Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The title complex has been studied using low-temperature X-­ray (150 K) and neutron (100 K) diffraction. Molecules of the triazine host form a two-dimensional hexagonal network mediated by trigonally symmetric Cl3 synthons having Cl...Cl interactions of 3.441 (3) Å, a C—Cl...Cl angle of 165° and a Cl...Cl—C angle of 105°, close to the ideal values of 180 and 90°, respectively. The guest molecules are of an appropriate size to fit the hexagonal networks and interact with the host via C—H...π (phenyl) and C—Br...π (phenyl) interactions which stabilize the overall structure. Both C-donor bond vectors are directed more closely towards the mid-point (X) of an individual aromatic bond, rather than the ring centroid, with H...X 2.817 (9) Å and C—H...X 174.0 (9)°, and Br...X 3.353 (4) Å and C—Br...X 158.1 (2)°.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108768100011551/bm0035sup1.cif
Contains datablocks global, I, II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108768100011551/bm0035Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108768100011551/bm0035IIsup3.hkl
Contains datablock II

CCDC references: 156675; 156676

Computing details top

Data collection: Bruker SMART for (I). Cell refinement: Bruker SAINT for (I). Data reduction: Bruker SAINT for (I). For both compounds, program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997). Molecular graphics: Bruker SHELXTL for (I); Siemens SHELXTL for (II). Software used to prepare material for publication: Bruker SHELXTL for (I); Siemens SHELXTL for (II).

(I) 2,4,6-tris-(4-chlorophenoxy)-1,3,5-triazine tribromobenzene top
Crystal data top
C21H12Cl3N3O3·C6H3Br3Dx = 1.876 Mg m3
Mr = 775.50Mo Kα radiation, λ = 0.71073 Å
Hexagonal, P63Cell parameters from 999 reflections
Hall symbol: P 6cθ = 5.3–28.8°
a = 15.250 (2) ŵ = 4.74 mm1
c = 6.8149 (14) ÅT = 150 K
V = 1372.6 (4) Å3Needle, colourless
Z = 20.35 × 0.27 × 0.27 mm
F(000) = 756
Data collection top
Bruker SMART-CCD
diffractometer
2568 independent reflections
Radiation source: fine-focus sealed tube2283 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
/w scansθmax = 30.5°, θmin = 1.5°
Absorption correction: multi-scan
?
h = 2020
Tmin = 0.299, Tmax = 0.379k = 2121
17004 measured reflectionsl = 99
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.027Only H-atom displacement parameters refined
wR(F2) = 0.064 w = 1/[σ2(Fo2) + (0.0418P)2 + 0.0942P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.001
2568 reflectionsΔρmax = 0.40 e Å3
122 parametersΔρmin = 0.90 e Å3
1 restraintAbsolute structure: Flack H D (1983), Acta Cryst. A39, 876-881
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.015 (8)
Crystal data top
C21H12Cl3N3O3·C6H3Br3Z = 2
Mr = 775.50Mo Kα radiation
Hexagonal, P63µ = 4.74 mm1
a = 15.250 (2) ÅT = 150 K
c = 6.8149 (14) Å0.35 × 0.27 × 0.27 mm
V = 1372.6 (4) Å3
Data collection top
Bruker SMART-CCD
diffractometer
2568 independent reflections
Absorption correction: multi-scan
?
2283 reflections with I > 2σ(I)
Tmin = 0.299, Tmax = 0.379Rint = 0.030
17004 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.027Only H-atom displacement parameters refined
wR(F2) = 0.064Δρmax = 0.40 e Å3
S = 1.04Δρmin = 0.90 e Å3
2568 reflectionsAbsolute structure: Flack H D (1983), Acta Cryst. A39, 876-881
122 parametersAbsolute structure parameter: 0.015 (8)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.28248 (4)0.51759 (4)0.65111 (9)0.02579 (10)
C10.33892 (13)0.44198 (13)0.6510 (4)0.0202 (3)
C20.39612 (15)0.44579 (15)0.8120 (3)0.0224 (4)
H20.40330.48690.91860.030 (7)*
C30.44300 (15)0.38693 (15)0.8123 (3)0.0215 (4)
H30.48200.38840.91850.024 (6)*
C40.42989 (12)0.32615 (12)0.6503 (4)0.0177 (3)
C50.37199 (14)0.32150 (13)0.4900 (4)0.0217 (4)
H5A0.36410.27960.38420.026*
C60.32559 (14)0.38076 (14)0.4893 (4)0.0231 (4)
H60.28660.37930.38300.023 (6)*
O10.47036 (9)0.26041 (9)0.6491 (2)0.0193 (3)
C70.57159 (12)0.30103 (13)0.6516 (3)0.0169 (3)
N10.59961 (11)0.23038 (11)0.6523 (3)0.0179 (3)
Br10.780866 (18)0.98944 (2)1.00678 (6)0.04690 (9)
C80.90847 (16)0.99571 (17)1.0167 (5)0.0292 (4)
C90.99560 (17)1.09001 (16)1.0164 (5)0.0294 (4)
H90.99271.14951.01600.047 (8)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0283 (2)0.0257 (2)0.0313 (2)0.01943 (18)0.0000 (2)0.0004 (2)
C10.0174 (7)0.0175 (8)0.0270 (10)0.0099 (7)0.0016 (9)0.0016 (9)
C20.0217 (9)0.0205 (9)0.0243 (10)0.0101 (8)0.0005 (8)0.0034 (7)
C30.0186 (9)0.0231 (9)0.0235 (10)0.0110 (8)0.0026 (7)0.0004 (8)
C40.0125 (7)0.0150 (7)0.0249 (9)0.0064 (6)0.0026 (8)0.0011 (8)
C50.0223 (8)0.0201 (8)0.0244 (10)0.0118 (7)0.0016 (9)0.0029 (8)
C60.0218 (8)0.0255 (8)0.0256 (11)0.0145 (7)0.0031 (9)0.0004 (9)
O10.0139 (5)0.0157 (5)0.0292 (7)0.0080 (5)0.0018 (6)0.0005 (6)
C70.0149 (7)0.0184 (7)0.0159 (8)0.0072 (6)0.0005 (8)0.0000 (8)
N10.0157 (6)0.0162 (6)0.0214 (8)0.0076 (5)0.0005 (7)0.0003 (7)
Br10.03692 (13)0.07222 (19)0.04169 (14)0.03488 (13)0.00008 (15)0.00118 (18)
C80.0291 (9)0.0404 (10)0.0202 (10)0.0190 (8)0.0012 (11)0.0001 (11)
C90.0399 (10)0.0317 (10)0.0182 (9)0.0191 (8)0.0008 (10)0.0002 (10)
Geometric parameters (Å, º) top
Cl1—C11.7501 (18)C6—H60.9300
C1—C21.385 (3)O1—C71.346 (2)
C1—C61.392 (3)C7—N1i1.320 (2)
C2—C31.399 (3)C7—N11.343 (2)
C2—H20.9300N1—C7ii1.320 (2)
C3—C41.390 (3)Br1—C81.901 (2)
C3—H30.9300C8—C9iii1.386 (3)
C4—C51.384 (3)C8—C91.387 (3)
C4—O11.416 (2)C9—C8iv1.386 (3)
C5—C61.399 (3)C9—H90.9300
C5—H5A0.9300
C2—C1—C6122.22 (17)C1—C6—C5118.7 (2)
C2—C1—Cl1118.61 (17)C1—C6—H6120.7
C6—C1—Cl1119.17 (16)C5—C6—H6120.7
C1—C2—C3119.16 (19)C7—O1—C4118.67 (13)
C1—C2—H2120.4N1i—C7—N1127.70 (16)
C3—C2—H2120.4N1i—C7—O1119.79 (15)
C4—C3—C2118.50 (19)N1—C7—O1112.50 (14)
C4—C3—H3120.8C7ii—N1—C7112.29 (16)
C2—C3—H3120.8C9iii—C8—C9123.1 (2)
C5—C4—C3122.45 (17)C9iii—C8—Br1118.31 (16)
C5—C4—O1116.85 (18)C9—C8—Br1118.55 (16)
C3—C4—O1120.56 (19)C8iv—C9—C8116.9 (2)
C4—C5—C6119.0 (2)C8iv—C9—H9121.5
C4—C5—H5A120.5C8—C9—H9121.5
C6—C5—H5A120.5
C6—C1—C2—C30.6 (3)C4—C5—C6—C10.4 (3)
Cl1—C1—C2—C3178.97 (15)C5—C4—O1—C7118.43 (19)
C1—C2—C3—C40.3 (3)C3—C4—O1—C765.7 (3)
C2—C3—C4—C50.3 (3)C4—O1—C7—N1i1.0 (3)
C2—C3—C4—O1175.93 (17)C4—O1—C7—N1179.29 (19)
C3—C4—C5—C60.6 (3)N1i—C7—N1—C7ii0.7 (4)
O1—C4—C5—C6176.42 (17)O1—C7—N1—C7ii178.97 (12)
C2—C1—C6—C50.2 (3)C9iii—C8—C9—C8iv0.3 (7)
Cl1—C1—C6—C5179.31 (16)Br1—C8—C9—C8iv177.76 (16)
Symmetry codes: (i) x+y+1, x+1, z; (ii) y+1, xy, z; (iii) y+2, xy+1, z; (iv) x+y+1, x+2, z.
(II) top
Crystal data top
C21H12Cl3N3O3·C6H3Br3F(000) = 43.57
Mr = 771.00Dx = 1.906 Mg m3
Hexagonal, P63Neutron radiation, λ = 0.5-5.0 Å
Hall symbol: P 6cCell parameters from 25 reflections
a = 15.166 (6) ŵ = 1.08, at 1 Angstrom mm1
c = 6.743 (2) ÅT = 100 K
V = 1343 (1) Å3Irregular prism, colourless
Z = 26.0 × 1.5 × 1.0 mm
Data collection top
SXD
diffractometer
3102 independent reflections
Radiation source: ISIS spallation source3102 reflections with I > 2σ(I)
None monochromatorRint = 0.071
time–of–flight LAUE diffraction scansθmax = 16.9°, θmin = 1.4°
Absorption correction: empirical (using intensity measurements)
The linear absorption coefficient is wavelength dependent and it is calculated as: mu = 0.46 + 0.62 * lambda [cm-1]
h = 030
Tmin = 0.30, Tmax = 0.91k = 030
30681 measured reflectionsl = 015
Refinement top
Refinement on F2Hydrogen site location: difference Fourier map
Least-squares matrix: fullAll H-atom parameters refined
R[F2 > 2σ(F2)] = 0.083 w = 1/[σ2(Fo2) + (0.0383P)2 + 59.851P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.212(Δ/σ)max < 0.001
S = 1.23Δρmax = 3.23 e Å3
3102 reflectionsΔρmin = 3.98 e Å3
163 parametersExtinction correction: Becker-Coppens Lorentzian model
1 restraintExtinction coefficient: 0.560
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack H D (1983), Acta Cryst. A39, 876-881
Secondary atom site location: difference Fourier mapAbsolute structure parameter: 0 (10)
Crystal data top
C21H12Cl3N3O3·C6H3Br3Z = 2
Mr = 771.00Neutron radiation, λ = 0.5-5.0 Å
Hexagonal, P63µ = 1.08, at 1 Angstrom mm1
a = 15.166 (6) ÅT = 100 K
c = 6.743 (2) Å6.0 × 1.5 × 1.0 mm
V = 1343 (1) Å3
Data collection top
SXD
diffractometer
3102 independent reflections
Absorption correction: empirical (using intensity measurements)
The linear absorption coefficient is wavelength dependent and it is calculated as: mu = 0.46 + 0.62 * lambda [cm-1]
3102 reflections with I > 2σ(I)
Tmin = 0.30, Tmax = 0.91Rint = 0.071
30681 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.083All H-atom parameters refined
wR(F2) = 0.212 w = 1/[σ2(Fo2) + (0.0383P)2 + 59.851P]
where P = (Fo2 + 2Fc2)/3
S = 1.23Δρmax = 3.23 e Å3
3102 reflectionsΔρmin = 3.98 e Å3
163 parametersAbsolute structure: Flack H D (1983), Acta Cryst. A39, 876-881
1 restraintAbsolute structure parameter: 0 (10)
Special details top

Experimental. For peak integration a local UB matrix refined for each frame, using approximately 25 reflections. Hence _cell_measurement_reflns_used 25

For final cell dimensions an average of all local cells was performed and estimated standard uncertainties were obtained from the spread of the local observations

Because of the nature of the experiment, it is not possible to give values of theta_min and theta_max for the cell determination.

Instead, we can give values of

_cell_measurement_sin(theta)/lambda_min 0.22 _cell_measurement_sin(theta)/lambda_max 0.83

The same applies for the wavelength used for the experiment. The range of wavelengths used was 0.5–5.0 Angstroms, BUT the bulk of the diffraction information is obtained from wavelengths in the range 0.7–2.5 Angstroms.

The data collection procedures on the SXD instrument used for the single-crystal neutron data collection are most recently summarized in the Appendix to the following paper Wilson, C·C. (1997). J. Mol. Struct. 405, 207–217.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. The variable wavelength nature of the data collection procedure means that sensible values of _diffrn_reflns_theta_min & _diffrn_reflns_theta_max cannot be given

It is also difficult to estimate realistic values of maximum sin(theta)/lambda values for two reasons: (i) Different sin(theta)/lambda ranges are accessed in different parts of the detectors (ii) The nature of the data collection occasionally allows some reflections at very high sin(theta)/lambda to be observed even when no real attempt has been made to measure data in this region.

However, we can attempt to estimate the sin(theta)/lambda limits as follows:

_diffrn_reflns_sin(theta)/lambda_min 0.099 _diffrn_reflns_sin(theta)/lambda_max 1.162

Note also that reflections for which the standard profile fitting integration procedure fails are excluded from the data set, thus resulting in a high elimination rate of very weak or "unobserved" peaks from the final data set.

The extinction coefficient reported in _refine_ls_extinction_coef is in this case the refined value of the mosaic spread in units of 10-4 rad-1 The reference for the extinction method used is: Becker, P. & Coppens, P. (1974). Acta Cryst. A30, 129–148.

Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.71822 (13)0.48225 (13)0.3485 (4)0.0131 (2)
C10.66204 (15)0.55789 (16)0.3485 (6)0.0105 (2)
C20.60324 (19)0.55359 (19)0.1864 (4)0.0119 (3)
C30.55743 (19)0.61318 (19)0.1865 (4)0.0115 (3)
C40.57032 (14)0.67462 (15)0.3491 (5)0.0094 (2)
C50.62922 (19)0.67932 (19)0.5107 (4)0.0110 (3)
C60.6756 (2)0.6198 (2)0.5114 (4)0.0124 (3)
O10.52980 (16)0.73975 (18)0.3508 (7)0.0104 (3)
C70.42892 (14)0.69954 (15)0.3479 (5)0.0083 (2)
N10.40038 (10)0.76978 (10)0.3469 (4)0.00947 (17)
Br10.2209 (3)0.0124 (4)0.0057 (7)0.0253 (7)
C80.0928 (3)0.0049 (3)0.0148 (4)0.0161 (4)
C90.0052 (3)0.0898 (3)0.0150 (5)0.0166 (4)
H20.5946 (7)0.5050 (7)0.0621 (14)0.0287 (15)
H30.5116 (8)0.6117 (8)0.0620 (14)0.0308 (16)
H60.7213 (8)0.6203 (8)0.6358 (14)0.0303 (16)
H50.6375 (8)0.7286 (8)0.6353 (14)0.0296 (15)
H90.0092 (9)0.1591 (8)0.016 (2)0.0358 (18)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0146 (5)0.0130 (5)0.0154 (5)0.0097 (4)0.0000 (7)0.0001 (7)
C10.0097 (6)0.0116 (6)0.0120 (6)0.0067 (5)0.0001 (9)0.0007 (9)
C20.0115 (7)0.0123 (7)0.0131 (8)0.0069 (6)0.0024 (7)0.0040 (7)
C30.0111 (7)0.0120 (7)0.0125 (8)0.0066 (6)0.0027 (7)0.0022 (7)
C40.0074 (5)0.0081 (5)0.0121 (6)0.0035 (4)0.0008 (8)0.0001 (8)
C50.0115 (7)0.0127 (7)0.0109 (7)0.0077 (6)0.0032 (6)0.0028 (7)
C60.0149 (8)0.0154 (8)0.0114 (8)0.0110 (7)0.0035 (7)0.0026 (7)
O10.0058 (5)0.0092 (6)0.0155 (8)0.0032 (5)0.0011 (10)0.0007 (10)
C70.0070 (5)0.0084 (5)0.0098 (5)0.0041 (4)0.0000 (8)0.0000 (8)
N10.0079 (4)0.0080 (4)0.0128 (4)0.0042 (3)0.0004 (6)0.0007 (6)
Br10.0209 (12)0.040 (2)0.0220 (14)0.0206 (14)0.0011 (12)0.0013 (15)
C80.0190 (10)0.0230 (11)0.0090 (8)0.0125 (9)0.0004 (8)0.0007 (8)
C90.0206 (11)0.0191 (10)0.0111 (8)0.0107 (9)0.0002 (8)0.0002 (8)
H20.034 (3)0.033 (3)0.026 (3)0.021 (3)0.007 (3)0.015 (3)
H30.037 (4)0.043 (4)0.023 (3)0.027 (4)0.013 (3)0.008 (3)
H60.034 (4)0.041 (4)0.025 (3)0.026 (3)0.011 (3)0.006 (3)
H50.040 (4)0.035 (4)0.023 (3)0.026 (3)0.011 (3)0.012 (3)
H90.041 (4)0.032 (4)0.044 (5)0.025 (4)0.001 (4)0.002 (4)
Geometric parameters (Å, º) top
Cl1—C11.737 (2)C6—H61.085 (9)
C1—C21.392 (4)O1—C71.334 (3)
C1—C61.392 (4)C7—N1i1.320 (2)
C2—C31.388 (3)C7—N11.335 (2)
C2—H21.080 (8)N1—C7ii1.320 (2)
C3—C41.388 (4)Br1—C81.890 (5)
C3—H31.083 (8)C8—C91.386 (5)
C4—C51.388 (4)C8—C9iii1.389 (5)
C4—O11.400 (3)C9—C8iv1.389 (5)
C5—C61.395 (3)C9—H91.083 (9)
C5—H51.089 (8)
C2—C1—C6121.8 (2)C1—C6—C5118.8 (2)
C2—C1—Cl1118.9 (2)C1—C6—H6119.6 (5)
C6—C1—Cl1119.3 (2)C5—C6—H6121.6 (6)
C3—C2—C1119.1 (2)C7—O1—C4119.0 (2)
C3—C2—H2121.0 (6)N1i—C7—O1119.64 (19)
C1—C2—H2119.8 (6)N1i—C7—N1127.38 (17)
C4—C3—C2119.3 (3)O1—C7—N1112.98 (18)
C4—C3—H3120.0 (5)C7ii—N1—C7112.61 (17)
C2—C3—H3120.7 (6)C9—C8—C9iii122.3 (3)
C3—C4—C5121.7 (2)C9—C8—Br1119.1 (3)
C3—C4—O1121.1 (3)C9iii—C8—Br1118.6 (3)
C5—C4—O1117.1 (3)C8—C9—C8iv117.7 (3)
C4—C5—C6119.3 (2)C8—C9—H9121.1 (7)
C4—C5—H5119.4 (5)C8iv—C9—H9121.2 (7)
C6—C5—H5121.3 (5)
C6—C1—C2—C30.4 (4)C4—C5—C6—C10.5 (4)
Cl1—C1—C2—C3179.4 (2)C3—C4—O1—C765.3 (5)
C1—C2—C3—C40.8 (4)C5—C4—O1—C7118.8 (4)
C2—C3—C4—C51.0 (4)C4—O1—C7—N1i1.2 (6)
C2—C3—C4—O1176.7 (3)C4—O1—C7—N1179.0 (4)
C3—C4—C5—C60.9 (4)N1i—C7—N1—C7ii1.0 (7)
O1—C4—C5—C6176.7 (3)O1—C7—N1—C7ii178.8 (2)
C2—C1—C6—C50.3 (4)C9iii—C8—C9—C8iv0.2 (6)
Cl1—C1—C6—C5179.3 (2)Br1—C8—C9—C8iv177.8 (2)
Symmetry codes: (i) x+y, x+1, z; (ii) y+1, xy+1, z; (iii) y, xy, z; (iv) x+y, x, z.

Experimental details

(I)(II)
Crystal data
Chemical formulaC21H12Cl3N3O3·C6H3Br3C21H12Cl3N3O3·C6H3Br3
Mr775.50771.00
Crystal system, space groupHexagonal, P63Hexagonal, P63
Temperature (K)150100
a, c (Å)15.250 (2), 6.8149 (14)15.166 (6), 6.743 (2)
V3)1372.6 (4)1343 (1)
Z22
Radiation typeMo KαNeutron, λ = 0.5-5.0 Å
µ (mm1)4.741.08, at 1 Angstrom
Crystal size (mm)0.35 × 0.27 × 0.276.0 × 1.5 × 1.0
Data collection
DiffractometerBruker SMART-CCD
diffractometer
SXD
diffractometer
Absorption correctionMulti-scanEmpirical (using intensity measurements)
The linear absorption coefficient is wavelength dependent and it is calculated as: mu = 0.46 + 0.62 * lambda [cm-1]
Tmin, Tmax0.299, 0.3790.30, 0.91
No. of measured, independent and
observed [I > 2σ(I)] reflections
17004, 2568, 2283 30681, 3102, 3102
Rint0.0300.071
(sin θ/λ)max1)0.713
Distance from specimen to detector (mm)h = 030, k = 030, l = 015
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.027, 0.064, 1.04 0.083, 0.212, 1.23
No. of reflections25683102
No. of parameters122163
No. of restraints11
H-atom treatmentOnly H-atom displacement parameters refinedAll H-atom parameters refined
w = 1/[σ2(Fo2) + (0.0418P)2 + 0.0942P]
where P = (Fo
2 + 2Fc2)/3
w = 1/[σ2(Fo2) + (0.0383P)2 + 59.851P]
where P = (Fo
2 + 2Fc2)/3
Δρmax, Δρmin (e Å3)0.40, 0.903.23, 3.98
Absolute structureFlack H D (1983), Acta Cryst. A39, 876-881Flack H D (1983), Acta Cryst. A39, 876-881
Absolute structure parameter0.015 (8)0 (10)

Computer programs: Bruker SMART, Bruker SAINT, SHELXS97 (Sheldrick, 1990), SHELXL97 (Sheldrick, 1997), Bruker SHELXTL, Siemens SHELXTL.

 

Subscribe to Acta Crystallographica Section B: Structural Science, Crystal Engineering and Materials

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. B
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds