Supporting information
Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270107004386/bg3026sup1.cif | |
Structure factor file (CIF format) https://doi.org/10.1107/S0108270107004386/bg3026Isup2.hkl |
CCDC reference: 285449
For related literature, see: Addison et al. (1984); Battaglia & Corradi (1986); Hoang et al. (1992); Lörinc et al. (2004); Múdra et al. (2003); Maroszová, Martiška, Valigura, Koman & Głowiak (2006); Maroszová, Moncol, Koman, Melník & Głowiak (2006); Melník et al. (1985, 1998); Moncol et al. (2001, 2004, 2006); Sheldrick (1997); Stachová et al. (2005, 2006); Valach et al. (1997).
Cu(CH3CH2CO2)2·H2O was prepared as described by Battaglia & Corradi (1986). Compound (I) was prepared by treating 3-pyridylmethanol with Cu(CH3CH2CO2)2·H2O in a 2:3 molar ratio in hot methanol. The resulting solution was filtered and the filtrate left to stand at room temperature, allowing fine green crystals to precipitate out. These crystals were filtered off, washed with cold methanol and dried at room temperature. Crystals of (I) suitable for structural determination were obtained by recrystallizing the crude product from methanol with a small amount of acetone (yield 70%). Analysis, found: C 47.56, H 5.68, N 5.30, Cu 17.82%; C42H58Cu3N4O16 requires: C 47.34, H 5.49, N 5.26, Cu 17.89%.
All H atoms attached to C atoms were placed in calculated positions with C—H = 0.93, 0.97 and 0.96 Å for aromatic, methylene and methyl groups, respectively. The hydroxyl H atom was positioned using the AFIX 147 facility in SHELXL97 (Sheldrick, 1997) (O—H = 0.82 Å). In all cases, Uiso(H) = xUiso(C,O), where x = 1.2 for aromatic and methylene H, and 1.5 for methyl and hydroxyl H.
Data collection: P21 Software (Syntex, 1973); cell refinement: P21 Software; data reduction: XP21 (Pavelčík, 1993); program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997) and XP in SHELXTL (Sheldrick, 1998); software used to prepare material for publication: enCIFer (Allen et al., 2004).
[Cu3(C6H7NO)4(C3H5O2)6] | Z = 1 |
Mr = 1065.54 | F(000) = 553 |
Triclinic, P1 | Dx = 1.507 Mg m−3 Dm = 1.50 Mg m−3 Dm measured by flotation |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71069 Å |
a = 8.194 (2) Å | Cell parameters from 25 reflections |
b = 9.959 (2) Å | θ = 5.2–11.6° |
c = 15.358 (3) Å | µ = 1.42 mm−1 |
α = 104.27 (3)° | T = 293 K |
β = 103.99 (3)° | Rectangular prism, green |
γ = 91.10 (3)° | 0.45 × 0.40 × 0.30 mm |
V = 1174.4 (4) Å3 |
Syntex P21 diffractometer | 3645 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.035 |
Graphite monochromator | θmax = 27.6°, θmin = 1.4° |
θ/2θ scans | h = 0→10 |
Absorption correction: ψ scan (North et al., 1968) | k = −12→12 |
Tmin = 0.576, Tmax = 0.654 | l = −19→19 |
5808 measured reflections | 2 standard reflections every 100 reflections |
5428 independent reflections | intensity decay: 15% |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.053 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.153 | H-atom parameters constrained |
S = 1.01 | w = 1/[σ2(Fo2) + (0.103P)2] where P = (Fo2 + 2Fc2)/3 |
5428 reflections | (Δ/σ)max < 0.001 |
300 parameters | Δρmax = 0.76 e Å−3 |
0 restraints | Δρmin = −0.70 e Å−3 |
[Cu3(C6H7NO)4(C3H5O2)6] | γ = 91.10 (3)° |
Mr = 1065.54 | V = 1174.4 (4) Å3 |
Triclinic, P1 | Z = 1 |
a = 8.194 (2) Å | Mo Kα radiation |
b = 9.959 (2) Å | µ = 1.42 mm−1 |
c = 15.358 (3) Å | T = 293 K |
α = 104.27 (3)° | 0.45 × 0.40 × 0.30 mm |
β = 103.99 (3)° |
Syntex P21 diffractometer | 3645 reflections with I > 2σ(I) |
Absorption correction: ψ scan (North et al., 1968) | Rint = 0.035 |
Tmin = 0.576, Tmax = 0.654 | 2 standard reflections every 100 reflections |
5808 measured reflections | intensity decay: 15% |
5428 independent reflections |
R[F2 > 2σ(F2)] = 0.053 | 0 restraints |
wR(F2) = 0.153 | H-atom parameters constrained |
S = 1.01 | Δρmax = 0.76 e Å−3 |
5428 reflections | Δρmin = −0.70 e Å−3 |
300 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Cu1 | 0.0000 | 0.0000 | 0.0000 | 0.04309 (17) | |
Cu2 | −0.08880 (5) | 0.48991 (4) | 0.41438 (3) | 0.04171 (15) | |
N1 | 0.1691 (4) | 0.1037 (3) | 0.11617 (19) | 0.0426 (7) | |
N2 | −0.2456 (4) | 0.4675 (3) | 0.27445 (19) | 0.0431 (6) | |
O1 | −0.0104 (3) | −0.1549 (3) | 0.05617 (18) | 0.0509 (6) | |
O2 | −0.2367 (4) | −0.1215 (4) | 0.1079 (3) | 0.0839 (10) | |
O3 | 0.5601 (4) | −0.1069 (3) | 0.2295 (2) | 0.0713 (8) | |
H3O | 0.6143 | −0.1131 | 0.1904 | 0.107* | |
O4 | −0.0106 (4) | 0.3028 (3) | 0.38880 (19) | 0.0616 (7) | |
O5 | 0.1414 (4) | 0.3211 (3) | 0.5329 (2) | 0.0612 (7) | |
O6 | −0.2710 (3) | 0.4164 (3) | 0.45697 (19) | 0.0567 (7) | |
O7 | −0.1223 (3) | 0.4353 (3) | 0.60164 (19) | 0.0603 (7) | |
O8 | −0.2244 (3) | 0.1192 (3) | 0.06742 (19) | 0.0589 (7) | |
H8O | −0.2520 | 0.0424 | 0.0724 | 0.088* | |
C1 | −0.1125 (5) | −0.1846 (4) | 0.0973 (3) | 0.0512 (9) | |
C2 | −0.0819 (7) | −0.3103 (5) | 0.1365 (4) | 0.0822 (15) | |
H2A | −0.0941 | −0.2853 | 0.1996 | 0.099* | |
H2B | −0.1695 | −0.3834 | 0.1005 | 0.099* | |
C3 | 0.0782 (10) | −0.3655 (8) | 0.1376 (7) | 0.140 (3) | |
H3A | 0.0942 | −0.3881 | 0.0759 | 0.210* | |
H3B | 0.0817 | −0.4479 | 0.1597 | 0.210* | |
H3C | 0.1663 | −0.2976 | 0.1781 | 0.210* | |
C4 | 0.2984 (4) | 0.0411 (4) | 0.1572 (2) | 0.0436 (8) | |
H4 | 0.3061 | −0.0525 | 0.1310 | 0.052* | |
C5 | 0.4184 (4) | 0.1070 (4) | 0.2349 (2) | 0.0449 (8) | |
C6 | 0.4030 (5) | 0.2451 (4) | 0.2750 (2) | 0.0493 (9) | |
H6 | 0.4825 | 0.2941 | 0.3283 | 0.059* | |
C7 | 0.2698 (5) | 0.3081 (4) | 0.2353 (3) | 0.0529 (9) | |
H7 | 0.2561 | 0.4001 | 0.2625 | 0.063* | |
C8 | 0.1561 (5) | 0.2367 (4) | 0.1556 (3) | 0.0479 (8) | |
H8 | 0.0677 | 0.2821 | 0.1282 | 0.057* | |
C9 | 0.5635 (5) | 0.0319 (5) | 0.2768 (3) | 0.0679 (12) | |
H9A | 0.6687 | 0.0798 | 0.2783 | 0.081* | |
H9B | 0.5619 | 0.0368 | 0.3405 | 0.081* | |
C10 | 0.0850 (5) | 0.2571 (4) | 0.4502 (3) | 0.0519 (9) | |
C11 | 0.1405 (7) | 0.1136 (5) | 0.4207 (4) | 0.0819 (15) | |
H11A | 0.2568 | 0.1236 | 0.4175 | 0.098* | |
H11B | 0.1396 | 0.0678 | 0.4695 | 0.098* | |
C12 | 0.0474 (9) | 0.0230 (6) | 0.3351 (5) | 0.136 (3) | |
H12A | −0.0473 | −0.0238 | 0.3451 | 0.204* | |
H12B | 0.1189 | −0.0444 | 0.3116 | 0.204* | |
H12C | 0.0080 | 0.0761 | 0.2909 | 0.204* | |
C13 | −0.2545 (5) | 0.4028 (4) | 0.5368 (3) | 0.0501 (9) | |
C14 | −0.4064 (5) | 0.3461 (5) | 0.5597 (4) | 0.0683 (12) | |
H14A | −0.4350 | 0.4167 | 0.6085 | 0.082* | |
H14B | −0.5009 | 0.3298 | 0.5052 | 0.082* | |
C15 | −0.3874 (9) | 0.2213 (7) | 0.5888 (7) | 0.138 (3) | |
H15A | −0.3582 | 0.1504 | 0.5415 | 0.206* | |
H15B | −0.4915 | 0.1917 | 0.5994 | 0.206* | |
H15C | −0.2996 | 0.2375 | 0.6453 | 0.206* | |
C16 | −0.2530 (4) | 0.3513 (4) | 0.2078 (2) | 0.0437 (8) | |
H16 | −0.1794 | 0.2846 | 0.2204 | 0.052* | |
C17 | −0.3636 (4) | 0.3245 (4) | 0.1213 (2) | 0.0441 (8) | |
C18 | −0.4732 (5) | 0.4234 (4) | 0.1039 (3) | 0.0509 (9) | |
H18 | −0.5514 | 0.4087 | 0.0466 | 0.061* | |
C19 | −0.4657 (5) | 0.5434 (4) | 0.1717 (3) | 0.0546 (9) | |
H19 | −0.5381 | 0.6117 | 0.1611 | 0.066* | |
C20 | −0.3514 (5) | 0.5615 (4) | 0.2547 (3) | 0.0473 (8) | |
H20 | −0.3468 | 0.6440 | 0.3001 | 0.057* | |
C21 | −0.3676 (6) | 0.1906 (4) | 0.0478 (3) | 0.0643 (11) | |
H21A | −0.4666 | 0.1310 | 0.0424 | 0.077* | |
H21B | −0.3780 | 0.2117 | −0.0115 | 0.077* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cu1 | 0.0457 (3) | 0.0385 (3) | 0.0375 (3) | −0.0032 (2) | 0.0010 (2) | 0.0060 (2) |
Cu2 | 0.0364 (2) | 0.0450 (3) | 0.0365 (2) | 0.00480 (17) | 0.00507 (16) | 0.00131 (17) |
N1 | 0.0441 (15) | 0.0375 (15) | 0.0375 (14) | −0.0005 (12) | 0.0042 (12) | 0.0000 (12) |
N2 | 0.0417 (15) | 0.0442 (16) | 0.0388 (15) | 0.0060 (12) | 0.0087 (12) | 0.0035 (12) |
O1 | 0.0553 (15) | 0.0432 (14) | 0.0519 (15) | −0.0001 (11) | 0.0068 (12) | 0.0149 (11) |
O2 | 0.070 (2) | 0.095 (3) | 0.108 (3) | 0.0291 (19) | 0.038 (2) | 0.049 (2) |
O3 | 0.0648 (19) | 0.0631 (18) | 0.091 (2) | 0.0228 (15) | 0.0229 (17) | 0.0251 (17) |
O4 | 0.0688 (18) | 0.0528 (16) | 0.0506 (16) | 0.0195 (14) | 0.0055 (14) | −0.0010 (13) |
O5 | 0.0655 (17) | 0.0505 (15) | 0.0564 (17) | 0.0140 (13) | 0.0037 (14) | 0.0039 (13) |
O6 | 0.0397 (13) | 0.0731 (19) | 0.0503 (15) | −0.0061 (12) | 0.0061 (11) | 0.0093 (13) |
O7 | 0.0423 (14) | 0.087 (2) | 0.0501 (15) | −0.0012 (14) | 0.0084 (12) | 0.0188 (14) |
O8 | 0.0570 (16) | 0.0524 (16) | 0.0625 (17) | 0.0091 (13) | 0.0192 (13) | 0.0016 (13) |
C1 | 0.047 (2) | 0.049 (2) | 0.055 (2) | 0.0019 (16) | 0.0061 (17) | 0.0164 (17) |
C2 | 0.076 (3) | 0.074 (3) | 0.112 (4) | 0.008 (3) | 0.025 (3) | 0.053 (3) |
C3 | 0.135 (6) | 0.124 (6) | 0.200 (8) | 0.064 (5) | 0.048 (6) | 0.104 (6) |
C4 | 0.0433 (18) | 0.0422 (18) | 0.0420 (18) | 0.0084 (14) | 0.0111 (15) | 0.0040 (14) |
C5 | 0.0381 (17) | 0.051 (2) | 0.0435 (18) | 0.0020 (15) | 0.0102 (14) | 0.0080 (15) |
C6 | 0.0447 (19) | 0.050 (2) | 0.0420 (19) | −0.0056 (16) | 0.0026 (15) | 0.0001 (15) |
C7 | 0.056 (2) | 0.0371 (18) | 0.055 (2) | 0.0005 (16) | 0.0110 (18) | −0.0037 (16) |
C8 | 0.0485 (19) | 0.0392 (18) | 0.049 (2) | 0.0057 (15) | 0.0067 (16) | 0.0045 (15) |
C9 | 0.054 (2) | 0.073 (3) | 0.067 (3) | 0.015 (2) | 0.000 (2) | 0.015 (2) |
C10 | 0.045 (2) | 0.048 (2) | 0.059 (2) | 0.0083 (16) | 0.0147 (18) | 0.0043 (18) |
C11 | 0.083 (3) | 0.052 (3) | 0.091 (4) | 0.024 (2) | 0.007 (3) | −0.005 (2) |
C12 | 0.126 (5) | 0.076 (4) | 0.144 (6) | 0.040 (4) | −0.030 (5) | −0.028 (4) |
C13 | 0.0406 (19) | 0.044 (2) | 0.065 (2) | 0.0019 (15) | 0.0188 (18) | 0.0081 (17) |
C14 | 0.048 (2) | 0.075 (3) | 0.084 (3) | −0.004 (2) | 0.023 (2) | 0.019 (2) |
C15 | 0.100 (5) | 0.117 (5) | 0.256 (10) | 0.037 (4) | 0.082 (6) | 0.120 (6) |
C16 | 0.0398 (17) | 0.0473 (19) | 0.0393 (17) | 0.0104 (14) | 0.0061 (14) | 0.0056 (15) |
C17 | 0.0385 (17) | 0.0489 (19) | 0.0416 (18) | 0.0053 (14) | 0.0079 (14) | 0.0077 (15) |
C18 | 0.0431 (19) | 0.063 (2) | 0.0422 (19) | 0.0082 (17) | 0.0011 (15) | 0.0153 (17) |
C19 | 0.050 (2) | 0.051 (2) | 0.062 (2) | 0.0174 (17) | 0.0112 (18) | 0.0176 (18) |
C20 | 0.0477 (19) | 0.0430 (19) | 0.049 (2) | 0.0069 (15) | 0.0131 (16) | 0.0061 (15) |
C21 | 0.070 (3) | 0.058 (2) | 0.046 (2) | 0.014 (2) | −0.0010 (19) | −0.0050 (18) |
Cu1—O1 | 1.954 (2) | C5—C9 | 1.513 (5) |
Cu1—O1i | 1.954 (2) | C6—C7 | 1.360 (5) |
Cu1—N1i | 2.003 (3) | C6—H6 | 0.9300 |
Cu1—N1 | 2.003 (3) | C7—C8 | 1.366 (5) |
Cu1—O8 | 2.502 (3) | C7—H7 | 0.9300 |
Cu2—O5ii | 1.958 (3) | C8—H8 | 0.9300 |
Cu2—O4 | 1.960 (3) | C9—H9A | 0.9700 |
Cu2—O7ii | 1.963 (3) | C9—H9B | 0.9700 |
Cu2—O6 | 1.964 (3) | C10—O5 | 1.241 (5) |
Cu2—N2 | 2.176 (3) | C10—C11 | 1.503 (5) |
Cu2—Cu2ii | 2.6367 (12) | C11—C12 | 1.424 (7) |
N1—C8 | 1.332 (4) | C11—H11A | 0.9700 |
N1—C4 | 1.343 (5) | C11—H11B | 0.9700 |
N2—C20 | 1.328 (4) | C12—H12A | 0.9600 |
N2—C16 | 1.333 (4) | C12—H12B | 0.9600 |
O1—C1 | 1.234 (5) | C12—H12C | 0.9600 |
O2—C1 | 1.229 (5) | C13—O7 | 1.255 (5) |
O3—C9 | 1.390 (5) | C13—C14 | 1.508 (5) |
O3—H3O | 0.8200 | C14—C15 | 1.420 (7) |
O4—C10 | 1.257 (5) | C14—H14A | 0.9700 |
O5—Cu2ii | 1.958 (3) | C14—H14B | 0.9700 |
O6—C13 | 1.243 (5) | C15—H15A | 0.9600 |
O7—Cu2ii | 1.963 (3) | C15—H15B | 0.9600 |
O8—C21 | 1.393 (5) | C15—H15C | 0.9600 |
O8—H8O | 0.8200 | C16—C17 | 1.375 (5) |
C1—C2 | 1.518 (6) | C16—H16 | 0.9300 |
C2—C3 | 1.430 (8) | C17—C18 | 1.377 (5) |
C2—H2A | 0.9700 | C17—C21 | 1.513 (5) |
C2—H2B | 0.9700 | C18—C19 | 1.368 (6) |
C3—H3A | 0.9600 | C18—H18 | 0.9300 |
C3—H3B | 0.9600 | C19—C20 | 1.355 (5) |
C3—H3C | 0.9600 | C19—H19 | 0.9300 |
C4—C5 | 1.358 (5) | C20—H20 | 0.9300 |
C4—H4 | 0.9300 | C21—H21A | 0.9700 |
C5—C6 | 1.383 (5) | C21—H21B | 0.9700 |
O1—Cu1—O1i | 180.00 (12) | C5—C6—H6 | 120.5 |
O1—Cu1—N1i | 91.13 (11) | C6—C7—C8 | 120.2 (3) |
O1i—Cu1—N1i | 88.87 (11) | C6—C7—H7 | 119.9 |
O1—Cu1—N1 | 88.87 (11) | C8—C7—H7 | 119.9 |
O1i—Cu1—N1 | 91.13 (11) | N1—C8—C7 | 121.5 (3) |
N1i—Cu1—N1 | 180.00 (13) | N1—C8—H8 | 119.2 |
O1—Cu1—O8 | 93.37 (11) | C7—C8—H8 | 119.2 |
O1i—Cu1—O8 | 86.63 (11) | O3—C9—C5 | 114.2 (3) |
N1i—Cu1—O8 | 92.18 (11) | O3—C9—H9A | 108.7 |
N1—Cu1—O8 | 87.82 (11) | C5—C9—H9A | 108.7 |
O1—Cu1—O8iii | 161.26 (8) | O3—C9—H9B | 108.7 |
O1i—Cu1—O8iii | 18.74 (8) | C5—C9—H9B | 108.7 |
N1i—Cu1—O8iii | 107.04 (9) | H9A—C9—H9B | 107.6 |
N1—Cu1—O8iii | 72.96 (9) | O5—C10—O4 | 125.8 (4) |
O8—Cu1—O8iii | 81.66 (8) | O5—C10—C11 | 116.8 (4) |
O5ii—Cu2—O4 | 167.87 (12) | O4—C10—C11 | 117.4 (4) |
O5ii—Cu2—O7ii | 89.98 (14) | C12—C11—C10 | 118.5 (5) |
O4—Cu2—O7ii | 89.51 (13) | C12—C11—H11A | 107.7 |
O5ii—Cu2—O6 | 89.31 (13) | C10—C11—H11A | 107.7 |
O4—Cu2—O6 | 88.64 (13) | C12—C11—H11B | 107.7 |
O7ii—Cu2—O6 | 167.83 (11) | C10—C11—H11B | 107.7 |
O5ii—Cu2—N2 | 96.61 (12) | H11A—C11—H11B | 107.1 |
O4—Cu2—N2 | 95.44 (11) | C11—C12—H12A | 109.5 |
O7ii—Cu2—N2 | 98.49 (11) | C11—C12—H12B | 109.5 |
O6—Cu2—N2 | 93.67 (11) | H12A—C12—H12B | 109.5 |
O5ii—Cu2—Cu2ii | 83.81 (9) | C11—C12—H12C | 109.5 |
O4—Cu2—Cu2ii | 84.09 (9) | H12A—C12—H12C | 109.5 |
O7ii—Cu2—Cu2ii | 84.36 (9) | H12B—C12—H12C | 109.5 |
O6—Cu2—Cu2ii | 83.48 (8) | O6—C13—O7 | 125.5 (3) |
N2—Cu2—Cu2ii | 177.12 (8) | O6—C13—C14 | 118.0 (4) |
C8—N1—C4 | 117.9 (3) | O7—C13—C14 | 116.5 (4) |
C8—N1—Cu1 | 121.0 (2) | C15—C14—C13 | 115.7 (4) |
C4—N1—Cu1 | 121.1 (2) | C15—C14—H14A | 108.4 |
C20—N2—C16 | 117.2 (3) | C13—C14—H14A | 108.4 |
C20—N2—Cu2 | 121.5 (2) | C15—C14—H14B | 108.4 |
C16—N2—Cu2 | 120.9 (2) | C13—C14—H14B | 108.4 |
C1—O1—Cu1 | 129.6 (3) | H14A—C14—H14B | 107.4 |
C9—O3—H3O | 109.5 | C14—C15—H15A | 109.5 |
C10—O4—Cu2 | 122.7 (2) | C14—C15—H15B | 109.5 |
C13—O6—Cu2 | 124.0 (2) | H15A—C15—H15B | 109.5 |
C21—O8—Cu1 | 143.7 (3) | C14—C15—H15C | 109.5 |
C21—O8—H8O | 109.5 | H15A—C15—H15C | 109.5 |
Cu1—O8—H8O | 85.2 | H15B—C15—H15C | 109.5 |
O2—C1—O1 | 125.2 (4) | N2—C16—C17 | 123.6 (3) |
O2—C1—C2 | 118.0 (4) | N2—C16—H16 | 118.2 |
O1—C1—C2 | 116.8 (4) | C17—C16—H16 | 118.2 |
C3—C2—C1 | 116.2 (5) | C16—C17—C18 | 117.6 (3) |
C3—C2—H2A | 108.2 | C16—C17—C21 | 121.7 (3) |
C1—C2—H2A | 108.2 | C18—C17—C21 | 120.7 (3) |
C3—C2—H2B | 108.2 | C19—C18—C17 | 119.2 (3) |
C1—C2—H2B | 108.2 | C19—C18—H18 | 120.4 |
H2A—C2—H2B | 107.4 | C17—C18—H18 | 120.4 |
C2—C3—H3A | 109.5 | C20—C19—C18 | 119.2 (4) |
C2—C3—H3B | 109.5 | C20—C19—H19 | 120.4 |
H3A—C3—H3B | 109.5 | C18—C19—H19 | 120.4 |
C2—C3—H3C | 109.5 | N2—C20—C19 | 123.3 (3) |
H3A—C3—H3C | 109.5 | N2—C20—H20 | 118.3 |
H3B—C3—H3C | 109.5 | C19—C20—H20 | 118.4 |
N1—C4—C5 | 123.6 (3) | O8—C21—C17 | 113.0 (3) |
N1—C4—H4 | 118.2 | O8—C21—H21A | 109.0 |
C5—C4—H4 | 118.2 | C17—C21—H21A | 109.0 |
C4—C5—C6 | 117.8 (3) | O8—C21—H21B | 109.0 |
C4—C5—C9 | 121.2 (3) | C17—C21—H21B | 109.0 |
C6—C5—C9 | 121.0 (3) | H21A—C21—H21B | 107.8 |
C7—C6—C5 | 118.9 (3) | C13—O7—Cu2ii | 122.7 (3) |
C7—C6—H6 | 120.5 | C10—O5—Cu2ii | 123.6 (3) |
O1—Cu1—N1—C8 | −134.3 (3) | Cu1—O1—C1—C2 | −177.7 (3) |
O1i—Cu1—N1—C8 | 45.7 (3) | O2—C1—C2—C3 | −169.1 (6) |
N1i—Cu1—N1—C8 | 28 (87) | O1—C1—C2—C3 | 11.6 (8) |
O8—Cu1—N1—C8 | −40.9 (3) | C8—N1—C4—C5 | −1.9 (5) |
O8iii—Cu1—N1—C8 | 41.1 (3) | Cu1—N1—C4—C5 | 178.6 (3) |
O1—Cu1—N1—C4 | 45.2 (3) | N1—C4—C5—C6 | 2.0 (6) |
O1i—Cu1—N1—C4 | −134.8 (3) | N1—C4—C5—C9 | −178.6 (4) |
N1i—Cu1—N1—C4 | −153 (87) | C4—C5—C6—C7 | 0.0 (6) |
O8—Cu1—N1—C4 | 138.6 (3) | C9—C5—C6—C7 | −179.5 (4) |
O8iii—Cu1—N1—C4 | −139.4 (3) | C5—C6—C7—C8 | −1.9 (6) |
O5ii—Cu2—N2—C20 | −8.4 (3) | C4—N1—C8—C7 | −0.1 (5) |
O4—Cu2—N2—C20 | 170.3 (3) | Cu1—N1—C8—C7 | 179.4 (3) |
O7ii—Cu2—N2—C20 | −99.4 (3) | C6—C7—C8—N1 | 2.0 (6) |
O6—Cu2—N2—C20 | 81.3 (3) | C4—C5—C9—O3 | −0.4 (6) |
Cu2ii—Cu2—N2—C20 | 89.8 (16) | C6—C5—C9—O3 | 179.0 (4) |
O5ii—Cu2—N2—C16 | 179.3 (3) | Cu2—O4—C10—O5 | 0.2 (6) |
O4—Cu2—N2—C16 | −2.0 (3) | Cu2—O4—C10—C11 | −177.9 (3) |
O7ii—Cu2—N2—C16 | 88.3 (3) | O5—C10—C11—C12 | 163.7 (6) |
O6—Cu2—N2—C16 | −91.0 (3) | O4—C10—C11—C12 | −18.1 (8) |
Cu2ii—Cu2—N2—C16 | −82.5 (16) | Cu2—O6—C13—O7 | 1.2 (6) |
O1i—Cu1—O1—C1 | 16 (41) | Cu2—O6—C13—C14 | 179.4 (3) |
N1i—Cu1—O1—C1 | −83.2 (3) | O6—C13—C14—C15 | 120.5 (6) |
N1—Cu1—O1—C1 | 96.8 (3) | O7—C13—C14—C15 | −61.1 (7) |
O8—Cu1—O1—C1 | 9.1 (3) | C20—N2—C16—C17 | −0.3 (5) |
O8iii—Cu1—O1—C1 | 82.9 (4) | Cu2—N2—C16—C17 | 172.3 (3) |
O5ii—Cu2—O4—C10 | −3.9 (8) | N2—C16—C17—C18 | −0.7 (6) |
O7ii—Cu2—O4—C10 | 83.7 (3) | N2—C16—C17—C21 | −179.8 (4) |
O6—Cu2—O4—C10 | −84.3 (3) | C16—C17—C18—C19 | 1.1 (6) |
N2—Cu2—O4—C10 | −177.8 (3) | C21—C17—C18—C19 | −179.8 (4) |
Cu2ii—Cu2—O4—C10 | −0.7 (3) | C17—C18—C19—C20 | −0.5 (6) |
O5ii—Cu2—O6—C13 | −83.9 (3) | C16—N2—C20—C19 | 1.0 (6) |
O4—Cu2—O6—C13 | 84.2 (3) | Cu2—N2—C20—C19 | −171.6 (3) |
O7ii—Cu2—O6—C13 | 2.8 (8) | C18—C19—C20—N2 | −0.6 (6) |
N2—Cu2—O6—C13 | 179.6 (3) | Cu1—O8—C21—C17 | −131.5 (3) |
Cu2ii—Cu2—O6—C13 | 0.0 (3) | C16—C17—C21—O8 | −16.0 (6) |
O1—Cu1—O8—C21 | −137.6 (4) | C18—C17—C21—O8 | 164.9 (4) |
O1i—Cu1—O8—C21 | 42.4 (4) | O6—C13—O7—Cu2ii | −2.0 (6) |
N1i—Cu1—O8—C21 | −46.4 (4) | C14—C13—O7—Cu2ii | 179.7 (3) |
N1—Cu1—O8—C21 | 133.6 (4) | O4—C10—O5—Cu2ii | 0.8 (6) |
O8iii—Cu1—O8—C21 | 60.5 (4) | C11—C10—O5—Cu2ii | 178.9 (3) |
Cu1—O1—C1—O2 | 3.1 (6) |
Symmetry codes: (i) −x, −y, −z; (ii) −x, −y+1, −z+1; (iii) −x, −y+1, −z. |
D—H···A | D—H | H···A | D···A | D—H···A |
O3—H3O···O2iv | 0.82 | 1.95 | 2.768 (5) | 174 |
O8—H8O···O2 | 0.82 | 1.84 | 2.625 (5) | 160 |
Symmetry code: (iv) x+1, y, z. |
Experimental details
Crystal data | |
Chemical formula | [Cu3(C6H7NO)4(C3H5O2)6] |
Mr | 1065.54 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 293 |
a, b, c (Å) | 8.194 (2), 9.959 (2), 15.358 (3) |
α, β, γ (°) | 104.27 (3), 103.99 (3), 91.10 (3) |
V (Å3) | 1174.4 (4) |
Z | 1 |
Radiation type | Mo Kα |
µ (mm−1) | 1.42 |
Crystal size (mm) | 0.45 × 0.40 × 0.30 |
Data collection | |
Diffractometer | Syntex P21 diffractometer |
Absorption correction | ψ scan (North et al., 1968) |
Tmin, Tmax | 0.576, 0.654 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 5808, 5428, 3645 |
Rint | 0.035 |
(sin θ/λ)max (Å−1) | 0.652 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.053, 0.153, 1.01 |
No. of reflections | 5428 |
No. of parameters | 300 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.76, −0.70 |
Computer programs: P21 Software (Syntex, 1973), P21 Software, XP21 (Pavelčík, 1993), SHELXS97 (Sheldrick, 1990), SHELXL97 (Sheldrick, 1997), ORTEP-3 (Farrugia, 1997) and XP in SHELXTL (Sheldrick, 1998), enCIFer (Allen et al., 2004).
Cu1—O1 | 1.954 (2) | Cu2—O7i | 1.963 (3) |
Cu1—N1 | 2.003 (3) | Cu2—O6 | 1.964 (3) |
Cu1—O8 | 2.502 (3) | Cu2—N2 | 2.176 (3) |
Cu2—O5i | 1.958 (3) | Cu2—Cu2i | 2.6367 (12) |
Cu2—O4 | 1.960 (3) |
Symmetry code: (i) −x, −y+1, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
O3—H3O···O2ii | 0.82 | 1.95 | 2.768 (5) | 174 |
O8—H8O···O2 | 0.82 | 1.84 | 2.625 (5) | 160 |
Symmetry code: (ii) x+1, y, z. |
Subscribe to Acta Crystallographica Section C: Structural Chemistry
The full text of this article is available to subscribers to the journal.
- Information on subscribing
- Sample issue
- Purchase subscription
- Reduced-price subscriptions
- If you have already subscribed, you may need to register
3-Pyridylmethanol (3PM) is a non-steroidal anti-inflammatory agent in current use. It can act as an effective ligand in coordination compounds, where it presents a variety of binding modes. In the monomeric structures [CuCl2(3PM)4], (II) (Moncol et al., 2004), and [Cu(2-nitrobenzoato)2(3PM)2(H2O)2], (III) (Stachová et al., 2006), 3PM behaves as a terminal ligand, coordinating through the N atom of its pyridine ring. An analogous binding mode is found in dimeric [Cu2(µ-CH3CO2)4(3PM)2]·CH2Cl2, (IV) (Melník et al., 1985), where the CuII atoms are bridged into pairs by four acetate groups to form two crystallographically independent binuclear molecules, with the N atoms of the 3PM ligands situated at the vertices of a slightly deformed square pyramid around the cations. More complex intermolecular interactions are achieved in complexes of general formula [Cu(RCO2)2(µ-3PM)2]n. For RCO2 = salicylate, (V) (Hoang et al., 1992, Maroszová, Moncol et al., 2006), 4-chlorosalicylate, (VI) (Maroszová, Martiška et al., 2006), flufenamate, (VII) (Lörinc et al., 2004), clofibriate, (VIII) (Moncol et al., 2001), or 2-chlorobenzoate, (IX) (Moncol et al., 2006), a two-dimensional sheet is built up with CuII ions linked by bridging 3PM ligands. When RCO2 = trichloroacetate, (X) (Múdra et al., 2003), dichloroacetate, (XI) (Múdra et al., 2003), 3-nitrobenzoate, (XII) (Stachová et al., 2005), 3,5-dinitrobenzoate, (XIII) (Stachová et al., 2006), niflumate, (XIV) (Valach et al., 1997), or 2-methylthionicotinate, (XV) (Moncol et al., 2006), the result is a one-dimensional coordination polymer. Finally, the crystal structure of [Cu3(2-chloronicotinate)6(µ-3PM)4(3PM)2]n, (XVI) (Moncol et al., 2006), consists of one-dimensional `accordion chain' coordination polymers with different coordination environments around the CuII ions (square bipyramidal and square pyramidal).
The crystal structure of (I) consists of zigzag chains (Fig. 1.) that are formed by alternating dinuclear Cu2(µ-CH3CH2CO2)4 and mononuclear Cu(CH3CH2CO2)2(3PM)2 units linked by bridging 3PM molecules. The dimeric unit is formed around a symmetry centre and presents a tetrabridged paddle-wheel structure with four syn–syn bridging propionates. The Cu2···Cu2i [symmetry code: (i) -x, 1 - y, 1 - z] distance is 2.6367 (12) Å, very similar to the values found in other dimeric copper(II) propionate complexes (range 2.569–2.655 Å; Melník et al., 1998). The τ value (Addison et al., 1984) is 0.005 for atom Cu2, which is typical for a square-pyramidal geometry. The basal plane consists of four O atoms, O4, O5i, O6 and O7i, at distances of 1.958 (3)–1.964 (3) Å. The apical site is occupied by the N atom of the 3PM pyridine ring [Cu2—N2 = 2.176 (3) Å]. Atom Cu2 is displaced from the least-squares plane defined by the basal atoms by 0.207 (1) Å towards the apical N atom. The Cu(CH3CH2CO2)2(3PM)2 unit also has a centrosymmetric structure, with a CuO2N2O2 square-bipyramidal coordination around atom Cu1, which lies at the symmetry centre. The environment is defined by two O atoms from two unidentate propionate groups, two N atoms from two unidentate 3PM molecules and two O atoms from two bridging 3PM molecules. The basal plane is built up by a pair of carboxylate O atoms [Cu1—O1 = 1.954 (2) Å] and a pair of N atoms [Cu1—N1 = 2.003 (2) Å] from the pyridine rings in the terminal neutral 3-pyridylmethanol molecules. The axial positions are occupied by two hydroxyl O atoms [Cu1—O8 = 2.502 (3) Å] from the bridging 3PM ligands.
Intramolecular hydrogen bonds [O8···O2 = 2.625 (5) Å] create a six-membered metallocycle and stabilize the molecular structure of the chain building units. The crystal structure of (I) consists of zigzag one-dimensional chains (Fig. 2), which are connected by intermolecular hydrogen bonds [O3···O2iii = 2.768 (5) Å; symmetry code: x + 1, y, z] to form two-dimensional sheets.
The structure of (I) can be compared with the dimeric structure of (IV) mentioned above and the polymeric structures (V)–(XV). The Cu2···Cu2i distance and the average Cu2—Ocarb and Cu2—N2 bond distances of the Cu2(µ-CH3CH2CO2)4 unit are very similar to the bond distances in (IV), where the molecular structure consists of two crystallographically independent molecules of Cu2(CH3CO2)4(3PM)2. The Cu···Cu distance, and average Cu—Ocarb (acetate anions) and Cu—Nax (N atom of the pyridine ring of 3PM) bond lengths in the two independent dimers of (IV) are 2.654 (1), 1.963 (4) and 2.197 (5) Å, and 2.634 (1), 1.969 (4) and 2.152 (5) Å, respectively. The geometry of the Cu(CH3CH2CO2)2(3PM)2 unit and the bond distances are very similar to the molecular structure of complexes with the formula [Cu(RCO2)2(µ-3PM)2]n, (V)–(XV). The present crystal structure can be considered as the connecting link between two types of structures of copper(II) carboxylate adducts with 3-pyridylmethanol (dimeric and polymeric).