Supporting information
Crystallographic Information File (CIF) https://doi.org/10.1107/S0108768100011551/bm0035sup1.cif | |
Structure factor file (CIF format) https://doi.org/10.1107/S0108768100011551/bm0035Isup2.hkl | |
Structure factor file (CIF format) https://doi.org/10.1107/S0108768100011551/bm0035IIsup3.hkl |
CCDC references: 156675; 156676
Data collection: Bruker SMART for (I). Cell refinement: Bruker SAINT for (I). Data reduction: Bruker SAINT for (I). For both compounds, program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997). Molecular graphics: Bruker SHELXTL for (I); Siemens SHELXTL for (II). Software used to prepare material for publication: Bruker SHELXTL for (I); Siemens SHELXTL for (II).
C21H12Cl3N3O3·C6H3Br3 | Dx = 1.876 Mg m−3 |
Mr = 775.50 | Mo Kα radiation, λ = 0.71073 Å |
Hexagonal, P63 | Cell parameters from 999 reflections |
Hall symbol: P 6c | θ = 5.3–28.8° |
a = 15.250 (2) Å | µ = 4.74 mm−1 |
c = 6.8149 (14) Å | T = 150 K |
V = 1372.6 (4) Å3 | Needle, colourless |
Z = 2 | 0.35 × 0.27 × 0.27 mm |
F(000) = 756 |
Bruker SMART-CCD diffractometer | 2568 independent reflections |
Radiation source: fine-focus sealed tube | 2283 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.030 |
/w scans | θmax = 30.5°, θmin = 1.5° |
Absorption correction: multi-scan ? | h = −20→20 |
Tmin = 0.299, Tmax = 0.379 | k = −21→21 |
17004 measured reflections | l = −9→9 |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.027 | Only H-atom displacement parameters refined |
wR(F2) = 0.064 | w = 1/[σ2(Fo2) + (0.0418P)2 + 0.0942P] where P = (Fo2 + 2Fc2)/3 |
S = 1.04 | (Δ/σ)max = 0.001 |
2568 reflections | Δρmax = 0.40 e Å−3 |
122 parameters | Δρmin = −0.90 e Å−3 |
1 restraint | Absolute structure: Flack H D (1983), Acta Cryst. A39, 876-881 |
Primary atom site location: structure-invariant direct methods | Absolute structure parameter: 0.015 (8) |
C21H12Cl3N3O3·C6H3Br3 | Z = 2 |
Mr = 775.50 | Mo Kα radiation |
Hexagonal, P63 | µ = 4.74 mm−1 |
a = 15.250 (2) Å | T = 150 K |
c = 6.8149 (14) Å | 0.35 × 0.27 × 0.27 mm |
V = 1372.6 (4) Å3 |
Bruker SMART-CCD diffractometer | 2568 independent reflections |
Absorption correction: multi-scan ? | 2283 reflections with I > 2σ(I) |
Tmin = 0.299, Tmax = 0.379 | Rint = 0.030 |
17004 measured reflections |
R[F2 > 2σ(F2)] = 0.027 | Only H-atom displacement parameters refined |
wR(F2) = 0.064 | Δρmax = 0.40 e Å−3 |
S = 1.04 | Δρmin = −0.90 e Å−3 |
2568 reflections | Absolute structure: Flack H D (1983), Acta Cryst. A39, 876-881 |
122 parameters | Absolute structure parameter: 0.015 (8) |
1 restraint |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Cl1 | 0.28248 (4) | 0.51759 (4) | 0.65111 (9) | 0.02579 (10) | |
C1 | 0.33892 (13) | 0.44198 (13) | 0.6510 (4) | 0.0202 (3) | |
C2 | 0.39612 (15) | 0.44579 (15) | 0.8120 (3) | 0.0224 (4) | |
H2 | 0.4033 | 0.4869 | 0.9186 | 0.030 (7)* | |
C3 | 0.44300 (15) | 0.38693 (15) | 0.8123 (3) | 0.0215 (4) | |
H3 | 0.4820 | 0.3884 | 0.9185 | 0.024 (6)* | |
C4 | 0.42989 (12) | 0.32615 (12) | 0.6503 (4) | 0.0177 (3) | |
C5 | 0.37199 (14) | 0.32150 (13) | 0.4900 (4) | 0.0217 (4) | |
H5A | 0.3641 | 0.2796 | 0.3842 | 0.026* | |
C6 | 0.32559 (14) | 0.38076 (14) | 0.4893 (4) | 0.0231 (4) | |
H6 | 0.2866 | 0.3793 | 0.3830 | 0.023 (6)* | |
O1 | 0.47036 (9) | 0.26041 (9) | 0.6491 (2) | 0.0193 (3) | |
C7 | 0.57159 (12) | 0.30103 (13) | 0.6516 (3) | 0.0169 (3) | |
N1 | 0.59961 (11) | 0.23038 (11) | 0.6523 (3) | 0.0179 (3) | |
Br1 | 0.780866 (18) | 0.98944 (2) | 1.00678 (6) | 0.04690 (9) | |
C8 | 0.90847 (16) | 0.99571 (17) | 1.0167 (5) | 0.0292 (4) | |
C9 | 0.99560 (17) | 1.09001 (16) | 1.0164 (5) | 0.0294 (4) | |
H9 | 0.9927 | 1.1495 | 1.0160 | 0.047 (8)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cl1 | 0.0283 (2) | 0.0257 (2) | 0.0313 (2) | 0.01943 (18) | 0.0000 (2) | 0.0004 (2) |
C1 | 0.0174 (7) | 0.0175 (8) | 0.0270 (10) | 0.0099 (7) | 0.0016 (9) | 0.0016 (9) |
C2 | 0.0217 (9) | 0.0205 (9) | 0.0243 (10) | 0.0101 (8) | −0.0005 (8) | −0.0034 (7) |
C3 | 0.0186 (9) | 0.0231 (9) | 0.0235 (10) | 0.0110 (8) | −0.0026 (7) | −0.0004 (8) |
C4 | 0.0125 (7) | 0.0150 (7) | 0.0249 (9) | 0.0064 (6) | 0.0026 (8) | 0.0011 (8) |
C5 | 0.0223 (8) | 0.0201 (8) | 0.0244 (10) | 0.0118 (7) | −0.0016 (9) | −0.0029 (8) |
C6 | 0.0218 (8) | 0.0255 (8) | 0.0256 (11) | 0.0145 (7) | −0.0031 (9) | −0.0004 (9) |
O1 | 0.0139 (5) | 0.0157 (5) | 0.0292 (7) | 0.0080 (5) | −0.0018 (6) | −0.0005 (6) |
C7 | 0.0149 (7) | 0.0184 (7) | 0.0159 (8) | 0.0072 (6) | −0.0005 (8) | 0.0000 (8) |
N1 | 0.0157 (6) | 0.0162 (6) | 0.0214 (8) | 0.0076 (5) | 0.0005 (7) | 0.0003 (7) |
Br1 | 0.03692 (13) | 0.07222 (19) | 0.04169 (14) | 0.03488 (13) | −0.00008 (15) | −0.00118 (18) |
C8 | 0.0291 (9) | 0.0404 (10) | 0.0202 (10) | 0.0190 (8) | 0.0012 (11) | 0.0001 (11) |
C9 | 0.0399 (10) | 0.0317 (10) | 0.0182 (9) | 0.0191 (8) | 0.0008 (10) | −0.0002 (10) |
Cl1—C1 | 1.7501 (18) | C6—H6 | 0.9300 |
C1—C2 | 1.385 (3) | O1—C7 | 1.346 (2) |
C1—C6 | 1.392 (3) | C7—N1i | 1.320 (2) |
C2—C3 | 1.399 (3) | C7—N1 | 1.343 (2) |
C2—H2 | 0.9300 | N1—C7ii | 1.320 (2) |
C3—C4 | 1.390 (3) | Br1—C8 | 1.901 (2) |
C3—H3 | 0.9300 | C8—C9iii | 1.386 (3) |
C4—C5 | 1.384 (3) | C8—C9 | 1.387 (3) |
C4—O1 | 1.416 (2) | C9—C8iv | 1.386 (3) |
C5—C6 | 1.399 (3) | C9—H9 | 0.9300 |
C5—H5A | 0.9300 | ||
C2—C1—C6 | 122.22 (17) | C1—C6—C5 | 118.7 (2) |
C2—C1—Cl1 | 118.61 (17) | C1—C6—H6 | 120.7 |
C6—C1—Cl1 | 119.17 (16) | C5—C6—H6 | 120.7 |
C1—C2—C3 | 119.16 (19) | C7—O1—C4 | 118.67 (13) |
C1—C2—H2 | 120.4 | N1i—C7—N1 | 127.70 (16) |
C3—C2—H2 | 120.4 | N1i—C7—O1 | 119.79 (15) |
C4—C3—C2 | 118.50 (19) | N1—C7—O1 | 112.50 (14) |
C4—C3—H3 | 120.8 | C7ii—N1—C7 | 112.29 (16) |
C2—C3—H3 | 120.8 | C9iii—C8—C9 | 123.1 (2) |
C5—C4—C3 | 122.45 (17) | C9iii—C8—Br1 | 118.31 (16) |
C5—C4—O1 | 116.85 (18) | C9—C8—Br1 | 118.55 (16) |
C3—C4—O1 | 120.56 (19) | C8iv—C9—C8 | 116.9 (2) |
C4—C5—C6 | 119.0 (2) | C8iv—C9—H9 | 121.5 |
C4—C5—H5A | 120.5 | C8—C9—H9 | 121.5 |
C6—C5—H5A | 120.5 | ||
C6—C1—C2—C3 | 0.6 (3) | C4—C5—C6—C1 | −0.4 (3) |
Cl1—C1—C2—C3 | −178.97 (15) | C5—C4—O1—C7 | 118.43 (19) |
C1—C2—C3—C4 | −0.3 (3) | C3—C4—O1—C7 | −65.7 (3) |
C2—C3—C4—C5 | −0.3 (3) | C4—O1—C7—N1i | −1.0 (3) |
C2—C3—C4—O1 | −175.93 (17) | C4—O1—C7—N1 | 179.29 (19) |
C3—C4—C5—C6 | 0.6 (3) | N1i—C7—N1—C7ii | −0.7 (4) |
O1—C4—C5—C6 | 176.42 (17) | O1—C7—N1—C7ii | 178.97 (12) |
C2—C1—C6—C5 | −0.2 (3) | C9iii—C8—C9—C8iv | −0.3 (7) |
Cl1—C1—C6—C5 | 179.31 (16) | Br1—C8—C9—C8iv | −177.76 (16) |
Symmetry codes: (i) −x+y+1, −x+1, z; (ii) −y+1, x−y, z; (iii) −y+2, x−y+1, z; (iv) −x+y+1, −x+2, z. |
C21H12Cl3N3O3·C6H3Br3 | F(000) = 43.57 |
Mr = 771.00 | Dx = 1.906 Mg m−3 |
Hexagonal, P63 | Neutron radiation, λ = 0.5-5.0 Å |
Hall symbol: P 6c | Cell parameters from 25 reflections |
a = 15.166 (6) Å | µ = 1.08, at 1 Angstrom mm−1 |
c = 6.743 (2) Å | T = 100 K |
V = 1343 (1) Å3 | Irregular prism, colourless |
Z = 2 | 6.0 × 1.5 × 1.0 mm |
SXD diffractometer | 3102 independent reflections |
Radiation source: ISIS spallation source | 3102 reflections with I > 2σ(I) |
None monochromator | Rint = 0.071 |
time–of–flight LAUE diffraction scans | θmax = 16.9°, θmin = 1.4° |
Absorption correction: empirical (using intensity measurements) The linear absorption coefficient is wavelength dependent and it is calculated as: mu = 0.46 + 0.62 * lambda [cm-1] | h = 0→30 |
Tmin = 0.30, Tmax = 0.91 | k = 0→30 |
30681 measured reflections | l = 0→15 |
Refinement on F2 | Hydrogen site location: difference Fourier map |
Least-squares matrix: full | All H-atom parameters refined |
R[F2 > 2σ(F2)] = 0.083 | w = 1/[σ2(Fo2) + (0.0383P)2 + 59.851P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.212 | (Δ/σ)max < 0.001 |
S = 1.23 | Δρmax = 3.23 e Å−3 |
3102 reflections | Δρmin = −3.98 e Å−3 |
163 parameters | Extinction correction: Becker-Coppens Lorentzian model |
1 restraint | Extinction coefficient: 0.560 |
Primary atom site location: structure-invariant direct methods | Absolute structure: Flack H D (1983), Acta Cryst. A39, 876-881 |
Secondary atom site location: difference Fourier map | Absolute structure parameter: 0 (10) |
C21H12Cl3N3O3·C6H3Br3 | Z = 2 |
Mr = 771.00 | Neutron radiation, λ = 0.5-5.0 Å |
Hexagonal, P63 | µ = 1.08, at 1 Angstrom mm−1 |
a = 15.166 (6) Å | T = 100 K |
c = 6.743 (2) Å | 6.0 × 1.5 × 1.0 mm |
V = 1343 (1) Å3 |
SXD diffractometer | 3102 independent reflections |
Absorption correction: empirical (using intensity measurements) The linear absorption coefficient is wavelength dependent and it is calculated as: mu = 0.46 + 0.62 * lambda [cm-1] | 3102 reflections with I > 2σ(I) |
Tmin = 0.30, Tmax = 0.91 | Rint = 0.071 |
30681 measured reflections |
R[F2 > 2σ(F2)] = 0.083 | All H-atom parameters refined |
wR(F2) = 0.212 | w = 1/[σ2(Fo2) + (0.0383P)2 + 59.851P] where P = (Fo2 + 2Fc2)/3 |
S = 1.23 | Δρmax = 3.23 e Å−3 |
3102 reflections | Δρmin = −3.98 e Å−3 |
163 parameters | Absolute structure: Flack H D (1983), Acta Cryst. A39, 876-881 |
1 restraint | Absolute structure parameter: 0 (10) |
Experimental. For peak integration a local UB matrix refined for each frame, using approximately 25 reflections. Hence _cell_measurement_reflns_used 25 For final cell dimensions an average of all local cells was performed and estimated standard uncertainties were obtained from the spread of the local observations Because of the nature of the experiment, it is not possible to give values of theta_min and theta_max for the cell determination. Instead, we can give values of _cell_measurement_sin(theta)/lambda_min 0.22 _cell_measurement_sin(theta)/lambda_max 0.83 The same applies for the wavelength used for the experiment. The range of wavelengths used was 0.5–5.0 Angstroms, BUT the bulk of the diffraction information is obtained from wavelengths in the range 0.7–2.5 Angstroms. The data collection procedures on the SXD instrument used for the single-crystal neutron data collection are most recently summarized in the Appendix to the following paper Wilson, C·C. (1997). J. Mol. Struct. 405, 207–217. |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. The variable wavelength nature of the data collection procedure means that sensible values of _diffrn_reflns_theta_min & _diffrn_reflns_theta_max cannot be given It is also difficult to estimate realistic values of maximum sin(theta)/lambda values for two reasons: (i) Different sin(theta)/lambda ranges are accessed in different parts of the detectors (ii) The nature of the data collection occasionally allows some reflections at very high sin(theta)/lambda to be observed even when no real attempt has been made to measure data in this region. However, we can attempt to estimate the sin(theta)/lambda limits as follows: _diffrn_reflns_sin(theta)/lambda_min 0.099 _diffrn_reflns_sin(theta)/lambda_max 1.162 Note also that reflections for which the standard profile fitting integration procedure fails are excluded from the data set, thus resulting in a high elimination rate of very weak or "unobserved" peaks from the final data set. The extinction coefficient reported in _refine_ls_extinction_coef is in this case the refined value of the mosaic spread in units of 10-4 rad-1 The reference for the extinction method used is: Becker, P. & Coppens, P. (1974). Acta Cryst. A30, 129–148. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Cl1 | 0.71822 (13) | 0.48225 (13) | 0.3485 (4) | 0.0131 (2) | |
C1 | 0.66204 (15) | 0.55789 (16) | 0.3485 (6) | 0.0105 (2) | |
C2 | 0.60324 (19) | 0.55359 (19) | 0.1864 (4) | 0.0119 (3) | |
C3 | 0.55743 (19) | 0.61318 (19) | 0.1865 (4) | 0.0115 (3) | |
C4 | 0.57032 (14) | 0.67462 (15) | 0.3491 (5) | 0.0094 (2) | |
C5 | 0.62922 (19) | 0.67932 (19) | 0.5107 (4) | 0.0110 (3) | |
C6 | 0.6756 (2) | 0.6198 (2) | 0.5114 (4) | 0.0124 (3) | |
O1 | 0.52980 (16) | 0.73975 (18) | 0.3508 (7) | 0.0104 (3) | |
C7 | 0.42892 (14) | 0.69954 (15) | 0.3479 (5) | 0.0083 (2) | |
N1 | 0.40038 (10) | 0.76978 (10) | 0.3469 (4) | 0.00947 (17) | |
Br1 | 0.2209 (3) | 0.0124 (4) | −0.0057 (7) | 0.0253 (7) | |
C8 | 0.0928 (3) | 0.0049 (3) | −0.0148 (4) | 0.0161 (4) | |
C9 | 0.0052 (3) | −0.0898 (3) | −0.0150 (5) | 0.0166 (4) | |
H2 | 0.5946 (7) | 0.5050 (7) | 0.0621 (14) | 0.0287 (15) | |
H3 | 0.5116 (8) | 0.6117 (8) | 0.0620 (14) | 0.0308 (16) | |
H6 | 0.7213 (8) | 0.6203 (8) | 0.6358 (14) | 0.0303 (16) | |
H5 | 0.6375 (8) | 0.7286 (8) | 0.6353 (14) | 0.0296 (15) | |
H9 | 0.0092 (9) | −0.1591 (8) | −0.016 (2) | 0.0358 (18) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cl1 | 0.0146 (5) | 0.0130 (5) | 0.0154 (5) | 0.0097 (4) | 0.0000 (7) | −0.0001 (7) |
C1 | 0.0097 (6) | 0.0116 (6) | 0.0120 (6) | 0.0067 (5) | −0.0001 (9) | −0.0007 (9) |
C2 | 0.0115 (7) | 0.0123 (7) | 0.0131 (8) | 0.0069 (6) | −0.0024 (7) | −0.0040 (7) |
C3 | 0.0111 (7) | 0.0120 (7) | 0.0125 (8) | 0.0066 (6) | −0.0027 (7) | −0.0022 (7) |
C4 | 0.0074 (5) | 0.0081 (5) | 0.0121 (6) | 0.0035 (4) | 0.0008 (8) | −0.0001 (8) |
C5 | 0.0115 (7) | 0.0127 (7) | 0.0109 (7) | 0.0077 (6) | −0.0032 (6) | −0.0028 (7) |
C6 | 0.0149 (8) | 0.0154 (8) | 0.0114 (8) | 0.0110 (7) | −0.0035 (7) | −0.0026 (7) |
O1 | 0.0058 (5) | 0.0092 (6) | 0.0155 (8) | 0.0032 (5) | −0.0011 (10) | −0.0007 (10) |
C7 | 0.0070 (5) | 0.0084 (5) | 0.0098 (5) | 0.0041 (4) | 0.0000 (8) | 0.0000 (8) |
N1 | 0.0079 (4) | 0.0080 (4) | 0.0128 (4) | 0.0042 (3) | −0.0004 (6) | −0.0007 (6) |
Br1 | 0.0209 (12) | 0.040 (2) | 0.0220 (14) | 0.0206 (14) | −0.0011 (12) | −0.0013 (15) |
C8 | 0.0190 (10) | 0.0230 (11) | 0.0090 (8) | 0.0125 (9) | 0.0004 (8) | 0.0007 (8) |
C9 | 0.0206 (11) | 0.0191 (10) | 0.0111 (8) | 0.0107 (9) | 0.0002 (8) | 0.0002 (8) |
H2 | 0.034 (3) | 0.033 (3) | 0.026 (3) | 0.021 (3) | −0.007 (3) | −0.015 (3) |
H3 | 0.037 (4) | 0.043 (4) | 0.023 (3) | 0.027 (4) | −0.013 (3) | −0.008 (3) |
H6 | 0.034 (4) | 0.041 (4) | 0.025 (3) | 0.026 (3) | −0.011 (3) | −0.006 (3) |
H5 | 0.040 (4) | 0.035 (4) | 0.023 (3) | 0.026 (3) | −0.011 (3) | −0.012 (3) |
H9 | 0.041 (4) | 0.032 (4) | 0.044 (5) | 0.025 (4) | −0.001 (4) | −0.002 (4) |
Cl1—C1 | 1.737 (2) | C6—H6 | 1.085 (9) |
C1—C2 | 1.392 (4) | O1—C7 | 1.334 (3) |
C1—C6 | 1.392 (4) | C7—N1i | 1.320 (2) |
C2—C3 | 1.388 (3) | C7—N1 | 1.335 (2) |
C2—H2 | 1.080 (8) | N1—C7ii | 1.320 (2) |
C3—C4 | 1.388 (4) | Br1—C8 | 1.890 (5) |
C3—H3 | 1.083 (8) | C8—C9 | 1.386 (5) |
C4—C5 | 1.388 (4) | C8—C9iii | 1.389 (5) |
C4—O1 | 1.400 (3) | C9—C8iv | 1.389 (5) |
C5—C6 | 1.395 (3) | C9—H9 | 1.083 (9) |
C5—H5 | 1.089 (8) | ||
C2—C1—C6 | 121.8 (2) | C1—C6—C5 | 118.8 (2) |
C2—C1—Cl1 | 118.9 (2) | C1—C6—H6 | 119.6 (5) |
C6—C1—Cl1 | 119.3 (2) | C5—C6—H6 | 121.6 (6) |
C3—C2—C1 | 119.1 (2) | C7—O1—C4 | 119.0 (2) |
C3—C2—H2 | 121.0 (6) | N1i—C7—O1 | 119.64 (19) |
C1—C2—H2 | 119.8 (6) | N1i—C7—N1 | 127.38 (17) |
C4—C3—C2 | 119.3 (3) | O1—C7—N1 | 112.98 (18) |
C4—C3—H3 | 120.0 (5) | C7ii—N1—C7 | 112.61 (17) |
C2—C3—H3 | 120.7 (6) | C9—C8—C9iii | 122.3 (3) |
C3—C4—C5 | 121.7 (2) | C9—C8—Br1 | 119.1 (3) |
C3—C4—O1 | 121.1 (3) | C9iii—C8—Br1 | 118.6 (3) |
C5—C4—O1 | 117.1 (3) | C8—C9—C8iv | 117.7 (3) |
C4—C5—C6 | 119.3 (2) | C8—C9—H9 | 121.1 (7) |
C4—C5—H5 | 119.4 (5) | C8iv—C9—H9 | 121.2 (7) |
C6—C5—H5 | 121.3 (5) | ||
C6—C1—C2—C3 | 0.4 (4) | C4—C5—C6—C1 | 0.5 (4) |
Cl1—C1—C2—C3 | 179.4 (2) | C3—C4—O1—C7 | 65.3 (5) |
C1—C2—C3—C4 | −0.8 (4) | C5—C4—O1—C7 | −118.8 (4) |
C2—C3—C4—C5 | 1.0 (4) | C4—O1—C7—N1i | 1.2 (6) |
C2—C3—C4—O1 | 176.7 (3) | C4—O1—C7—N1 | −179.0 (4) |
C3—C4—C5—C6 | −0.9 (4) | N1i—C7—N1—C7ii | 1.0 (7) |
O1—C4—C5—C6 | −176.7 (3) | O1—C7—N1—C7ii | −178.8 (2) |
C2—C1—C6—C5 | −0.3 (4) | C9iii—C8—C9—C8iv | −0.2 (6) |
Cl1—C1—C6—C5 | −179.3 (2) | Br1—C8—C9—C8iv | 177.8 (2) |
Symmetry codes: (i) −x+y, −x+1, z; (ii) −y+1, x−y+1, z; (iii) −y, x−y, z; (iv) −x+y, −x, z. |
Experimental details
(I) | (II) | |
Crystal data | ||
Chemical formula | C21H12Cl3N3O3·C6H3Br3 | C21H12Cl3N3O3·C6H3Br3 |
Mr | 775.50 | 771.00 |
Crystal system, space group | Hexagonal, P63 | Hexagonal, P63 |
Temperature (K) | 150 | 100 |
a, c (Å) | 15.250 (2), 6.8149 (14) | 15.166 (6), 6.743 (2) |
V (Å3) | 1372.6 (4) | 1343 (1) |
Z | 2 | 2 |
Radiation type | Mo Kα | Neutron, λ = 0.5-5.0 Å |
µ (mm−1) | 4.74 | 1.08, at 1 Angstrom |
Crystal size (mm) | 0.35 × 0.27 × 0.27 | 6.0 × 1.5 × 1.0 |
Data collection | ||
Diffractometer | Bruker SMART-CCD diffractometer | SXD diffractometer |
Absorption correction | Multi-scan | Empirical (using intensity measurements) The linear absorption coefficient is wavelength dependent and it is calculated as: mu = 0.46 + 0.62 * lambda [cm-1] |
Tmin, Tmax | 0.299, 0.379 | 0.30, 0.91 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 17004, 2568, 2283 | 30681, 3102, 3102 |
Rint | 0.030 | 0.071 |
(sin θ/λ)max (Å−1) | 0.713 | – |
Distance from specimen to detector (mm) | – | h = 0→30, k = 0→30, l = 0→15 |
Refinement | ||
R[F2 > 2σ(F2)], wR(F2), S | 0.027, 0.064, 1.04 | 0.083, 0.212, 1.23 |
No. of reflections | 2568 | 3102 |
No. of parameters | 122 | 163 |
No. of restraints | 1 | 1 |
H-atom treatment | Only H-atom displacement parameters refined | All H-atom parameters refined |
w = 1/[σ2(Fo2) + (0.0418P)2 + 0.0942P] where P = (Fo2 + 2Fc2)/3 | w = 1/[σ2(Fo2) + (0.0383P)2 + 59.851P] where P = (Fo2 + 2Fc2)/3 | |
Δρmax, Δρmin (e Å−3) | 0.40, −0.90 | 3.23, −3.98 |
Absolute structure | Flack H D (1983), Acta Cryst. A39, 876-881 | Flack H D (1983), Acta Cryst. A39, 876-881 |
Absolute structure parameter | 0.015 (8) | 0 (10) |
Computer programs: Bruker SMART, Bruker SAINT, SHELXS97 (Sheldrick, 1990), SHELXL97 (Sheldrick, 1997), Bruker SHELXTL, Siemens SHELXTL.
Subscribe to Acta Crystallographica Section B: Structural Science, Crystal Engineering and Materials
The full text of this article is available to subscribers to the journal.
- Information on subscribing
- Sample issue
- Purchase subscription
- Reduced-price subscriptions
- If you have already subscribed, you may need to register