Buy article online - an online subscription or single-article purchase is required to access this article.
In the title compound, C
5H
4N
2O
4·H
2O, the 3,5-pyrazoledicarboxylic acid (H
3pdc) molecules are joined into one-dimensional chains by O—H
O and N—H
O hydrogen bonds, with distances of 2.671 (2) and 2.776 (2) Å, respectively. The one-dimensional chains form a three-dimensional structure via O—H
O
W and O
W—H
WN hydrogen bonds, with distances of 2.597 (3) and 2.780 (3) Å, respectively. In addition to the potential for forming open-channel frameworks, access to the six coordination atoms of H
3pdc can be directly controlled by varying the pH of the reaction environment, allowing further control over the design and synthesis of novel coordination polymers using various metal centers.
Supporting information
CCDC reference: 150844
Data collection: CAD-4-PC (Enraf-Nonius, 1992); cell refinement: CAD-4-PC; data reduction: XCAD4/PC (Harms, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SCHAKAL92; software used to prepare material for publication: CIF.
3,5-pyrazoledicarboxylic acid monohydrate
top
Crystal data top
C5H4N2O4·H2O | F(000) = 360 |
Mr = 174.12 | Dx = 1.641 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
a = 13.386 (3) Å | Cell parameters from 20 reflections |
b = 3.750 (1) Å | θ = 7.1–12.1° |
c = 14.350 (3) Å | µ = 0.15 mm−1 |
β = 101.88 (3)° | T = 293 K |
V = 704.9 (3) Å3 | Columnar, colorless |
Z = 4 | 0.30 × 0.10 × 0.08 mm |
Data collection top
Enraf-Nonius CAD4 diffractometer | 856 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.044 |
Graphite monochromator | θmax = 26.0°, θmin = 2.3° |
ω scans | h = 0→16 |
Absorption correction: ψ scan (Kopfman & Hubber, 1968) | k = −4→4 |
Tmin = 0.959, Tmax = 1.000 | l = −17→17 |
2883 measured reflections | 3 standard reflections every 250 min |
1388 independent reflections | intensity decay: −2.8% |
Refinement top
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.040 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.079 | Calculated w = 1/[σ2(Fo2) + 0.250P] where P = (Fo2 + 2Fc2)/3 |
S = 1.18 | (Δ/σ)max < 0.001 |
1388 reflections | Δρmax = 0.17 e Å−3 |
128 parameters | Δρmin = −0.23 e Å−3 |
1 restraint | Extinction correction: SHELXL97 (Sheldrick, 1997), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.0109 (12) |
Special details top
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes)
are estimated using the full covariance matrix. The cell e.s.d.'s are taken
into account individually in the estimation of e.s.d.'s in distances, angles
and torsion angles; correlations between e.s.d.'s in cell parameters are only
used when they are defined by crystal symmetry. An approximate (isotropic)
treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s.
planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor
wR and goodness of fit S are based on F2, conventional
R-factors R are based on F, with F set to zero for
negative F2. The threshold expression of F2 >
σ(F2) is used only for calculating R-factors(gt) etc.
and is not relevant to the choice of reflections for refinement.
R-factors based on F2 are statistically about twice as large
as those based on F, and R- factors based on ALL data will be
even larger. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top | x | y | z | Uiso*/Ueq | |
O1 | 0.04455 (12) | 0.2049 (6) | 0.41802 (10) | 0.0640 (6) | |
O2 | −0.10649 (12) | −0.0709 (6) | 0.39626 (11) | 0.0613 (6) | |
H1 | −0.0840 (17) | −0.114 (8) | 0.4625 (18) | 0.074* | |
O3 | −0.11526 (11) | 0.2663 (5) | −0.05303 (10) | 0.0558 (6) | |
O4 | −0.24032 (12) | −0.0402 (6) | −0.00896 (11) | 0.0553 (5) | |
H2 | −0.2596 (17) | −0.077 (8) | −0.0766 (17) | 0.066* | |
O5 | −0.29513 (15) | −0.1326 (7) | −0.19175 (14) | 0.0753 (7) | |
H3 | −0.360 (2) | −0.065 (9) | −0.212 (2) | 0.090* | |
H4 | −0.284 (2) | −0.318 (8) | −0.218 (2) | 0.090* | |
N1 | 0.01692 (13) | 0.3323 (6) | 0.22830 (11) | 0.0443 (5) | |
N2 | −0.01893 (13) | 0.3347 (6) | 0.13467 (12) | 0.0424 (5) | |
H5 | 0.0195 (16) | 0.434 (7) | 0.0970 (15) | 0.051* | |
C1 | −0.03493 (18) | 0.1021 (7) | 0.36728 (15) | 0.0459 (6) | |
C2 | −0.05516 (16) | 0.1631 (7) | 0.26339 (14) | 0.0395 (6) | |
C3 | −0.13674 (17) | 0.0613 (7) | 0.19199 (15) | 0.0405 (6) | |
H6 | −0.1937 (15) | −0.071 (7) | 0.1979 (15) | 0.049* | |
C4 | −0.11019 (15) | 0.1748 (7) | 0.10941 (14) | 0.0383 (6) | |
C5 | −0.15587 (16) | 0.1420 (7) | 0.00769 (14) | 0.0409 (6) | |
Atomic displacement parameters (Å2) top | U11 | U22 | U33 | U12 | U13 | U23 |
O1 | 0.0621 (11) | 0.0937 (16) | 0.0326 (9) | −0.0169 (12) | 0.0016 (8) | 0.0089 (10) |
O2 | 0.0631 (11) | 0.0884 (15) | 0.0329 (8) | −0.0157 (12) | 0.0108 (8) | 0.0113 (10) |
O3 | 0.0559 (9) | 0.0819 (15) | 0.0302 (8) | −0.0125 (10) | 0.0101 (8) | 0.0047 (9) |
O4 | 0.0504 (9) | 0.0793 (14) | 0.0339 (8) | −0.0134 (10) | 0.0035 (7) | 0.0004 (10) |
O5 | 0.0548 (11) | 0.1051 (19) | 0.0570 (12) | 0.0109 (14) | −0.0096 (9) | −0.0227 (13) |
N1 | 0.0481 (10) | 0.0581 (14) | 0.0258 (9) | −0.0007 (11) | 0.0055 (8) | 0.0033 (10) |
N2 | 0.0453 (11) | 0.0573 (14) | 0.0256 (9) | 0.0000 (11) | 0.0092 (8) | 0.0058 (10) |
C1 | 0.0504 (13) | 0.0543 (17) | 0.0333 (12) | −0.0009 (14) | 0.0096 (11) | 0.0032 (13) |
C2 | 0.0463 (12) | 0.0433 (14) | 0.0299 (10) | 0.0035 (12) | 0.0102 (10) | 0.0045 (11) |
C3 | 0.0430 (12) | 0.0458 (16) | 0.0331 (11) | 0.0014 (12) | 0.0087 (10) | 0.0028 (11) |
C4 | 0.0400 (11) | 0.0413 (14) | 0.0330 (11) | 0.0034 (12) | 0.0062 (9) | 0.0008 (11) |
C5 | 0.0414 (12) | 0.0482 (15) | 0.0322 (11) | 0.0055 (13) | 0.0052 (10) | 0.0024 (12) |
Geometric parameters (Å, º) top
O1—C1 | 1.221 (3) | N1—C2 | 1.337 (3) |
O2—C1 | 1.294 (3) | N2—C4 | 1.342 (3) |
O2—H1 | 0.95 (3) | N2—H5 | 0.90 (2) |
O3—C5 | 1.211 (2) | C1—C2 | 1.477 (3) |
O4—C5 | 1.300 (3) | C2—C3 | 1.388 (3) |
O4—H2 | 0.96 (2) | C3—C4 | 1.373 (3) |
O5—H3 | 0.90 (3) | C3—H6 | 0.93 (2) |
O5—H4 | 0.82 (3) | C4—C5 | 1.467 (3) |
N1—N2 | 1.330 (2) | | |
| | | |
C1—O2—H1 | 107.7 (15) | N1—C2—C1 | 117.2 (2) |
C5—O4—H2 | 107.7 (14) | C3—C2—C1 | 130.9 (2) |
H3—O5—H4 | 111 (3) | C4—C3—C2 | 104.3 (2) |
N2—N1—C2 | 104.20 (18) | C4—C3—H6 | 127.5 (13) |
N1—N2—C4 | 112.88 (18) | C2—C3—H6 | 128.0 (13) |
N1—N2—H5 | 118.6 (14) | N2—C4—C3 | 106.77 (19) |
C4—N2—H5 | 128.5 (14) | N2—C4—C5 | 118.43 (18) |
O1—C1—O2 | 125.3 (2) | C3—C4—C5 | 134.7 (2) |
O1—C1—C2 | 120.6 (2) | O3—C5—O4 | 124.9 (2) |
O2—C1—C2 | 114.1 (2) | O3—C5—C4 | 121.8 (2) |
N1—C2—C3 | 111.82 (18) | O4—C5—C4 | 113.30 (19) |
| | | |
C2—N1—N2—C4 | 0.0 (3) | N1—N2—C4—C3 | 0.4 (3) |
N2—N1—C2—C3 | −0.5 (3) | N1—N2—C4—C5 | −176.8 (2) |
N2—N1—C2—C1 | 177.2 (2) | C2—C3—C4—N2 | −0.7 (3) |
O1—C1—C2—N1 | 0.3 (4) | C2—C3—C4—C5 | 175.9 (3) |
O2—C1—C2—N1 | −178.3 (2) | N2—C4—C5—O3 | −2.8 (4) |
O1—C1—C2—C3 | 177.4 (3) | C3—C4—C5—O3 | −179.0 (3) |
O2—C1—C2—C3 | −1.2 (4) | N2—C4—C5—O4 | 175.1 (2) |
N1—C2—C3—C4 | 0.7 (3) | C3—C4—C5—O4 | −1.1 (4) |
C1—C2—C3—C4 | −176.5 (3) | | |
Hydrogen-bond geometry (Å, º) top
D—H···A | D—H | H···A | D···A | D—H···A |
O2—H1···O1i | 0.95 (3) | 1.72 (3) | 2.671 (2) | 178 (3) |
O4—H2···O5 | 0.96 (2) | 1.64 (2) | 2.597 (3) | 178 (2) |
O5—H3···N1ii | 0.90 (3) | 1.90 (3) | 2.780 (3) | 165 (3) |
O5—H4···O5iii | 0.82 (3) | 2.18 (3) | 2.933 (3) | 153 (3) |
N2—H5···O3iv | 0.90 (2) | 1.91 (2) | 2.776 (2) | 162 (2) |
Symmetry codes: (i) −x, −y, −z+1; (ii) x−1/2, −y+1/2, z−1/2; (iii) −x−1/2, y−1/2, −z−1/2; (iv) −x, −y+1, −z. |
Subscribe to Acta Crystallographica Section C: Structural Chemistry
The full text of this article is available to subscribers to the journal.
If you have already registered and are using a computer listed in your registration details, please email
support@iucr.org for assistance.