010 (3)0.001 (3)
Geometric parameters (Å, º) top
Mn1—N102.211 (4)N6—Mn4vii2.240 (4)
Mn1—N42.224 (4)N7—C61.317 (5)
Mn1—O12.232 (3)N7—N81.363 (5)
Mn1—N12.247 (4)N8—C51.316 (6)
Mn1—N72.305 (3)N9—C51.335 (6)
Mn1—O22.399 (3)N9—C61.342 (6)
Mn2—O12.107 (3)N9—Mn2viii2.234 (3)
Mn2—O42.114 (3)N10—C81.303 (5)
Mn2—N12i2.191 (3)N10—N111.379 (5)
Mn2—N22.213 (3)N11—C71.305 (5)
Mn2—N9ii2.234 (3)N12—C81.345 (5)
Mn3—N52.178 (4)N12—C71.345 (5)
Mn3—N5iii2.178 (4)N12—Mn2i2.191 (3)
Mn3—O2iii2.226 (3)O1—H150.84 (6)
Mn3—O22.226 (3)O2—C91.276 (5)
Mn3—N8iii2.248 (3)O3—C91.234 (5)
Mn3—N82.248 (3)O4—C111.250 (5)
Mn4—O32.162 (3)O5—C111.250 (6)
Mn4—O52.181 (3)C1—H10.9300
Mn4—N112.206 (3)C2—H20.9300
Mn4—O12.230 (3)C3—H30.9300
Mn4—N6iv2.240 (4)C4—H40.9300
Mn4—N3v2.258 (4)C5—H50.9300
N1—C21.320 (6)C6—H60.9300
N1—N21.374 (5)C7—H70.9300
N2—C11.325 (5)C8—H80.9300
N3—C11.334 (6)C9—C101.500 (6)
N3—C21.335 (6)C10—H10A0.9600
N3—Mn4vi2.258 (4)C10—H10B0.9600
N4—C41.310 (6)C10—H10C0.9600
N4—N51.344 (5)C11—C121.486 (7)
N5—C31.320 (5)C12—H12A0.9600
N6—C31.313 (6)C12—H12B0.9600
N6—C41.337 (6)C12—H12C0.9600
N10—Mn1—N4166.36 (14)C6—N7—N8104.9 (3)
N10—Mn1—O182.04 (12)C6—N7—Mn1137.2 (3)
N4—Mn1—O189.26 (13)N8—N7—Mn1117.1 (2)
N10—Mn1—N197.77 (13)C5—N8—N7106.1 (3)
N4—Mn1—N192.21 (14)C5—N8—Mn3129.5 (3)
O1—Mn1—N187.04 (12)N7—N8—Mn3123.9 (3)
N10—Mn1—N796.56 (13)C5—N9—C6101.1 (3)
N4—Mn1—N792.81 (14)C5—N9—Mn2viii125.5 (3)
O1—Mn1—N7175.83 (12)C6—N9—Mn2viii133.4 (3)
N1—Mn1—N789.27 (13)C8—N10—N11105.5 (3)
N10—Mn1—O288.77 (12)C8—N10—Mn1135.0 (3)
N4—Mn1—O283.00 (12)N11—N10—Mn1119.3 (2)
O1—Mn1—O2103.30 (10)C7—N11—N10105.2 (3)
N1—Mn1—O2168.49 (12)C7—N11—Mn4132.9 (3)
N7—Mn1—O280.55 (12)N10—N11—Mn4121.0 (2)
O1—Mn2—O4104.72 (13)C8—N12—C7100.6 (4)
O1—Mn2—N12i113.49 (12)C8—N12—Mn2i130.7 (3)
O4—Mn2—N12i90.30 (14)C7—N12—Mn2i128.7 (3)
O1—Mn2—N288.12 (12)Mn2—O1—Mn4110.43 (12)
O4—Mn2—N2166.63 (14)Mn2—O1—Mn1116.03 (12)
N12i—Mn2—N287.90 (13)Mn4—O1—Mn1107.50 (12)
O1—Mn2—N9ii117.89 (13)Mn2—O1—H15113 (5)
O4—Mn2—N9ii84.18 (14)Mn4—O1—H15104 (5)
N12i—Mn2—N9ii128.03 (14)Mn1—O1—H15106 (5)
N2—Mn2—N9ii86.51 (13)C9—O2—Mn3124.1 (3)
N5—Mn3—N5iii180.0C9—O2—Mn1123.5 (3)
N5—Mn3—O2iii96.53 (13)Mn3—O2—Mn1105.11 (11)
N5iii—Mn3—O2iii83.47 (13)C9—O3—Mn4141.9 (3)
N5—Mn3—O283.47 (13)C11—O4—Mn2127.3 (3)
N5iii—Mn3—O296.53 (13)C11—O5—Mn4137.7 (3)
O2iii—Mn3—O2180.0N2—C1—N3113.5 (4)
N5—Mn3—N8iii87.11 (14)N2—C1—H1123.2
N5iii—Mn3—N8iii92.89 (14)N3—C1—H1123.2
O2iii—Mn3—N8iii81.43 (12)N1—C2—N3114.5 (4)
O2—Mn3—N8iii98.57 (12)N1—C2—H2122.7
N5—Mn3—N892.89 (14)N3—C2—H2122.7
N5iii—Mn3—N887.11 (14)N6—C3—N5113.8 (4)
O2iii—Mn3—N898.57 (12)N6—C3—H3123.1
O2—Mn3—N881.43 (12)N5—C3—H3123.1
N8iii—Mn3—N8180.0N4—C4—N6114.0 (4)
O3—Mn4—O5167.34 (13)N4—C4—H4123.0
O3—Mn4—N1191.90 (14)N6—C4—H4123.0
O5—Mn4—N1196.21 (13)N8—C5—N9113.7 (4)
O3—Mn4—O193.28 (12)N8—C5—H5123.2
O5—Mn4—O197.41 (11)N9—C5—H5123.2
N11—Mn4—O182.43 (11)N7—C6—N9114.2 (4)
O3—Mn4—N6iv84.55 (14)N7—C6—H6122.9
O5—Mn4—N6iv89.18 (13)N9—C6—H6122.9
N11—Mn4—N6iv168.93 (14)N11—C7—N12114.4 (4)
O1—Mn4—N6iv87.30 (13)N11—C7—H7122.8
O3—Mn4—N3v84.71 (14)N12—C7—H7122.8
O5—Mn4—N3v84.41 (13)N10—C8—N12114.3 (4)
N11—Mn4—N3v99.23 (13)N10—C8—H8122.8
O1—Mn4—N3v177.41 (12)N12—C8—H8122.8
N6iv—Mn4—N3v90.89 (14)O3—C9—O2123.0 (4)
C2—N1—N2104.6 (3)O3—C9—C10118.2 (4)
C2—N1—Mn1135.2 (3)O2—C9—C10118.8 (4)
N2—N1—Mn1119.7 (2)C9—C10—H10A109.5
C1—N2—N1105.8 (3)C9—C10—H10B109.5
C1—N2—Mn2132.0 (3)H10A—C10—H10B109.5
N1—N2—Mn2122.2 (2)C9—C10—H10C109.5
C1—N3—C2101.5 (4)H10A—C10—H10C109.5
C1—N3—Mn4vi123.8 (3)H10B—C10—H10C109.5
C2—N3—Mn4vi129.7 (3)O4—C11—O5123.7 (4)
C4—N4—N5105.1 (4)O4—C11—C12118.2 (5)
C4—N4—Mn1136.4 (3)O5—C11—C12118.0 (4)
N5—N4—Mn1118.4 (3)C11—C12—H12A109.5
C3—N5—N4106.0 (3)C11—C12—H12B109.5
C3—N5—Mn3128.5 (3)H12A—C12—H12B109.5
N4—N5—Mn3125.5 (3)C11—C12—H12C109.5
C3—N6—C4101.2 (4)H12A—C12—H12C109.5
C3—N6—Mn4vii125.0 (3)H12B—C12—H12C109.5
C4—N6—Mn4vii133.1 (3)
N10—Mn1—N1—C2115.5 (4)N12i—Mn2—O1—Mn161.26 (17)
N4—Mn1—N1—C273.8 (5)N2—Mn2—O1—Mn125.63 (15)
O1—Mn1—N1—C2162.9 (4)N9ii—Mn2—O1—Mn1110.68 (16)
N7—Mn1—N1—C219.0 (5)O3—Mn4—O1—Mn2172.02 (14)
O2—Mn1—N1—C28.7 (9)O5—Mn4—O1—Mn214.78 (14)
N10—Mn1—N1—N273.8 (3)N11—Mn4—O1—Mn280.54 (14)
N4—Mn1—N1—N296.9 (3)N6iv—Mn4—O1—Mn2103.59 (15)
O1—Mn1—N1—N27.7 (3)O3—Mn4—O1—Mn144.55 (14)
N7—Mn1—N1—N2170.3 (3)O5—Mn4—O1—Mn1142.25 (12)
O2—Mn1—N1—N2162.0 (5)N11—Mn4—O1—Mn146.93 (14)
C2—N1—N2—C10.4 (4)N6iv—Mn4—O1—Mn1128.93 (14)
Mn1—N1—N2—C1172.8 (3)N10—Mn1—O1—Mn275.58 (15)
C2—N1—N2—Mn2177.2 (3)N4—Mn1—O1—Mn2114.96 (15)
Mn1—N1—N2—Mn29.6 (4)N1—Mn1—O1—Mn222.70 (15)
O1—Mn2—N2—C1161.1 (4)O2—Mn1—O1—Mn2162.41 (13)
O4—Mn2—N2—C12.8 (8)N10—Mn1—O1—Mn448.57 (13)
N12i—Mn2—N2—C185.3 (4)N4—Mn1—O1—Mn4120.90 (14)
N9ii—Mn2—N2—C143.1 (4)N1—Mn1—O1—Mn4146.85 (14)
O1—Mn2—N2—N121.9 (3)O2—Mn1—O1—Mn438.27 (13)
O4—Mn2—N2—N1174.1 (5)N5—Mn3—O2—C9107.1 (3)
N12i—Mn2—N2—N191.7 (3)N5iii—Mn3—O2—C972.9 (3)
N9ii—Mn2—N2—N1140.0 (3)N8iii—Mn3—O2—C921.0 (3)
N10—Mn1—N4—C495.1 (8)N8—Mn3—O2—C9159.0 (3)
O1—Mn1—N4—C444.9 (5)N5—Mn3—O2—Mn143.82 (13)
N1—Mn1—N4—C442.1 (5)N5iii—Mn3—O2—Mn1136.18 (13)
N7—Mn1—N4—C4131.5 (5)N8iii—Mn3—O2—Mn1129.89 (13)
O2—Mn1—N4—C4148.4 (5)N8—Mn3—O2—Mn150.11 (13)
N10—Mn1—N4—N578.9 (7)N10—Mn1—O2—C961.5 (3)
O1—Mn1—N4—N5129.1 (3)N4—Mn1—O2—C9107.6 (3)
N1—Mn1—N4—N5143.9 (3)O1—Mn1—O2—C920.0 (3)
N7—Mn1—N4—N554.5 (3)N1—Mn1—O2—C9173.5 (6)
O2—Mn1—N4—N525.6 (3)N7—Mn1—O2—C9158.4 (3)
C4—N4—N5—C31.1 (5)N10—Mn1—O2—Mn3147.35 (14)
Mn1—N4—N5—C3176.8 (3)N4—Mn1—O2—Mn343.55 (14)
C4—N4—N5—Mn3179.7 (4)O1—Mn1—O2—Mn3131.13 (12)
Mn1—N4—N5—Mn34.6 (5)N1—Mn1—O2—Mn322.4 (7)
O2iii—Mn3—N5—C332.4 (4)N7—Mn1—O2—Mn350.49 (13)
O2—Mn3—N5—C3147.6 (4)O5—Mn4—O3—C9150.1 (5)
N8iii—Mn3—N5—C348.6 (4)N11—Mn4—O3—C920.2 (5)
N8—Mn3—N5—C3131.4 (4)O1—Mn4—O3—C962.3 (5)
O2iii—Mn3—N5—N4145.9 (4)N6iv—Mn4—O3—C9149.2 (5)
O2—Mn3—N5—N434.1 (4)N3v—Mn4—O3—C9119.3 (5)
N8iii—Mn3—N5—N4133.1 (4)O1—Mn2—O4—C1143.0 (4)
N8—Mn3—N5—N446.9 (4)N12i—Mn2—O4—C1171.4 (4)
N10—Mn1—N7—C650.2 (5)N2—Mn2—O4—C11153.5 (5)
N4—Mn1—N7—C6139.7 (5)N9ii—Mn2—O4—C11160.4 (4)
N1—Mn1—N7—C647.5 (5)O3—Mn4—O5—C11121.2 (6)
O2—Mn1—N7—C6137.8 (5)N11—Mn4—O5—C11109.3 (4)
N10—Mn1—N7—N8117.8 (3)O1—Mn4—O5—C1126.2 (5)
N4—Mn1—N7—N852.3 (3)N6iv—Mn4—O5—C1161.0 (5)
N1—Mn1—N7—N8144.4 (3)N3v—Mn4—O5—C11152.0 (5)
O2—Mn1—N7—N830.2 (3)N1—N2—C1—N30.4 (5)
C6—N7—N8—C50.4 (5)Mn2—N2—C1—N3176.9 (3)
Mn1—N7—N8—C5171.2 (3)C2—N3—C1—N20.2 (5)
C6—N7—N8—Mn3173.7 (3)Mn4vi—N3—C1—N2157.4 (3)
Mn1—N7—N8—Mn32.1 (4)N2—N1—C2—N30.4 (5)
N5—Mn3—N8—C5141.1 (4)Mn1—N1—C2—N3171.3 (3)
N5iii—Mn3—N8—C538.9 (4)C1—N3—C2—N10.1 (6)
O2iii—Mn3—N8—C544.1 (4)Mn4vi—N3—C2—N1155.1 (3)
O2—Mn3—N8—C5135.9 (4)C4—N6—C3—N50.4 (6)
N5—Mn3—N8—N747.2 (3)Mn4vii—N6—C3—N5170.8 (3)
N5iii—Mn3—N8—N7132.8 (3)N4—N5—C3—N61.0 (6)
O2iii—Mn3—N8—N7144.2 (3)Mn3—N5—C3—N6179.5 (3)
O2—Mn3—N8—N735.8 (3)N5—N4—C4—N61.0 (6)
N4—Mn1—N10—C8168.7 (5)Mn1—N4—C4—N6175.5 (4)
O1—Mn1—N10—C8140.5 (4)C3—N6—C4—N40.4 (6)
N1—Mn1—N10—C854.6 (4)Mn4vii—N6—C4—N4170.6 (3)
N7—Mn1—N10—C835.6 (4)N7—N8—C5—N90.1 (6)
O2—Mn1—N10—C8115.9 (4)Mn3—N8—C5—N9172.9 (3)
N4—Mn1—N10—N1117.2 (7)C6—N9—C5—N80.3 (5)
O1—Mn1—N10—N1133.7 (3)Mn2viii—N9—C5—N8179.7 (3)
N1—Mn1—N10—N11119.5 (3)N8—N7—C6—N90.6 (5)
N7—Mn1—N10—N11150.3 (3)Mn1—N7—C6—N9168.3 (3)
O2—Mn1—N10—N1170.0 (3)C5—N9—C6—N70.6 (5)
C8—N10—N11—C70.6 (4)Mn2viii—N9—C6—N7179.4 (3)
Mn1—N10—N11—C7175.1 (3)N10—N11—C7—N120.7 (5)
C8—N10—N11—Mn4170.9 (3)Mn4—N11—C7—N12169.3 (3)
Mn1—N10—N11—Mn44.8 (4)C8—N12—C7—N110.4 (5)
O3—Mn4—N11—C7126.9 (4)Mn2i—N12—C7—N11179.8 (3)
O5—Mn4—N11—C743.4 (4)N11—N10—C8—N120.4 (5)
O1—Mn4—N11—C7140.0 (4)Mn1—N10—C8—N12174.3 (3)
N6iv—Mn4—N11—C7162.1 (7)C7—N12—C8—N100.1 (5)
N3v—Mn4—N11—C742.0 (4)Mn2i—N12—C8—N10179.3 (3)
O3—Mn4—N11—N1065.9 (3)Mn4—O3—C9—O245.7 (7)
O5—Mn4—N11—N10123.8 (3)Mn4—O3—C9—C10134.6 (5)
O1—Mn4—N11—N1027.1 (3)Mn3—O2—C9—O3130.5 (4)
N6iv—Mn4—N11—N105.1 (9)Mn1—O2—C9—O315.2 (6)
N3v—Mn4—N11—N10150.9 (3)Mn3—O2—C9—C1049.2 (5)
O4—Mn2—O1—Mn435.54 (15)Mn1—O2—C9—C10165.1 (3)
N12i—Mn2—O1—Mn461.35 (16)Mn2—O4—C11—O510.2 (7)
N2—Mn2—O1—Mn4148.24 (14)Mn2—O4—C11—C12167.9 (4)
N9ii—Mn2—O1—Mn4126.71 (14)Mn4—O5—C11—O432.0 (7)
O4—Mn2—O1—Mn1158.16 (14)Mn4—O5—C11—C12149.8 (4)
Symmetry codes: (i) x+2, y+1, z; (ii) x+1/2, y+3/2, z+1/2; (iii) x+1, y+1, z; (iv) x+3/2, y1/2, z+1/2; (v) x, y1, z; (vi) x, y+1, z; (vii) x+3/2, y+1/2, z+1/2; (viii) x1/2, y+3/2, z1/2.

Experimental details

Crystal data
Chemical formula[Mn7(C2H2N3)8(C2H3O2)4(OH)2]
Mr1199.30
Crystal system, space groupMonoclinic, P21/n
Temperature (K)298
a, b, c (Å)14.677 (2), 9.2626 (15), 16.990 (3)
β (°) 109.717 (2)
V3)2174.3 (6)
Z2
Radiation typeMo Kα
µ (mm1)2.05
Crystal size (mm)0.22 × 0.20 × 0.17
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 1998)
Tmin, Tmax0.662, 0.723
No. of measured, independent and
observed [I > 2σ(I)] reflections
10662, 3788, 2800
Rint0.061
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.113, 1.07
No. of reflections3788
No. of parameters298
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)1.12, 0.44

Computer programs: SMART (Bruker, 1998), SMART or SAINT (Bruker, 1998), SAINT (Bruker, 1998), SHELXS97 (Sheldrick, 1997a), SHELXL97 (Sheldrick, 1997a), SHELXTL (Sheldrick, 1997b).

Selected geometric parameters (Å, º) top
Mn1—N102.211 (4)Mn3—O22.226 (3)
Mn1—N42.224 (4)Mn3—N8iii2.248 (3)
Mn1—O12.232 (3)Mn3—N82.248 (3)
Mn1—N12.247 (4)Mn4—O32.162 (3)
Mn1—N72.305 (3)Mn4—O52.181 (3)
Mn1—O22.399 (3)Mn4—N112.206 (3)
Mn2—O12.107 (3)Mn4—O12.230 (3)
Mn2—N12i2.191 (3)Mn4—N6iv2.240 (4)
Mn2—N22.213 (3)Mn4—N3v2.258 (4)
Mn2—N9ii2.234 (3)N3—Mn4vi2.258 (4)
Mn3—N52.178 (4)N6—Mn4vii2.240 (4)
Mn3—N5iii2.178 (4)N9—Mn2viii2.234 (3)
Mn3—O2iii2.226 (3)N12—Mn2i2.191 (3)
N10—Mn1—N4166.36 (14)N5iii—Mn3—O296.53 (13)
N10—Mn1—O182.04 (12)O2iii—Mn3—O2180.0
N4—Mn1—O189.26 (13)N5—Mn3—N8iii87.11 (14)
N10—Mn1—N197.77 (13)N5iii—Mn3—N8iii92.89 (14)
N4—Mn1—N192.21 (14)O2iii—Mn3—N8iii81.43 (12)
O1—Mn1—N187.04 (12)O2—Mn3—N8iii98.57 (12)
N10—Mn1—N796.56 (13)N5—Mn3—N892.89 (14)
N4—Mn1—N792.81 (14)N5iii—Mn3—N887.11 (14)
O1—Mn1—N7175.83 (12)O2iii—Mn3—N898.57 (12)
N1—Mn1—N789.27 (13)O2—Mn3—N881.43 (12)
N10—Mn1—O288.77 (12)N8iii—Mn3—N8180.0
N4—Mn1—O283.00 (12)O3—Mn4—O5167.34 (13)
O1—Mn1—O2103.30 (10)O3—Mn4—N1191.90 (14)
N1—Mn1—O2168.49 (12)O5—Mn4—N1196.21 (13)
N7—Mn1—O280.55 (12)O3—Mn4—O193.28 (12)
O1—Mn2—O4104.72 (13)O5—Mn4—O197.41 (11)
O1—Mn2—N12i113.49 (12)N11—Mn4—O182.43 (11)
O4—Mn2—N12i90.30 (14)O3—Mn4—N6iv84.55 (14)
O1—Mn2—N288.12 (12)O5—Mn4—N6iv89.18 (13)
O4—Mn2—N2166.63 (14)N11—Mn4—N6iv168.93 (14)
N12i—Mn2—N287.90 (13)O1—Mn4—N6iv87.30 (13)
O1—Mn2—N9ii117.89 (13)O3—Mn4—N3v84.71 (14)
O4—Mn2—N9ii84.18 (14)O5—Mn4—N3v84.41 (13)
N12i—Mn2—N9ii128.03 (14)N11—Mn4—N3v99.23 (13)
N2—Mn2—N9ii86.51 (13)O1—Mn4—N3v177.41 (12)
N5—Mn3—N5iii180.0N6iv—Mn4—N3v90.89 (14)
N5—Mn3—O283.47 (13)
Symmetry codes: (i) x+2, y+1, z; (ii) x+1/2, y+3/2, z+1/2; (iii) x+1, y+1, z; (iv) x+3/2, y1/2, z+1/2; (v) x, y1, z; (vi) x, y+1, z; (vii) x+3/2, y+1/2, z+1/2; (viii) x1/2, y+3/2, z1/2.
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds