Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The thermal Diels–Alder cyclo­additon reaction of diethyl 2-­[cyano­(toluene-4-sulfinyl)­methyl­ene]­propane­dioate, C16H17­NO5S, with cyclo­penta­diene gave the pure racemates of two of the four possible diastereomers, with a complete π-facial selectivity and a high (80:20) endo/exo-sulfinyl selectivity. X-ray diffraction studies of diethyl 2-[cyano­(toluene-4-sulfinyl)­methyl­ene]­propane­dioate and the major isomer of the cyclo­addition product, namely diethyl 3-cyano-3-(toluene-4-sulfinyl)­bi­cyclo­[2.2.1]­hepta-5-ene-2,2-di­carboxyl­ate, C21H23­NO5S, reveal that the conformation of the substituents on the acrylo­nitrile moiety produces both steric and electronic effects, which affect the stereoselectivity of the reaction.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270101012951/bj1028sup1.cif
Contains datablocks I, II, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270101012951/bj1028Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270101012951/bj1028IIsup3.hkl
Contains datablock II

CCDC references: 175087; 175088

Comment top

When sulfinylethylenes are used as dienophiles in Diels-Alder reactions, their reactivity and endo selectivity are both moderate or low, unless they bear additional electron-withdrawing groups at the double bond (Arai et al., 1991), the alkoxycarbonyls being the most widely studied such group. The reactivity and stereoselectivity of sulfinyl maleates are usually satisfactory when the reactions are conducted in the presence of a TiCl4 catalyst, which also frequently promotes the undesirable polymerization of the dienes (Alonso et al., 1994). The incorporation of a third alkoxycarbonyl group into the double bond is not able to solve these problems, since such compounds exhibit lower reactivity than vinyl sulfoxides as well as low π-facial selectivity, probably due to a non-planar structure (Carretero et al., 1995). In diethyl 2-[cyano(toluene-4-sulfinyl)methylene]propanedioate, (I), the replacement of one of the ester groups by a cyano group substantially increases both the reactivity and the stereoselectivity of the cycloaddition reaction. In order to gain an insight into the stereochemistry of this dienophile molecule, we determined its crystal structure, as well as that of its Diels-Alder adduct with cyclopentadiene, diethyl 3-cyano-3-(toluene-4-sulfinyl)bicyclo[2.2.1]hepta-5-ene-2,2-dicarboxylate, (II). \sch

Fig. 1 shows that the acrylonitrile moiety and the ethoxycarbonyl group syn to the cyano group in (I) are essentially coplanar [maximum deviation -0.282 (1) Å for O2], with an s-cis conformation for the CC—CO moiety [O1—C1—C2—C4 164.1 (4)°]. The mean plane of the second ethoxycarbonyl group makes a dihedral angle of -59.89 (3)° with the mean plane of the acrylonitrile moiety, while the orientation of the planar p-tolyl sulfinyl group is almost perpendicular [89.02 (2)°], relative to the same plane. This conformation puts atom O5 of the sulfinyl group and O3 of the ethoxy group 0.890 (1) and 1.034 (1) Å, respectively, above the CC double-bond plane, while the bulky p-tolyl substituent and atom O4 of the carbonyl group point in the opposite direction. This will render only one face of the dienophile double bond exposed and thus the Diels-Alder cycloaddition will be facially selective.

Fig. 2 clearly shows the endo-sulfinyl nature of the major isomer of (II) obtained from the Diels-Alder reaction. Upon cycloaddition, besides the change in hybridization of atoms C2 and C3, the major change in the dienophile moiety is observed in the orientation of the ethoxycarbonyl group syn to the cyano group, which turns from a nearly coplanar conformation to an almost perpendicular conformation [74.77 (1)°]. The S1—O5 bond is trans to C2—C3 and approximately coplanar with the phenyl ring. The two C—S bonds are unequal, S1—C15 being shorter than S1—C3, because of the different hybridization. The endocyclic torsion angles show that the approximated mirror symmetry of the norbornene skeleton is only slightly distorted. The exo-ethoxycarbonyl substituent at C2 adopts a fully extended conformation, while the endo one is twisted, probably due to packing interactions.

The orientation of the phenyl ring in both compounds seems to be stabilized by intramolecular hydrogen bonds involving the ortho-H atoms of the aromatic ring, and the carbonyl atom O4 and the sulfinyl atom O5 [C15—H15···O4 2.47 and C11—H11···O5 2.52 Å in (I), and C20—H20···O4 2.38 and C16—H16···O5 2.61 Å in (II)]. In addition, weak intermolecular hydrogen bonds are observed for (I) [C14—H14···O5(-1 + x, y, z) 2.54 Å] and (II) [C19—H19···N1(x, 1 - y, z - 1/2) 2.62 Å].

The observed high π-facial selectivity (80:20 endo-/exo-sulfinyl) may be explained by invoking the possibility of these reactions taking place on organized structures, (A) or (B) (Fig. 3), resulting from intermolecular hydrogen bonding of molecules. Superposition of the structure of cyclopentadiene (Haumann et al., 1996) over the diethyl 2-[cyano(p-tolylsulfonyl)methylene]propanedioate showed that the organized structure, (A) favours a closer approximation [2.47 (1) versus 2.70 (1) Å] by fitting the space between atoms O3 and O5 [5.027 (4) Å] better than structure (B) does.

Related literature top

For related literature, see: Alonso et al. (1994); Arai et al. (1991); Carretero et al. (1995); Haumann et al. (1996).

Experimental top

For compound (I), cyanomethyl-p-tolylsulfoxide (5.6 mmol, 1 equivalent) in tetrahydrofuran (10 ml) was deprotonated using a solution of Li-HMDS [n-BuLi (6.7 mmol, 1.2 equivalents) and hexamethyldisilazane (HMDS; 6.7 mmol, 1.2 equivalents) in tetrahydrofuran (40 ml)] at 195 K for 30 min. The resulting anion was further reacted with diethyl oxomalonate (6.2 mmol, 1.1 equivalents), added slowly and stirred for 2 h at 195 K. The reaction was quenched with saturated ammonium chloride solution and extracted with dichloromethane, followed by purification by column chromatography, to give 3,3-diethoxycarbonyl-3-hydroxy-2-p-tolylsulfinylpropionitrile in 78% yield as white crystals (m.p. 394–397 K). Dehydration of this alcohol (4.7 mmol, 1 equivalent) in dichloromethane (65 ml) was performed under an argon atmosphere by treatment with methylsulfonyl chloride (18.8 mmol, 4 equivalents) and diisopropylethylamine (18.8 mmol, 4 equivalents) at 195 K with constant stirring for 2 h. Then water (30 ml) was added, the organic layer was separated and the aqueous layer was extracted with dichloromethane (2 × 20 ml). The combined layers were dried with sodium sulfate and concentrated. The residue was purified by column chromatography and recrystallized from hexane-dichloromethane to afford compound (I) in 66% yield as yellow crystals (m.p. 375–377 K). For compound (II), cyclopentadiene (1.79 mmol, 6 equivalents) was added to a solution of (I) (0.298 mmol, 1 equivalent) in dichloromethane (2 ml) at room temperature under an argon atmosphere. The resulting solution was stirred for 2.5 h. Evaporation of the volatiles under vacuum gave a residue that was analyzed by proton NMR (isomer ratio 80:20 endo-sulfinyl/exo-sulfinyl) and purified by flash chromatography using hexane-ethyl acetate (85:15), to yield compound (II) as a white solid which decomposed at 384–386 K.

Refinement top

H atoms were treated as riding, with C—H = 0.93–0.98 Å and Uiso(H) = 1.2Ueq(C). Are these the correct constraints.

Computing details top

For both compounds, data collection: XSCANS (Siemens, 1993); cell refinement: XSCANS; data reduction: XSCANS; program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXLTL/PC (Sheldrick, 1990); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing the atom-labelling scheme. Displacement ellipsoids are shown at the 30% probability level and H atoms are drawn as small spheres of arbitrary radii.
[Figure 2] Fig. 2. The molecular structure of the Diels-Alder adduct, (II), showing the atom-labelling scheme. Displacement ellipsoids are shown at the 30% probability level and H atoms are drawn as small spheres of arbitrary radii.
[Figure 3] Fig. 3. The hypothetical transition state of the reactants during the Diels-Alder reaction; (A) is the endo arrangement and (B) the exo arrangement.
(I) Diethyl 2-[cyano(toluene-4-sulfinyl)methylene]propanedioate top
Crystal data top
C16H17NO5SZ = 2
Mr = 335.37F(000) = 352
Triclinic, P1Dx = 1.311 Mg m3
a = 8.167 (2) ÅMo Kα radiation, λ = 0.71073 Å
b = 8.666 (1) ÅCell parameters from 31 reflections
c = 13.004 (2) Åθ = 5.0–12.5°
α = 104.01 (1)°µ = 0.21 mm1
β = 103.11 (1)°T = 293 K
γ = 98.40 (1)°Prism, light yellow
V = 849.8 (3) Å30.40 × 0.40 × 0.24 mm
Data collection top
Siemens P4/PC
diffractometer
1985 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.049
Graphite monochromatorθmax = 25.0°, θmin = 1.5°
ω/2θ scansh = 09
Absorption correction: ψ-scan
(North et al., 1968)
k = 99
Tmin = 0.920, Tmax = 0.948l = 1515
3165 measured reflections3 standard reflections every 97 reflections
2941 independent reflections intensity decay: 2%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.053Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.177H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0942P)2 + 0.0905P]
where P = (Fo2 + 2Fc2)/3
2941 reflections(Δ/σ)max = 0.002
208 parametersΔρmax = 0.29 e Å3
0 restraintsΔρmin = 0.25 e Å3
Crystal data top
C16H17NO5Sγ = 98.40 (1)°
Mr = 335.37V = 849.8 (3) Å3
Triclinic, P1Z = 2
a = 8.167 (2) ÅMo Kα radiation
b = 8.666 (1) ŵ = 0.21 mm1
c = 13.004 (2) ÅT = 293 K
α = 104.01 (1)°0.40 × 0.40 × 0.24 mm
β = 103.11 (1)°
Data collection top
Siemens P4/PC
diffractometer
1985 reflections with I > 2σ(I)
Absorption correction: ψ-scan
(North et al., 1968)
Rint = 0.049
Tmin = 0.920, Tmax = 0.9483 standard reflections every 97 reflections
3165 measured reflections intensity decay: 2%
2941 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0530 restraints
wR(F2) = 0.177H-atom parameters constrained
S = 1.07Δρmax = 0.29 e Å3
2941 reflectionsΔρmin = 0.25 e Å3
208 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

H atoms were treated as riding, with C—H = 0.93–0.98 Å and Uiso(H) = 1.2Ueq(C). Are these the correct constraints.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.25175 (13)0.65540 (12)0.69755 (8)0.0518 (3)
O10.1817 (4)0.8606 (3)1.0837 (2)0.0685 (9)
O20.3157 (6)1.0563 (4)1.0294 (3)0.0946 (14)
O30.3092 (3)0.5831 (3)0.9954 (2)0.0556 (7)
O40.0718 (5)0.5137 (4)0.8580 (3)0.1004 (15)
O50.3905 (4)0.7208 (5)0.6537 (3)0.0767 (9)
N10.3333 (7)1.0974 (5)0.7904 (3)0.0855 (13)
C10.2503 (5)0.9181 (4)1.0148 (3)0.0519 (9)
C20.2387 (4)0.7831 (4)0.9133 (3)0.0412 (7)
C30.1949 (5)0.6093 (4)0.9182 (3)0.0452 (8)
C40.2620 (4)0.8155 (4)0.8222 (3)0.0420 (7)
C50.3033 (6)0.9770 (5)0.8097 (3)0.0550 (9)
C60.1877 (8)0.9777 (6)1.1883 (4)0.0810 (15)
H6A0.09931.03841.17630.097*
H6B0.29721.05251.21750.097*
C70.1605 (10)0.8877 (7)1.2647 (4)0.104 (2)
H7A0.25170.83091.27940.125*
H7B0.05340.80941.23410.125*
H7C0.15770.96051.33260.125*
C80.2809 (6)0.4244 (4)1.0178 (3)0.0565 (10)
H8A0.33480.35030.97620.068*
H8B0.16000.37830.99860.068*
C90.3605 (7)0.4578 (5)1.1399 (4)0.0679 (12)
H9A0.31650.54271.18030.082*
H9B0.48300.49281.15690.082*
H9C0.33370.36081.16150.082*
C100.0531 (5)0.6851 (4)0.6183 (3)0.0458 (8)
C110.0547 (5)0.7569 (5)0.5346 (3)0.0551 (9)
H110.16110.79200.51890.066*
C120.0984 (6)0.7780 (5)0.4740 (3)0.0573 (10)
H120.09840.82690.41520.069*
C130.2529 (5)0.7296 (5)0.4966 (3)0.0517 (9)
C140.2517 (5)0.6545 (5)0.5804 (3)0.0524 (9)
H140.35770.61990.59670.063*
C150.1006 (5)0.6301 (5)0.6403 (3)0.0507 (9)
H150.10100.57580.69640.061*
C160.4191 (6)0.7583 (7)0.4343 (4)0.0769 (13)
H16A0.45640.68090.36250.092*
H16B0.39840.86510.42440.092*
H16C0.50520.74820.47310.092*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0493 (5)0.0563 (6)0.0473 (5)0.0172 (4)0.0169 (4)0.0035 (4)
O10.101 (2)0.0473 (15)0.0623 (17)0.0093 (15)0.0489 (17)0.0034 (13)
O20.174 (4)0.0405 (17)0.0628 (18)0.002 (2)0.048 (2)0.0034 (13)
O30.0528 (15)0.0447 (14)0.0660 (16)0.0030 (11)0.0054 (13)0.0244 (12)
O40.102 (3)0.0561 (19)0.100 (3)0.0224 (19)0.040 (2)0.0302 (18)
O50.0535 (17)0.114 (3)0.0644 (18)0.0209 (17)0.0306 (15)0.0127 (17)
N10.129 (4)0.060 (2)0.073 (2)0.004 (2)0.037 (3)0.028 (2)
C10.068 (2)0.041 (2)0.0422 (18)0.0112 (17)0.0122 (17)0.0065 (15)
C20.0422 (17)0.0383 (17)0.0394 (16)0.0058 (14)0.0106 (14)0.0064 (13)
C30.052 (2)0.0415 (18)0.0401 (17)0.0095 (16)0.0124 (16)0.0088 (14)
C40.0403 (17)0.0401 (17)0.0432 (17)0.0066 (13)0.0127 (14)0.0076 (13)
C50.066 (2)0.052 (2)0.0467 (19)0.0059 (18)0.0196 (18)0.0147 (17)
C60.120 (4)0.060 (3)0.064 (3)0.022 (3)0.047 (3)0.003 (2)
C70.175 (7)0.071 (3)0.060 (3)0.005 (4)0.048 (4)0.003 (2)
C80.073 (3)0.0403 (19)0.060 (2)0.0130 (18)0.015 (2)0.0221 (16)
C90.090 (3)0.060 (3)0.061 (2)0.022 (2)0.020 (2)0.028 (2)
C100.0469 (19)0.0457 (18)0.0384 (16)0.0069 (15)0.0144 (14)0.0007 (13)
C110.057 (2)0.065 (2)0.0458 (19)0.0068 (19)0.0229 (17)0.0165 (17)
C120.067 (3)0.067 (2)0.0424 (18)0.009 (2)0.0197 (18)0.0213 (17)
C130.057 (2)0.052 (2)0.0384 (17)0.0105 (17)0.0083 (16)0.0046 (15)
C140.048 (2)0.061 (2)0.0474 (19)0.0041 (17)0.0162 (16)0.0144 (16)
C150.051 (2)0.057 (2)0.0456 (18)0.0056 (17)0.0171 (16)0.0176 (16)
C160.070 (3)0.099 (4)0.061 (3)0.019 (3)0.008 (2)0.031 (3)
Geometric parameters (Å, º) top
S1—O51.480 (3)C13—C141.397 (5)
S1—C101.803 (4)C13—C161.503 (6)
S1—C41.837 (3)C14—C151.376 (5)
O1—C11.314 (5)C6—H6A0.96
O1—C61.473 (5)C6—H6B0.96
O2—C11.189 (5)C7—H7A0.96
O3—C31.295 (4)C7—H7B0.96
O3—C81.470 (4)C7—H7C0.96
O4—C31.182 (5)C8—H8A0.96
N1—C51.137 (5)C8—H8B0.96
C1—C21.511 (4)C9—H9A0.96
C2—C41.330 (5)C9—H9B0.96
C2—C31.516 (5)C9—H9C0.96
C4—C51.447 (5)C11—H110.96
C6—C71.439 (7)C12—H120.96
C8—C91.510 (6)C14—H140.96
C10—C111.380 (5)C15—H150.96
C10—C151.392 (5)C16—H16A0.96
C11—C121.381 (6)C16—H16B0.96
C12—C131.389 (6)C16—H16C0.96
O5—S1—C10107.03 (19)C2—C4—S1122.6 (3)
O5—S1—C4105.26 (18)C5—C4—S1112.2 (3)
C10—S1—C494.52 (15N1—C5—C4174.0 (4)
C1—O1—C6117.0 (3)C7—C6—O1108.1 (4)
C3—O3—C8118.6 (3)O3—C8—C9105.8 (3)
O2—C1—O1125.6 (4)C11—C10—C15120.9 (4)
O2—C1—C2123.6 (4)C11—C10—S1119.7 (3)
O1—C1—C2110.7 (3)C15—C10—S1119.3 (3)
C4—C2—C1121.2 (3)C10—C11—C12119.2 (4)
C4—C2—C3121.2 (3)C11—C12—C13121.1 (4)
C1—C2—C3117.6 (3)C12—C13—C14118.6 (4)
O4—C3—O3126.2 (4)C12—C13—C16121.5 (4)
O4—C3—C2122.9 (3)C14—C13—C16119.8 (4)
O3—C3—C2111.0 (3)C15—C14—C13120.9 (4)
C2—C4—C5125.1 (3)C14—C15—C10119.2 (3)
C6—O1—C1—O20.5 (7)O5—S1—C4—C537.3 (3)
C6—O1—C1—C2178.4 (4)C10—S1—C4—C571.7 (3)
O2—C1—C2—C417.0 (7)C1—O1—C6—C7161.3 (5)
O1—C1—C2—C4164.1 (4)C3—O3—C8—C9147.6 (4)
O2—C1—C2—C3164.5 (4)O5—S1—C10—C110.4 (3)
O1—C1—C2—C314.4 (5)C4—S1—C10—C11107.9 (3)
C8—O3—C3—O44.7 (6)O5—S1—C10—C15178.3 (3)
C8—O3—C3—C2175.5 (3)C4—S1—C10—C1574.3 (3)
C4—C2—C3—O458.5 (6)C15—C10—C11—C121.7 (6)
C1—C2—C3—O4119.9 (5)S1—C10—C11—C12179.6 (3)
C4—C2—C3—O3121.3 (4)C10—C11—C12—C130.6 (6)
C1—C2—C3—O360.2 (4)C11—C12—C13—C141.8 (6)
C1—C2—C4—C51.4 (6)C11—C12—C13—C16177.4 (4)
C3—C2—C4—C5179.8 (4)C12—C13—C14—C150.6 (6)
C1—C2—C4—S1179.2 (3)C16—C13—C14—C15178.6 (4)
C3—C2—C4—S12.4 (5)C13—C14—C15—C101.6 (6)
O5—S1—C4—C2140.8 (3)C11—C10—C15—C142.8 (5)
C10—S1—C4—C2110.2 (3)S1—C10—C15—C14179.3 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C15—H15···O40.962.473.317 (5)147
C11—H11···O50.962.522.928 (5)106
C14—H14···O5i0.962.543.357 (5)143
Symmetry code: (i) x1, y, z.
(II) Diethyl 3-cyano-3-(toluene-4-sulfinyl)bicyclo[2.2.1]hepta-5-ene-2,2-dicarboxylate top
Crystal data top
C21H23NO5SF(000) = 848
Mr = 401.46Dx = 1.315 Mg m3
Monoclinic, CcMo Kα radiation, λ = 0.71073 Å
a = 8.458 (1) ÅCell parameters from 30 reflections
b = 15.137 (2) Åθ = 5.1–16.1°
c = 15.930 (3) ŵ = 0.19 mm1
β = 95.98 (2)°T = 293 K
V = 2028.4 (5) Å3Plate, colourless
Z = 40.28 × 0.20 × 0.06 mm
Data collection top
Siemens P4/PC
diffractometer
Rint = 0.000
Radiation source: fine-focus sealed tubeθmax = 27.6°, θmin = 1.5°
Graphite monochromatorh = 010
ω/2θ scansk = 019
2587 measured reflectionsl = 2020
2491 independent reflections3 standard reflections every 97 reflections
1072 reflections with I > 2σ(I) intensity decay: <3%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.064H-atom parameters constrained
wR(F2) = 0.141 w = 1/[σ2(Fo2) + (0.037P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.96(Δ/σ)max = 0.024
2491 reflectionsΔρmax = 0.27 e Å3
253 parametersΔρmin = 0.30 e Å3
2 restraintsAbsolute structure: Flack (1983)
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.02 (19)
Crystal data top
C21H23NO5SV = 2028.4 (5) Å3
Mr = 401.46Z = 4
Monoclinic, CcMo Kα radiation
a = 8.458 (1) ŵ = 0.19 mm1
b = 15.137 (2) ÅT = 293 K
c = 15.930 (3) Å0.28 × 0.20 × 0.06 mm
β = 95.98 (2)°
Data collection top
Siemens P4/PC
diffractometer
Rint = 0.000
2587 measured reflections3 standard reflections every 97 reflections
2491 independent reflections intensity decay: <3%
1072 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.064H-atom parameters constrained
wR(F2) = 0.141Δρmax = 0.27 e Å3
S = 0.96Δρmin = 0.30 e Å3
2491 reflectionsAbsolute structure: Flack (1983)
253 parametersAbsolute structure parameter: 0.02 (19)
2 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.2756 (2)0.28889 (15)0.30155 (14)0.0502 (6)
O10.5745 (6)0.4888 (4)0.2581 (4)0.0500 (15)
O20.7800 (7)0.4779 (4)0.3604 (4)0.0584 (17)
O30.7475 (7)0.3444 (4)0.1938 (4)0.0611 (17)
O40.5284 (7)0.2582 (4)0.1959 (4)0.0611 (18)
O50.1643 (6)0.2887 (4)0.3700 (4)0.0703 (19)
N10.3755 (10)0.4899 (6)0.4233 (5)0.075 (3)
C10.7407 (10)0.2922 (6)0.3787 (5)0.055 (2)
H10.85430.30300.37600.066*
C20.6220 (9)0.3492 (5)0.3166 (5)0.041 (2)
C30.4566 (9)0.3383 (5)0.3598 (5)0.042 (2)
C40.5113 (12)0.2750 (6)0.4380 (5)0.063 (3)
H40.43870.27270.48210.076*
C50.5540 (12)0.1867 (6)0.4027 (7)0.068 (3)
H50.49630.13460.40490.081*
C60.6805 (13)0.1964 (6)0.3668 (6)0.072 (3)
H60.73260.15270.33930.087*
C70.6781 (10)0.3130 (7)0.4655 (5)0.062 (3)
H7A0.73370.28090.51240.074*
H7B0.67570.37560.47830.074*
C80.4104 (10)0.4224 (5)0.3947 (5)0.042 (2)
C90.6725 (9)0.4469 (5)0.3154 (5)0.0401 (19)
C100.6204 (11)0.3108 (6)0.2276 (5)0.048 (2)
C110.6047 (12)0.5826 (5)0.2527 (7)0.068 (3)
H11A0.71470.59400.24400.082*
H11B0.58260.61110.30480.082*
C120.4915 (14)0.6182 (6)0.1785 (8)0.110 (5)
H12A0.38320.60530.18700.132*
H12B0.51670.59110.12710.132*
H12C0.50510.68100.17490.132*
C130.7615 (13)0.3213 (6)0.1040 (5)0.075 (3)
H13A0.87240.32540.09390.090*
H13B0.72790.26060.09410.090*
C140.6730 (15)0.3782 (8)0.0456 (6)0.108 (5)
H14A0.73550.39540.00130.130*
H14B0.64150.42990.07450.130*
H14C0.58020.34700.02180.130*
C150.2076 (10)0.3775 (5)0.2309 (5)0.044 (2)
C160.1144 (10)0.4442 (6)0.2573 (5)0.048 (2)
H160.08700.44570.31230.058*
C170.0567 (10)0.5095 (6)0.2002 (6)0.056 (2)
H170.00510.55520.21820.067*
C180.0922 (11)0.5078 (6)0.1176 (6)0.057 (2)
C190.1821 (10)0.4408 (6)0.0907 (5)0.056 (2)
H190.20640.43990.03510.067*
C200.2398 (10)0.3722 (6)0.1462 (5)0.051 (2)
H200.29610.32500.12680.061*
C210.0345 (12)0.5785 (7)0.0549 (6)0.080 (3)
H21A0.08590.63380.06920.095*
H21B0.07820.58500.05570.095*
H21C0.05710.56080.00050.095*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0501 (13)0.0473 (13)0.0544 (15)0.0108 (12)0.0104 (11)0.0012 (13)
O10.037 (3)0.044 (4)0.066 (4)0.000 (3)0.008 (3)0.006 (3)
O20.054 (4)0.057 (4)0.062 (4)0.004 (3)0.006 (3)0.006 (3)
O30.055 (4)0.075 (5)0.056 (4)0.007 (3)0.021 (3)0.000 (4)
O40.062 (4)0.054 (4)0.069 (4)0.013 (3)0.016 (3)0.025 (3)
O50.047 (4)0.091 (5)0.074 (5)0.030 (4)0.016 (3)0.014 (4)
N10.089 (7)0.072 (6)0.068 (6)0.003 (5)0.025 (5)0.022 (5)
C10.040 (5)0.056 (6)0.068 (7)0.002 (4)0.003 (4)0.025 (5)
C20.049 (5)0.031 (4)0.045 (5)0.007 (4)0.009 (4)0.002 (4)
C30.037 (4)0.047 (5)0.041 (5)0.002 (4)0.005 (4)0.005 (4)
C40.083 (7)0.062 (7)0.047 (6)0.026 (6)0.013 (5)0.004 (5)
C50.071 (7)0.059 (7)0.075 (7)0.017 (5)0.015 (6)0.035 (6)
C60.100 (9)0.050 (6)0.066 (7)0.026 (6)0.002 (6)0.013 (5)
C70.068 (6)0.068 (7)0.049 (6)0.009 (5)0.009 (5)0.015 (5)
C80.054 (5)0.030 (4)0.045 (5)0.007 (4)0.019 (4)0.002 (4)
C90.042 (5)0.041 (5)0.038 (5)0.011 (4)0.009 (4)0.005 (4)
C100.054 (5)0.039 (5)0.054 (6)0.020 (4)0.015 (5)0.012 (4)
C110.060 (6)0.037 (6)0.104 (9)0.003 (5)0.006 (6)0.006 (6)
C120.111 (10)0.044 (6)0.172 (14)0.023 (6)0.002 (9)0.037 (8)
C130.076 (7)0.104 (9)0.050 (6)0.004 (6)0.033 (5)0.012 (6)
C140.126 (11)0.149 (13)0.047 (7)0.042 (10)0.005 (7)0.016 (8)
C150.047 (5)0.044 (5)0.041 (5)0.005 (4)0.005 (4)0.001 (4)
C160.041 (5)0.055 (6)0.047 (6)0.003 (4)0.003 (4)0.003 (5)
C170.045 (5)0.060 (6)0.065 (6)0.004 (5)0.012 (5)0.011 (5)
C180.061 (6)0.053 (6)0.055 (6)0.014 (5)0.002 (5)0.006 (5)
C190.052 (6)0.076 (7)0.040 (5)0.011 (5)0.001 (5)0.004 (5)
C200.046 (5)0.056 (6)0.050 (6)0.004 (4)0.001 (4)0.018 (5)
C210.075 (7)0.085 (7)0.073 (7)0.023 (6)0.022 (6)0.006 (6)
Geometric parameters (Å, º) top
S1—O51.513 (6)C18—C191.365 (12)
S1—C151.807 (8)C18—C211.509 (12)
S1—C31.863 (8)C19—C201.417 (11)
O1—C91.328 (9)C1—H10.98
O1—C111.446 (9)C4—H40.98
O2—C91.194 (8)C5—H50.93
O3—C101.351 (10)C6—H60.93
O3—C131.490 (10)C7—H7A0.97
O4—C101.188 (10)C7—H7B0.97
N1—C81.170 (10)C11—H11A0.97
C1—C61.541 (12)C11—H11B0.97
C1—C71.565 (12)C12—H12A0.96
C1—C21.588 (10)C12—H12B0.96
C2—C101.532 (11)C12—H12C0.96
C2—C91.540 (10)C13—H13A0.97
C2—C31.630 (10)C13—H13B0.97
C3—C81.458 (11)C14—H14A0.96
C3—C41.602 (11)C14—H14B0.96
C4—C51.508 (12)C14—H14C0.96
C4—C71.545 (12)C16—H160.93
C5—C61.274 (12)C17—H170.93
C11—C121.539 (13)C19—H190.93
C13—C141.422 (13)C20—H200.93
C15—C161.374 (11)C21—H21A0.96
C15—C201.405 (10)C21—H21B0.96
C16—C171.396 (11)C21—H21C0.96
C17—C181.380 (11)
O5—S1—C15105.6 (4)C6—C5—C4108.1 (10)
O5—S1—C3100.5 (3)C5—C6—C1109.7 (9)
C15—S1—C3101.8 (4)C4—C7—C193.3 (7)
C9—O1—C11114.2 (7)N1—C8—C3179.1 (9)
C10—O3—C13116.1 (7)O2—C9—O1127.2 (7)
C6—C1—C799.2 (7)O2—C9—C2124.4 (8)
C6—C1—C2104.8 (7)O1—C9—C2108.3 (7)
C7—C1—C2101.0 (7)O4—C10—O3126.6 (8)
C10—C2—C9109.2 (6)O4—C10—C2126.2 (8)
C10—C2—C1108.3 (6)O3—C10—C2107.1 (8)
C9—C2—C1111.8 (7)O1—C11—C12106.9 (7)
C10—C2—C3115.3 (6)C14—C13—O3113.4 (9)
C9—C2—C3110.7 (7)C16—C15—C20120.7 (8)
C1—C2—C3101.4 (6)C16—C15—S1120.7 (6)
C8—C3—C4107.0 (7)C20—C15—S1118.3 (7)
C8—C3—C2110.4 (7)C15—C16—C17119.6 (8)
C4—C3—C2101.4 (6)C18—C17—C16120.8 (8)
C8—C3—S1107.5 (6)C19—C18—C17119.8 (9)
C4—C3—S1107.6 (5)C19—C18—C21118.1 (9)
C2—C3—S1121.9 (5)C17—C18—C21122.1 (9)
C5—C4—C7100.9 (8)C18—C19—C20121.0 (8)
C5—C4—C3107.5 (7)C15—C20—C19118.0 (8)
C7—C4—C3100.3 (6)
C6—C1—C2—C1055.4 (9)C6—C1—C7—C446.8 (8)
C7—C1—C2—C10158.1 (7)C2—C1—C7—C460.4 (8)
C6—C1—C2—C9175.7 (7)C11—O1—C9—O20.8 (12)
C7—C1—C2—C981.6 (8)C11—O1—C9—C2177.6 (7)
C6—C1—C2—C366.3 (9)C10—C2—C9—O2125.5 (8)
C7—C1—C2—C336.4 (8)C1—C2—C9—O25.7 (11)
C10—C2—C3—C8131.3 (7)C3—C2—C9—O2106.6 (8)
C9—C2—C3—C86.8 (9)C10—C2—C9—O156.0 (8)
C1—C2—C3—C8112.0 (7)C1—C2—C9—O1175.8 (6)
C10—C2—C3—C4115.6 (6)C3—C2—C9—O171.9 (8)
C9—C2—C3—C4119.9 (7)C13—O3—C10—O47.9 (12)
C1—C2—C3—C41.1 (8)C13—O3—C10—C2175.1 (7)
C10—C2—C3—S13.7 (9)C9—C2—C10—O4143.6 (8)
C9—C2—C3—S1120.8 (7)C1—C2—C10—O494.4 (9)
C1—C2—C3—S1120.4 (6)C3—C2—C10—O418.3 (11)
O5—S1—C3—C854.8 (6)C9—C2—C10—O339.4 (8)
C15—S1—C3—C853.8 (6)C1—C2—C10—O382.6 (7)
O5—S1—C3—C460.2 (6)C3—C2—C10—O3164.7 (6)
C15—S1—C3—C4168.7 (6)C9—O1—C11—C12174.9 (7)
O5—S1—C3—C2176.4 (6)C10—O3—C13—C1485.0 (10)
C15—S1—C3—C275.1 (7)O5—S1—C15—C1620.3 (8)
C8—C3—C4—C5178.0 (7)C3—S1—C15—C1684.3 (7)
C2—C3—C4—C566.2 (9)O5—S1—C15—C20153.9 (6)
S1—C3—C4—C562.7 (8)C3—S1—C15—C20101.5 (7)
C8—C3—C4—C777.0 (8)C20—C15—C16—C172.7 (12)
C2—C3—C4—C738.8 (8)S1—C15—C16—C17176.8 (6)
S1—C3—C4—C7167.7 (6)C15—C16—C17—C180.0 (13)
C7—C4—C5—C635.6 (10)C16—C17—C18—C191.4 (13)
C3—C4—C5—C669.0 (10)C16—C17—C18—C21178.7 (9)
C4—C5—C6—C13.0 (11)C17—C18—C19—C200.1 (13)
C7—C1—C6—C529.9 (10)C21—C18—C19—C20179.9 (8)
C2—C1—C6—C574.1 (10)C16—C15—C20—C194.0 (12)
C5—C4—C7—C149.6 (8)S1—C15—C20—C19178.2 (6)
C3—C4—C7—C160.7 (7)C18—C19—C20—C152.7 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C20—H20···O40.932.383.027 (10)127
C16—H16···O50.932.612.964 (11)104
C19—H19···N1i0.932.623.435 (12)146
Symmetry code: (i) x, y+1, z1/2.

Experimental details

(I)(II)
Crystal data
Chemical formulaC16H17NO5SC21H23NO5S
Mr335.37401.46
Crystal system, space groupTriclinic, P1Monoclinic, Cc
Temperature (K)293293
a, b, c (Å)8.167 (2), 8.666 (1), 13.004 (2)8.458 (1), 15.137 (2), 15.930 (3)
α, β, γ (°)104.01 (1), 103.11 (1), 98.40 (1)90, 95.98 (2), 90
V3)849.8 (3)2028.4 (5)
Z24
Radiation typeMo KαMo Kα
µ (mm1)0.210.19
Crystal size (mm)0.40 × 0.40 × 0.240.28 × 0.20 × 0.06
Data collection
DiffractometerSiemens P4/PC
diffractometer
Siemens P4/PC
diffractometer
Absorption correctionψ-scan
(North et al., 1968)
Tmin, Tmax0.920, 0.948
No. of measured, independent and
observed [I > 2σ(I)] reflections
3165, 2941, 1985 2587, 2491, 1072
Rint0.0490.000
(sin θ/λ)max1)0.5950.652
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.053, 0.177, 1.07 0.064, 0.141, 0.96
No. of reflections29412491
No. of parameters208253
No. of restraints02
H-atom treatmentH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.29, 0.250.27, 0.30
Absolute structure?Flack (1983)
Absolute structure parameter?0.02 (19)

Computer programs: XSCANS (Siemens, 1993), XSCANS, SIR92 (Altomare et al., 1994), SHELXL97 (Sheldrick, 1997), SHELXLTL/PC (Sheldrick, 1990), SHELXL97.

Selected geometric parameters (Å, º) for (I) top
S1—O51.480 (3)O4—C31.182 (5)
S1—C101.803 (4)N1—C51.137 (5)
S1—C41.837 (3)C1—C21.511 (4)
O1—C11.314 (5)C2—C41.330 (5)
O2—C11.189 (5)C2—C31.516 (5)
O3—C31.295 (4)C4—C51.447 (5)
O5—S1—C10107.03 (19)C1—C2—C3117.6 (3)
O5—S1—C4105.26 (18)O4—C3—O3126.2 (4)
C10—S1—C494.52 (15O4—C3—C2122.9 (3)
O2—C1—O1125.6 (4)O3—C3—C2111.0 (3)
O2—C1—C2123.6 (4)C2—C4—C5125.1 (3)
O1—C1—C2110.7 (3)C2—C4—S1122.6 (3)
C4—C2—C1121.2 (3)C5—C4—S1112.2 (3)
C4—C2—C3121.2 (3)
O2—C1—C2—C417.0 (7)C3—C2—C4—S12.4 (5)
O2—C1—C2—C3164.5 (4)O5—S1—C4—C2140.8 (3)
C4—C2—C3—O458.5 (6)C10—S1—C4—C2110.2 (3)
C1—C2—C3—O4119.9 (5)O5—S1—C4—C537.3 (3)
C1—C2—C3—O360.2 (4)O5—S1—C10—C110.4 (3)
C1—C2—C4—C51.4 (6)O5—S1—C10—C15178.3 (3)
Selected geometric parameters (Å, º) for (II) top
S1—C151.807 (8)C2—C31.630 (10)
S1—C31.863 (8)C5—C61.274 (12)
C10—C2—C9109.2 (6)C8—C3—C4107.0 (7)
C10—C2—C1108.3 (6)C8—C3—C2110.4 (7)
C9—C2—C1111.8 (7)C4—C3—C2101.4 (6)
C10—C2—C3115.3 (6)C8—C3—S1107.5 (6)
C9—C2—C3110.7 (7)C4—C3—S1107.6 (5)
C1—C2—C3101.4 (6)C2—C3—S1121.9 (5)
C7—C1—C2—C336.4 (8)C4—C5—C6—C13.0 (11)
C1—C2—C3—C41.1 (8)C7—C1—C6—C529.9 (10)
O5—S1—C3—C2176.4 (6)C9—O1—C11—C12174.9 (7)
C2—C3—C4—C738.8 (8)C10—O3—C13—C1485.0 (10)
C7—C4—C5—C635.6 (10)O5—S1—C15—C1620.3 (8)
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds