Buy article online - an online subscription or single-article purchase is required to access this article.
The three isostructural compounds butylammonium hexachloridotin(IV), pentylammonium hexachloridotin(IV) and hexylammonium hexachloridotin(IV), (CnH2n+1NH3)2[SnCl6], with n = 4, 5 and 6, respectively, crystallize as inorganic-organic hybrids. As such, the structures consist of layers of [SnCl6]2- octahedra, separated by hydrocarbon layers of interdigitated butylammonium, pentylammonium or hexylammonium cations. Corrugated layers of cations alternate with tin(IV) chloride layers. The asymmetric unit in each compound consists of an anionic component comprising one Sn and two Cl atoms on a mirror plane, and two Cl atoms in general positions; the two cations lie on another mirror plane. Application of the mirror symmetry generates octahedral coordination around the Sn atom. All compounds exhibit bifurcated and simple hydrogen-bonding interactions between the ammonium groups and the Cl atoms, with little variation in the hydrogen-bonding geometries.
Supporting information
CCDC references: 641783; 641784; 641785
For the preparation of (I), C4H9NH2 (0.098 g, 1.34 mmol) was combined with
SnCl2 (0.119 g, 0.628 mmol) in 33% aqueous HCl (2 ml). The resulting
precipitate was dissolved by refluxing for 48 h at 353 K. The solution was
then cooled slowly to room temperature at 2 K h-1, and colourless blocky
crystals were harvested. For the preparation of (II), C5H11NH2 (0.123 g,
1.41 mmol) was combined with SnCl2 (0.119 g, 0.570 mmol) and dissolved in
aqueous HCl (33%, 5 ml). The resulting solution was left open to the
atmosphere, and colourless plate-like crystals were grown by slow evaporation.
For the preparation of (III), C6H13NH2 (0.155 g, 1.53 mmol) was combined
with SnCl2 (0.119 g, 0.533 mmol) and dissolved in aqueous HCl (33%, 5 ml).
The resulting solution was left open to the atmosphere, and colourless
plate-like crystals were grown by slow evaporation.
##AUTHOR: Please check the following modification:
H atoms were placed geomertically and refined using a riding model, with C—H
distances in the range 0.96–0.98 Å, N—H distances of either 0.90 Å [(I)
and (II)] or 0.89 Å [(III)], and Uiso(H) values of
1.5Ueq(C,N) or 1.2Ueq(C). The highest residual peak
was 0.83 Å from atom Sn1 in (I), 0.25 Å from C8 in (II) and 2.19 Å from
Cl3 in (III). The ammonium end groups on each of the two cations have their
three H atoms [labelled H1A, H1B, H1C (cat1) and
H2A, H2B, H2C (cat2)] disordered over two sets of
positions, each with a site occupancy factor of 50%, related by the mirror
plane on which the two cations are situated. Only the positions of the H atoms
as they occur in the asymmetric unit are shown in the figures. The disorder is
a result of the long, and by inference weak, N—H···Cl hydrogen bonds, which
limits their directionality.
For all compounds, data collection: APEX2 (Bruker, 2005); cell refinement: SAINT-Plus (Bruker, 2004). Data reduction: SAINT-Plus and XPREP (Bruker, 2004) for (I); SAINT-Plus and XPREP (Bruker 2004) for (II), (III). For all compounds, program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and DIAMOND (Brandenburg, 1999); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2003).
(I) butylammonium hexachloridotin(IV)
top
Crystal data top
(C4H12N)2[SnCl6] | F(000) = 952 |
Mr = 479.68 | Dx = 1.675 Mg m−3 |
Orthorhombic, Pnma | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ac 2n | Cell parameters from 6210 reflections |
a = 12.1624 (4) Å | θ = 2.5–28.3° |
b = 7.2782 (2) Å | µ = 2.17 mm−1 |
c = 21.4837 (7) Å | T = 243 K |
V = 1901.75 (10) Å3 | Blocky, colourless |
Z = 4 | 0.26 × 0.24 × 0.1 mm |
Data collection top
Bruker SMART APEXII CCD area-detector diffractometer | 2088 reflections with I > 2σ(I) |
ω scans | Rint = 0.062 |
Absorption correction: integration (XPREP; Bruker, 2004) | θmax = 28°, θmin = 1.9° |
Tmin = 0.535, Tmax = 0.822 | h = −15→16 |
14713 measured reflections | k = −9→9 |
2470 independent reflections | l = −28→27 |
Refinement top
Refinement on F2 | H-atom parameters constrained |
Least-squares matrix: full | w = 1/[σ2(Fo2) + (0.0367P)2 + 3.3848P] where P = (Fo2 + 2Fc2)/3 |
R[F2 > 2σ(F2)] = 0.038 | (Δ/σ)max < 0.001 |
wR(F2) = 0.103 | Δρmax = 0.54 e Å−3 |
S = 1.13 | Δρmin = −0.53 e Å−3 |
2470 reflections | Extinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
98 parameters | Extinction coefficient: 0.0113 (7) |
72 restraints | |
Crystal data top
(C4H12N)2[SnCl6] | V = 1901.75 (10) Å3 |
Mr = 479.68 | Z = 4 |
Orthorhombic, Pnma | Mo Kα radiation |
a = 12.1624 (4) Å | µ = 2.17 mm−1 |
b = 7.2782 (2) Å | T = 243 K |
c = 21.4837 (7) Å | 0.26 × 0.24 × 0.1 mm |
Data collection top
Bruker SMART APEXII CCD area-detector diffractometer | 2470 independent reflections |
Absorption correction: integration (XPREP; Bruker, 2004) | 2088 reflections with I > 2σ(I) |
Tmin = 0.535, Tmax = 0.822 | Rint = 0.062 |
14713 measured reflections | |
Refinement top
R[F2 > 2σ(F2)] = 0.038 | 72 restraints |
wR(F2) = 0.103 | H-atom parameters constrained |
S = 1.13 | Δρmax = 0.54 e Å−3 |
2470 reflections | Δρmin = −0.53 e Å−3 |
98 parameters | |
Special details top
Experimental. Numerical integration absorption corrections based on indexed crystal faces were
applied using the XPREP routine (Bruker, 2004) |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes)
are estimated using the full covariance matrix. The cell e.s.d.'s are taken
into account individually in the estimation of e.s.d.'s in distances, angles
and torsion angles; correlations between e.s.d.'s in cell parameters are only
used when they are defined by crystal symmetry. An approximate (isotropic)
treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s.
planes. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top | x | y | z | Uiso*/Ueq | Occ. (<1) |
C1 | 0.6054 (8) | 0.75 | 0.6418 (4) | 0.100 (3) | |
H1D | 0.6493 | 0.8588 | 0.6521 | 0.12* | 0.5 |
H1E | 0.6493 | 0.6412 | 0.6521 | 0.12* | 0.5 |
C2 | 0.5051 (8) | 0.75 | 0.6803 (4) | 0.136 (4) | |
H2D | 0.4615 | 0.6415 | 0.6693 | 0.163* | 0.5 |
H2E | 0.4615 | 0.8585 | 0.6693 | 0.163* | 0.5 |
C3 | 0.5220 (10) | 0.75 | 0.7491 (4) | 0.143 (4) | |
H3A | 0.5636 | 0.8592 | 0.7616 | 0.172* | 0.5 |
H3B | 0.5636 | 0.6408 | 0.7616 | 0.172* | 0.5 |
C4 | 0.4111 (12) | 0.75 | 0.7798 (6) | 0.200 (7) | |
H4A | 0.4199 | 0.7296 | 0.8241 | 0.301* | 0.5 |
H4B | 0.3663 | 0.6528 | 0.7622 | 0.301* | 0.5 |
H4C | 0.3756 | 0.8676 | 0.7729 | 0.301* | 0.5 |
N1 | 0.5833 (4) | 0.75 | 0.5769 (3) | 0.0607 (14) | |
H1A | 0.5198 | 0.6903 | 0.5696 | 0.091* | 0.5 |
H1B | 0.6384 | 0.6931 | 0.5566 | 0.091* | 0.5 |
H1C | 0.5777 | 0.8666 | 0.5633 | 0.091* | 0.5 |
C5 | 0.9087 (8) | 0.75 | 0.3745 (4) | 0.120 (4) | |
H5A | 0.9515 | 0.642 | 0.362 | 0.144* | 0.5 |
H5B | 0.9515 | 0.858 | 0.362 | 0.144* | 0.5 |
C6 | 0.8103 (9) | 0.75 | 0.3375 (4) | 0.153 (4) | |
H6A | 0.7671 | 0.8583 | 0.3491 | 0.183* | 0.5 |
H6B | 0.7671 | 0.6417 | 0.3491 | 0.183* | 0.5 |
C7 | 0.8219 (9) | 0.75 | 0.2682 (4) | 0.146 (5) | |
H7A | 0.8622 | 0.6407 | 0.2544 | 0.175* | 0.5 |
H7B | 0.8622 | 0.8593 | 0.2544 | 0.175* | 0.5 |
C8 | 0.7073 (11) | 0.75 | 0.2410 (6) | 0.200 (7) | |
H8A | 0.6736 | 0.8692 | 0.2476 | 0.301* | 0.5 |
H8B | 0.6635 | 0.656 | 0.2612 | 0.301* | 0.5 |
H8C | 0.7112 | 0.7248 | 0.1967 | 0.301* | 0.5 |
N2 | 0.9055 (4) | 0.75 | 0.4391 (3) | 0.0612 (14) | |
H2A | 0.9004 | 0.8664 | 0.453 | 0.092* | 0.5 |
H2B | 0.9672 | 0.6981 | 0.4541 | 0.092* | 0.5 |
H2C | 0.8467 | 0.6855 | 0.4521 | 0.092* | 0.5 |
Sn1 | 0.74611 (2) | 0.25 | 0.51434 (2) | 0.03951 (16) | |
Cl1 | 0.89672 (12) | 0.25 | 0.44048 (8) | 0.0585 (4) | |
Cl2 | 0.59657 (12) | 0.25 | 0.58776 (8) | 0.0582 (4) | |
Cl3 | 0.83950 (8) | 0.48901 (14) | 0.57185 (6) | 0.0553 (3) | |
Cl4 | 0.65350 (8) | 0.48666 (14) | 0.45444 (5) | 0.0530 (3) | |
Atomic displacement parameters (Å2) top | U11 | U22 | U33 | U12 | U13 | U23 |
C1 | 0.111 (6) | 0.123 (8) | 0.065 (4) | 0 | −0.002 (4) | 0 |
C2 | 0.132 (7) | 0.203 (10) | 0.072 (4) | 0 | 0.016 (5) | 0 |
C3 | 0.179 (10) | 0.182 (11) | 0.070 (4) | 0 | 0.019 (6) | 0 |
C4 | 0.237 (14) | 0.233 (17) | 0.132 (10) | 0 | 0.094 (11) | 0 |
N1 | 0.051 (3) | 0.069 (4) | 0.062 (3) | 0 | 0.007 (2) | 0 |
C5 | 0.108 (7) | 0.192 (11) | 0.060 (4) | 0 | −0.006 (4) | 0 |
C6 | 0.145 (8) | 0.241 (12) | 0.072 (5) | 0 | −0.024 (5) | 0 |
C7 | 0.159 (9) | 0.211 (12) | 0.069 (5) | 0 | −0.028 (6) | 0 |
C8 | 0.183 (12) | 0.287 (19) | 0.131 (11) | 0 | −0.072 (10) | 0 |
N2 | 0.054 (3) | 0.073 (4) | 0.057 (3) | 0 | 0.000 (2) | 0 |
Sn1 | 0.0286 (2) | 0.0297 (2) | 0.0602 (3) | 0 | −0.00119 (15) | 0 |
Cl1 | 0.0409 (7) | 0.0607 (9) | 0.0739 (11) | 0 | 0.0154 (7) | 0 |
Cl2 | 0.0392 (7) | 0.0604 (9) | 0.0750 (11) | 0 | 0.0127 (7) | 0 |
Cl3 | 0.0486 (5) | 0.0420 (5) | 0.0754 (7) | −0.0096 (4) | −0.0093 (5) | −0.0098 (5) |
Cl4 | 0.0507 (5) | 0.0384 (5) | 0.0698 (7) | 0.0080 (4) | −0.0084 (5) | 0.0071 (5) |
Geometric parameters (Å, º) top
C1—N1 | 1.422 (10) | C5—H5A | 0.98 |
C1—C2 | 1.474 (8) | C5—H5B | 0.98 |
C1—H1D | 0.98 | C6—C7 | 1.496 (8) |
C1—H1E | 0.98 | C6—H6A | 0.98 |
C2—C3 | 1.492 (8) | C6—H6B | 0.98 |
C2—H2D | 0.98 | C7—C8 | 1.511 (9) |
C2—H2E | 0.98 | C7—H7A | 0.98 |
C3—C4 | 1.501 (9) | C7—H7B | 0.98 |
C3—H3A | 0.98 | C8—H8A | 0.97 |
C3—H3B | 0.98 | C8—H8B | 0.97 |
C4—H4A | 0.97 | C8—H8C | 0.97 |
C4—H4B | 0.97 | N2—H2A | 0.9 |
C4—H4C | 0.97 | N2—H2B | 0.9 |
N1—H1A | 0.9 | N2—H2C | 0.9 |
N1—H1B | 0.9 | Sn1—Cl1 | 2.4235 (15) |
N1—H1C | 0.9 | Sn1—Cl2 | 2.4075 (15) |
C5—N2 | 1.388 (10) | Sn1—Cl3 | 2.4172 (10) |
C5—C6 | 1.438 (9) | Sn1—Cl4 | 2.4273 (10) |
| | | |
N1—C1—C2 | 113.2 (8) | H5A—C5—H5B | 106.7 |
N1—C1—H1D | 108.9 | C5—C6—C7 | 118.2 (9) |
C2—C1—H1D | 108.9 | C5—C6—H6A | 107.7 |
N1—C1—H1E | 108.9 | C7—C6—H6A | 107.7 |
C2—C1—H1E | 108.9 | C5—C6—H6B | 107.7 |
H1D—C1—H1E | 107.8 | C7—C6—H6B | 107.7 |
C1—C2—C3 | 116.1 (9) | H6A—C6—H6B | 107.1 |
C1—C2—H2D | 108.2 | C6—C7—C8 | 107.3 (9) |
C3—C2—H2D | 108.2 | C6—C7—H7A | 110.2 |
C1—C2—H2E | 108.2 | C8—C7—H7A | 110.2 |
C3—C2—H2E | 108.2 | C6—C7—H7B | 110.2 |
H2D—C2—H2E | 107.4 | C8—C7—H7B | 110.2 |
C2—C3—C4 | 108.1 (9) | H7A—C7—H7B | 108.5 |
C2—C3—H3A | 110.1 | C7—C8—H8A | 109.5 |
C4—C3—H3A | 110.1 | C7—C8—H8B | 109.5 |
C2—C3—H3B | 110.1 | H8A—C8—H8B | 109.5 |
C4—C3—H3B | 110.1 | C7—C8—H8C | 109.5 |
H3A—C3—H3B | 108.4 | H8A—C8—H8C | 109.5 |
C3—C4—H4A | 109.5 | H8B—C8—H8C | 109.5 |
C3—C4—H4B | 109.5 | C5—N2—H2A | 109.5 |
H4A—C4—H4B | 109.5 | C5—N2—H2B | 109.5 |
C3—C4—H4C | 109.5 | H2A—N2—H2B | 109.5 |
H4A—C4—H4C | 109.5 | C5—N2—H2C | 109.5 |
H4B—C4—H4C | 109.5 | H2A—N2—H2C | 109.5 |
C1—N1—H1A | 109.5 | H2B—N2—H2C | 109.5 |
C1—N1—H1B | 109.5 | Cl1—Sn1—Cl2 | 179.97 (6) |
H1A—N1—H1B | 109.5 | Cl1—Sn1—Cl3 | 88.83 (4) |
C1—N1—H1C | 109.5 | Cl1—Sn1—Cl4 | 90.21 (4) |
H1A—N1—H1C | 109.5 | Cl2—Sn1—Cl3 | 91.15 (4) |
H1B—N1—H1C | 109.5 | Cl2—Sn1—Cl4 | 89.82 (4) |
N2—C5—C6 | 122.0 (9) | Cl3—Sn1—Cl3i | 92.05 (5) |
N2—C5—H5A | 106.8 | Cl3—Sn1—Cl4 | 88.76 (4) |
C6—C5—H5A | 106.8 | Cl3i—Sn1—Cl4 | 178.72 (4) |
N2—C5—H5B | 106.8 | Cl4i—Sn1—Cl4 | 90.41 (5) |
C6—C5—H5B | 106.8 | | |
| | | |
N1—C1—C2—C3 | 180 | N2—C5—C6—C7 | 180 |
C1—C2—C3—C4 | 180 | C5—C6—C7—C8 | 180 |
Symmetry code: (i) x, −y+1/2, z. |
Hydrogen-bond geometry (Å, º) top
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1A···Cl4ii | 0.9 | 2.52 | 3.423 (5) | 177 |
N1—H1B···Cl4 | 0.9 | 2.67 | 3.365 (5) | 135 |
N1—H1B···Cl3 | 0.9 | 2.88 | 3.651 (5) | 145 |
N1—H1C···Cl4iii | 0.9 | 2.73 | 3.365 (5) | 128 |
N1—H1C···Cl2iv | 0.9 | 2.85 | 3.6502 (5) | 149 |
N2—H2A···Cl1iv | 0.9 | 2.81 | 3.6408 (2) | 155 |
N2—H2A···Cl3iii | 0.9 | 2.86 | 3.519 (5) | 131 |
N2—H2B···Cl3v | 0.9 | 2.77 | 3.564 (5) | 147 |
N2—H2B···Cl1v | 0.9 | 2.83 | 3.533 (6) | 136 |
N2—H2C···Cl4 | 0.9 | 2.76 | 3.630 (5) | 163 |
Symmetry codes: (ii) −x+1, −y+1, −z+1; (iii) x, −y+3/2, z; (iv) x, y+1, z; (v) −x+2, −y+1, −z+1. |
(II) pentylammonium hexachloridotin(IV)
top
Crystal data top
(C5H14N)2[SnCl6] | F(000) = 1016 |
Mr = 507.73 | Dx = 1.558 Mg m−3 |
Orthorhombic, Pnma | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ac 2n | Cell parameters from 4930 reflections |
a = 12.2351 (5) Å | θ = 2.4–27.8° |
b = 7.2021 (3) Å | µ = 1.91 mm−1 |
c = 24.5723 (9) Å | T = 243 K |
V = 2165.27 (15) Å3 | Plate, colourless |
Z = 4 | 0.32 × 0.3 × 0.06 mm |
Data collection top
Bruker SMART APEXII CCD area-detector diffractometer | 2038 reflections with I > 2σ(I) |
ω scans | Rint = 0.043 |
Absorption correction: integration (XPREP; Bruker, 2004) | θmax = 28°, θmin = 1.7° |
Tmin = 0.571, Tmax = 0.893 | h = −15→16 |
16581 measured reflections | k = −9→9 |
2820 independent reflections | l = −32→27 |
Refinement top
Refinement on F2 | 92 restraints |
Least-squares matrix: full | H-atom parameters constrained |
R[F2 > 2σ(F2)] = 0.043 | w = 1/[σ2(Fo2) + (0.0464P)2 + 4.3427P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.118 | (Δ/σ)max = 0.001 |
S = 1.07 | Δρmax = 0.82 e Å−3 |
2820 reflections | Δρmin = −0.59 e Å−3 |
109 parameters | |
Crystal data top
(C5H14N)2[SnCl6] | V = 2165.27 (15) Å3 |
Mr = 507.73 | Z = 4 |
Orthorhombic, Pnma | Mo Kα radiation |
a = 12.2351 (5) Å | µ = 1.91 mm−1 |
b = 7.2021 (3) Å | T = 243 K |
c = 24.5723 (9) Å | 0.32 × 0.3 × 0.06 mm |
Data collection top
Bruker SMART APEXII CCD area-detector diffractometer | 2820 independent reflections |
Absorption correction: integration (XPREP; Bruker, 2004) | 2038 reflections with I > 2σ(I) |
Tmin = 0.571, Tmax = 0.893 | Rint = 0.043 |
16581 measured reflections | |
Refinement top
R[F2 > 2σ(F2)] = 0.043 | 92 restraints |
wR(F2) = 0.118 | H-atom parameters constrained |
S = 1.07 | Δρmax = 0.82 e Å−3 |
2820 reflections | Δρmin = −0.59 e Å−3 |
109 parameters | |
Special details top
Experimental. Numerical integration absorption corrections based on indexed crystal faces were
applied using the XPREP routine (Bruker, 2004) |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes)
are estimated using the full covariance matrix. The cell e.s.d.'s are taken
into account individually in the estimation of e.s.d.'s in distances, angles
and torsion angles; correlations between e.s.d.'s in cell parameters are only
used when they are defined by crystal symmetry. An approximate (isotropic)
treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s.
planes. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top | x | y | z | Uiso*/Ueq | Occ. (<1) |
C1 | 0.6009 (7) | 0.75 | 0.6209 (3) | 0.094 (3) | |
H1D | 0.6451 | 0.8597 | 0.6293 | 0.113* | 0.5 |
H1E | 0.6451 | 0.6403 | 0.6293 | 0.113* | 0.5 |
C2 | 0.5046 (8) | 0.75 | 0.6566 (3) | 0.115 (3) | |
H2D | 0.4603 | 0.6402 | 0.6485 | 0.138* | 0.5 |
H2E | 0.4603 | 0.8598 | 0.6485 | 0.138* | 0.5 |
C3 | 0.5321 (9) | 0.75 | 0.7170 (3) | 0.123 (4) | |
H3A | 0.5756 | 0.6398 | 0.7259 | 0.148* | 0.5 |
H3B | 0.5756 | 0.8602 | 0.7259 | 0.148* | 0.5 |
C4 | 0.4288 (10) | 0.75 | 0.7503 (4) | 0.167 (5) | |
H4A | 0.3854 | 0.6399 | 0.7412 | 0.201* | 0.5 |
H4B | 0.3854 | 0.8601 | 0.7412 | 0.201* | 0.5 |
C5 | 0.4529 (12) | 0.75 | 0.8105 (4) | 0.169 (6) | |
H5A | 0.3848 | 0.75 | 0.8306 | 0.254* | |
H5B | 0.4947 | 0.86 | 0.8197 | 0.254* | 0.5 |
H5C | 0.4947 | 0.64 | 0.8197 | 0.254* | 0.5 |
N1 | 0.5782 (5) | 0.75 | 0.5640 (2) | 0.0605 (15) | |
H1A | 0.5149 | 0.69 | 0.5578 | 0.091* | 0.5 |
H1B | 0.6327 | 0.6922 | 0.5462 | 0.091* | 0.5 |
H1C | 0.5727 | 0.8678 | 0.5521 | 0.091* | 0.5 |
C6 | 0.9190 (7) | 0.75 | 0.3901 (3) | 0.103 (3) | |
H6A | 0.9629 | 0.6406 | 0.3809 | 0.124* | 0.5 |
H6B | 0.9629 | 0.8594 | 0.3809 | 0.124* | 0.5 |
C7 | 0.8240 (8) | 0.75 | 0.3549 (3) | 0.117 (3) | |
H7A | 0.78 | 0.8595 | 0.3638 | 0.141* | 0.5 |
H7B | 0.78 | 0.6405 | 0.3638 | 0.141* | 0.5 |
C8 | 0.8432 (9) | 0.75 | 0.2943 (3) | 0.126 (4) | |
H8A | 0.8857 | 0.8601 | 0.2842 | 0.152* | 0.5 |
H8B | 0.8857 | 0.6399 | 0.2842 | 0.152* | 0.5 |
C9 | 0.7371 (9) | 0.75 | 0.2636 (4) | 0.165 (5) | |
H9A | 0.6949 | 0.6401 | 0.2741 | 0.199* | 0.5 |
H9B | 0.6949 | 0.8599 | 0.2741 | 0.199* | 0.5 |
C10 | 0.7517 (11) | 0.75 | 0.2030 (4) | 0.184 (7) | |
H10A | 0.6806 | 0.75 | 0.1856 | 0.275* | |
H10B | 0.7919 | 0.64 | 0.1922 | 0.275* | 0.5 |
H10C | 0.7919 | 0.86 | 0.1922 | 0.275* | 0.5 |
N2 | 0.9041 (5) | 0.75 | 0.4467 (2) | 0.0595 (15) | |
H2A | 0.8984 | 0.8677 | 0.4587 | 0.089* | 0.5 |
H2B | 0.9617 | 0.6949 | 0.4628 | 0.089* | 0.5 |
H2C | 0.8427 | 0.6874 | 0.455 | 0.089* | 0.5 |
Sn1 | 0.74770 (3) | 0.25 | 0.51138 (2) | 0.04132 (16) | |
Cl1 | 0.90468 (12) | 0.25 | 0.45078 (7) | 0.0542 (4) | |
Cl2 | 0.58916 (13) | 0.25 | 0.56964 (9) | 0.0629 (5) | |
Cl3 | 0.83338 (9) | 0.49109 (15) | 0.56432 (5) | 0.0541 (3) | |
Cl4 | 0.66184 (9) | 0.48860 (15) | 0.45598 (5) | 0.0558 (3) | |
Atomic displacement parameters (Å2) top | U11 | U22 | U33 | U12 | U13 | U23 |
C1 | 0.085 (6) | 0.129 (8) | 0.068 (4) | 0 | 0.000 (4) | 0 |
C2 | 0.102 (6) | 0.169 (9) | 0.073 (4) | 0 | 0.012 (4) | 0 |
C3 | 0.143 (8) | 0.157 (9) | 0.070 (4) | 0 | 0.018 (5) | 0 |
C4 | 0.184 (10) | 0.227 (12) | 0.091 (5) | 0 | 0.046 (6) | 0 |
C5 | 0.225 (15) | 0.199 (14) | 0.083 (5) | 0 | 0.053 (7) | 0 |
N1 | 0.055 (3) | 0.063 (4) | 0.063 (3) | 0 | 0.009 (3) | 0 |
C6 | 0.090 (6) | 0.160 (9) | 0.059 (4) | 0 | −0.004 (4) | 0 |
C7 | 0.101 (6) | 0.182 (9) | 0.069 (4) | 0 | −0.016 (4) | 0 |
C8 | 0.137 (8) | 0.175 (9) | 0.068 (4) | 0 | −0.019 (5) | 0 |
C9 | 0.165 (9) | 0.243 (12) | 0.088 (5) | 0 | −0.042 (6) | 0 |
C10 | 0.205 (15) | 0.259 (18) | 0.086 (6) | 0 | −0.053 (7) | 0 |
N2 | 0.054 (3) | 0.068 (4) | 0.056 (3) | 0 | −0.003 (3) | 0 |
Sn1 | 0.0282 (2) | 0.0266 (2) | 0.0692 (3) | 0 | −0.00223 (18) | 0 |
Cl1 | 0.0380 (7) | 0.0541 (9) | 0.0705 (11) | 0 | 0.0092 (7) | 0 |
Cl2 | 0.0344 (8) | 0.0592 (10) | 0.0951 (14) | 0 | 0.0131 (8) | 0 |
Cl3 | 0.0474 (6) | 0.0374 (5) | 0.0776 (8) | −0.0072 (5) | −0.0068 (5) | −0.0094 (5) |
Cl4 | 0.0498 (6) | 0.0345 (5) | 0.0830 (9) | 0.0072 (5) | −0.0128 (6) | 0.0075 (5) |
Geometric parameters (Å, º) top
C1—N1 | 1.425 (9) | C6—H6A | 0.98 |
C1—C2 | 1.469 (8) | C6—H6B | 0.98 |
C1—H1D | 0.98 | C7—C8 | 1.508 (8) |
C1—H1E | 0.98 | C7—H7A | 0.98 |
C2—C3 | 1.522 (8) | C7—H7B | 0.98 |
C2—H2D | 0.98 | C8—C9 | 1.501 (9) |
C2—H2E | 0.98 | C8—H8A | 0.98 |
C3—C4 | 1.505 (9) | C8—H8B | 0.98 |
C3—H3A | 0.98 | C9—C10 | 1.499 (9) |
C3—H3B | 0.98 | C9—H9A | 0.98 |
C4—C5 | 1.508 (9) | C9—H9B | 0.98 |
C4—H4A | 0.98 | C10—H10A | 0.97 |
C4—H4B | 0.98 | C10—H10B | 0.97 |
C5—H5A | 0.97 | C10—H10C | 0.97 |
C5—H5B | 0.97 | N2—H2A | 0.9 |
C5—H5C | 0.97 | N2—H2B | 0.9 |
N1—H1A | 0.9 | N2—H2C | 0.9 |
N1—H1B | 0.9 | Sn1—Cl1 | 2.4303 (16) |
N1—H1C | 0.9 | Sn1—Cl2 | 2.4109 (17) |
C6—N2 | 1.403 (9) | Sn1—Cl3 | 2.4096 (11) |
C6—C7 | 1.450 (8) | Sn1—Cl4 | 2.4311 (11) |
| | | |
N1—C1—C2 | 115.5 (8) | H6A—C6—H6B | 107 |
N1—C1—H1D | 108.4 | C6—C7—C8 | 117.7 (8) |
C2—C1—H1D | 108.4 | C6—C7—H7A | 107.9 |
N1—C1—H1E | 108.4 | C8—C7—H7A | 107.9 |
C2—C1—H1E | 108.4 | C6—C7—H7B | 107.9 |
H1D—C1—H1E | 107.5 | C8—C7—H7B | 107.9 |
C1—C2—C3 | 114.0 (8) | H7A—C7—H7B | 107.2 |
C1—C2—H2D | 108.8 | C9—C8—C7 | 111.1 (8) |
C3—C2—H2D | 108.8 | C9—C8—H8A | 109.4 |
C1—C2—H2E | 108.8 | C7—C8—H8A | 109.4 |
C3—C2—H2E | 108.8 | C9—C8—H8B | 109.4 |
H2D—C2—H2E | 107.7 | C7—C8—H8B | 109.4 |
C4—C3—C2 | 110.1 (8) | H8A—C8—H8B | 108 |
C4—C3—H3A | 109.6 | C10—C9—C8 | 113.3 (9) |
C2—C3—H3A | 109.6 | C10—C9—H9A | 108.9 |
C4—C3—H3B | 109.6 | C8—C9—H9A | 108.9 |
C2—C3—H3B | 109.6 | C10—C9—H9B | 108.9 |
H3A—C3—H3B | 108.1 | C8—C9—H9B | 108.9 |
C3—C4—C5 | 111.6 (9) | H9A—C9—H9B | 107.7 |
C3—C4—H4A | 109.3 | C9—C10—H10A | 109.5 |
C5—C4—H4A | 109.3 | C9—C10—H10B | 109.5 |
C3—C4—H4B | 109.3 | H10A—C10—H10B | 109.5 |
C5—C4—H4B | 109.3 | C9—C10—H10C | 109.5 |
H4A—C4—H4B | 108 | H10A—C10—H10C | 109.5 |
C4—C5—H5A | 109.5 | H10B—C10—H10C | 109.5 |
C4—C5—H5B | 109.5 | C6—N2—H2A | 109.5 |
H5A—C5—H5B | 109.5 | C6—N2—H2B | 109.5 |
C4—C5—H5C | 109.5 | H2A—N2—H2B | 109.5 |
H5A—C5—H5C | 109.5 | C6—N2—H2C | 109.5 |
H5B—C5—H5C | 109.5 | H2A—N2—H2C | 109.5 |
C1—N1—H1A | 109.5 | H2B—N2—H2C | 109.5 |
C1—N1—H1B | 109.5 | Cl1—Sn1—Cl2 | 178.64 (7) |
H1A—N1—H1B | 109.5 | Cl1—Sn1—Cl3 | 89.26 (4) |
C1—N1—H1C | 109.5 | Cl1—Sn1—Cl4 | 89.91 (4) |
H1A—N1—H1C | 109.5 | Cl2—Sn1—Cl3 | 91.69 (5) |
H1B—N1—H1C | 109.5 | Cl2—Sn1—Cl4 | 89.13 (5) |
N2—C6—C7 | 119.2 (8) | Cl3—Sn1—Cl3i | 92.21 (6) |
N2—C6—H6A | 107.5 | Cl3—Sn1—Cl4i | 178.59 (5) |
C7—C6—H6A | 107.5 | Cl3—Sn1—Cl4 | 88.91 (4) |
N2—C6—H6B | 107.5 | Cl4i—Sn1—Cl4 | 89.96 (6) |
C7—C6—H6B | 107.5 | | |
| | | |
N1—C1—C2—C3 | 180 | N2—C6—C7—C8 | 180 |
C1—C2—C3—C4 | 180 | C6—C7—C8—C9 | 180 |
C2—C3—C4—C5 | 180 | C7—C8—C9—C10 | 180 |
Symmetry code: (i) x, −y+1/2, z. |
Hydrogen-bond geometry (Å, º) top
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1A···Cl4ii | 0.90 | 2.54 | 3.438 (5) | 177 |
N1—H1B···Cl4 | 0.90 | 2.68 | 3.411 (5) | 139 |
N1—H1B···Cl3 | 0.90 | 2.89 | 3.636 (5) | 142 |
N1—H1C···Cl4iii | 0.90 | 2.80 | 3.411 (5) | 126 |
N1—H1C···Cl2iv | 0.90 | 2.79 | 3.6062 (4) | 151 |
N2—H2A···Cl1iv | 0.90 | 2.76 | 3.6024 (2) | 156 |
N2—H2A···Cl3iii | 0.90 | 2.90 | 3.546 (5) | 130 |
N2—H2B···Cl3v | 0.90 | 2.92 | 3.661 (5) | 141 |
N2—H2B···Cl1v | 0.90 | 2.71 | 3.437 (6) | 139 |
N2—H2C···Cl4 | 0.90 | 2.64 | 3.519 (5) | 167 |
Symmetry codes: (ii) −x+1, −y+1, −z+1; (iii) x, −y+3/2, z; (iv) x, y+1, z; (v) −x+2, −y+1, −z+1. |
(III) hexylammonium hexachloridotin(IV)
top
Crystal data top
(C6H16N)2[SnCl6] | F(000) = 1080 |
Mr = 535.79 | Dx = 1.478 Mg m−3 |
Orthorhombic, Pnma | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ac 2n | Cell parameters from 4671 reflections |
a = 12.3622 (3) Å | θ = 2.3–26.5° |
b = 7.3179 (2) Å | µ = 1.72 mm−1 |
c = 26.6245 (6) Å | T = 293 K |
V = 2408.59 (10) Å3 | Plate, colourless |
Z = 4 | 0.36 × 0.28 × 0.09 mm |
Data collection top
Bruker SMART APEXII CCD area-detector diffractometer | 2094 reflections with I > 2σ(I) |
ω scans | Rint = 0.055 |
Absorption correction: integration XPREP (Bruker, 2004) | θmax = 28°, θmin = 1.5° |
Tmin = 0.603, Tmax = 0.856 | h = −16→16 |
18912 measured reflections | k = −9→9 |
3129 independent reflections | l = −35→34 |
Refinement top
Refinement on F2 | 112 restraints |
Least-squares matrix: full | H-atom parameters constrained |
R[F2 > 2σ(F2)] = 0.075 | w = 1/[σ2(Fo2) + (0.0677P)2 + 14.1291P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.217 | (Δ/σ)max < 0.001 |
S = 1.11 | Δρmax = 0.68 e Å−3 |
3129 reflections | Δρmin = −0.91 e Å−3 |
121 parameters | |
Crystal data top
(C6H16N)2[SnCl6] | V = 2408.59 (10) Å3 |
Mr = 535.79 | Z = 4 |
Orthorhombic, Pnma | Mo Kα radiation |
a = 12.3622 (3) Å | µ = 1.72 mm−1 |
b = 7.3179 (2) Å | T = 293 K |
c = 26.6245 (6) Å | 0.36 × 0.28 × 0.09 mm |
Data collection top
Bruker SMART APEXII CCD area-detector diffractometer | 3129 independent reflections |
Absorption correction: integration XPREP (Bruker, 2004) | 2094 reflections with I > 2σ(I) |
Tmin = 0.603, Tmax = 0.856 | Rint = 0.055 |
18912 measured reflections | |
Refinement top
R[F2 > 2σ(F2)] = 0.075 | 112 restraints |
wR(F2) = 0.217 | H-atom parameters constrained |
S = 1.11 | w = 1/[σ2(Fo2) + (0.0677P)2 + 14.1291P] where P = (Fo2 + 2Fc2)/3 |
3129 reflections | Δρmax = 0.68 e Å−3 |
121 parameters | Δρmin = −0.91 e Å−3 |
Special details top
Experimental. Numerical integration absorption corrections based on indexed crystal faces were
applied using the XPREP routine (Bruker, 2004) |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top | x | y | z | Uiso*/Ueq | Occ. (<1) |
C1 | 0.6071 (15) | 0.75 | 0.6082 (6) | 0.141 (6) | |
H1D | 0.6511 | 0.8572 | 0.6148 | 0.17* | 0.5 |
H1E | 0.6511 | 0.6428 | 0.6148 | 0.17* | 0.5 |
C2 | 0.5101 (14) | 0.75 | 0.6434 (5) | 0.160 (6) | |
H2D | 0.4661 | 0.8574 | 0.6372 | 0.192* | 0.5 |
H2E | 0.4661 | 0.6426 | 0.6372 | 0.192* | 0.5 |
C3 | 0.5486 (15) | 0.75 | 0.6974 (5) | 0.177 (7) | |
H3A | 0.593 | 0.8572 | 0.7032 | 0.212* | 0.5 |
H3B | 0.593 | 0.6428 | 0.7032 | 0.212* | 0.5 |
C4 | 0.4548 (15) | 0.75 | 0.7342 (5) | 0.200 (8) | |
H4A | 0.4103 | 0.6425 | 0.7291 | 0.24* | 0.5 |
H4B | 0.4103 | 0.8575 | 0.7291 | 0.24* | 0.5 |
C5 | 0.5020 (17) | 0.75 | 0.7877 (6) | 0.211 (9) | |
H5A | 0.5467 | 0.6425 | 0.7927 | 0.253* | 0.5 |
H5B | 0.5467 | 0.8575 | 0.7927 | 0.253* | 0.5 |
C6 | 0.409 (2) | 0.75 | 0.8251 (7) | 0.242 (13) | |
H6A | 0.4376 | 0.75 | 0.8587 | 0.363* | |
H6B | 0.3657 | 0.6429 | 0.8201 | 0.363* | 0.5 |
H6C | 0.3657 | 0.8571 | 0.8201 | 0.363* | 0.5 |
N1 | 0.5761 (10) | 0.75 | 0.5584 (5) | 0.100 (4) | |
H1A | 0.514 | 0.6896 | 0.5551 | 0.15* | 0.5 |
H1B | 0.6269 | 0.6958 | 0.54 | 0.15* | 0.5 |
H1C | 0.5673 | 0.8646 | 0.548 | 0.15* | 0.5 |
C7 | 0.9203 (16) | 0.75 | 0.4006 (6) | 0.154 (7) | |
H7A | 0.9631 | 0.6434 | 0.392 | 0.185* | 0.5 |
H7B | 0.9631 | 0.8566 | 0.392 | 0.185* | 0.5 |
C8 | 0.8216 (15) | 0.75 | 0.3675 (5) | 0.180 (7) | |
H8A | 0.7782 | 0.8573 | 0.3747 | 0.215* | 0.5 |
H8B | 0.7782 | 0.6427 | 0.3747 | 0.215* | 0.5 |
C9 | 0.8527 (15) | 0.75 | 0.3125 (5) | 0.196 (7) | |
H9A | 0.8958 | 0.6426 | 0.3051 | 0.236* | 0.5 |
H9B | 0.8958 | 0.8574 | 0.3051 | 0.236* | 0.5 |
C10 | 0.7508 (16) | 0.75 | 0.2799 (6) | 0.229 (9) | |
H10A | 0.7074 | 0.8577 | 0.2866 | 0.275* | 0.5 |
H10B | 0.7074 | 0.6423 | 0.2866 | 0.275* | 0.5 |
C11 | 0.7904 (18) | 0.75 | 0.2251 (6) | 0.249 (10) | |
H11A | 0.8343 | 0.8575 | 0.2188 | 0.298* | 0.5 |
H11B | 0.8343 | 0.6425 | 0.2188 | 0.298* | 0.5 |
C12 | 0.693 (2) | 0.75 | 0.1906 (8) | 0.298 (16) | |
H12A | 0.7172 | 0.75 | 0.1563 | 0.447* | |
H12B | 0.6505 | 0.8571 | 0.1968 | 0.447* | 0.5 |
H12C | 0.6505 | 0.6429 | 0.1968 | 0.447* | 0.5 |
N2 | 0.9061 (11) | 0.75 | 0.4514 (4) | 0.102 (4) | |
H2A | 0.9007 | 0.8646 | 0.4623 | 0.153* | 0.5 |
H2B | 0.9624 | 0.696 | 0.466 | 0.153* | 0.5 |
H2C | 0.8459 | 0.6894 | 0.459 | 0.153* | 0.5 |
Sn1 | 0.74764 (5) | 0.25 | 0.50943 (3) | 0.0619 (3) | |
Cl1 | 0.9014 (2) | 0.25 | 0.45304 (14) | 0.0776 (9) | |
Cl2 | 0.5931 (2) | 0.25 | 0.56400 (16) | 0.0862 (10) | |
Cl3 | 0.83397 (17) | 0.4872 (3) | 0.55771 (10) | 0.0795 (7) | |
Cl4 | 0.66125 (17) | 0.4853 (3) | 0.45906 (10) | 0.0792 (7) | |
Atomic displacement parameters (Å2) top | U11 | U22 | U33 | U12 | U13 | U23 |
C1 | 0.128 (12) | 0.183 (15) | 0.113 (7) | 0 | −0.008 (7) | 0 |
C2 | 0.156 (13) | 0.208 (15) | 0.115 (7) | 0 | 0.011 (8) | 0 |
C3 | 0.188 (15) | 0.225 (16) | 0.117 (7) | 0 | 0.006 (8) | 0 |
C4 | 0.228 (17) | 0.243 (17) | 0.130 (8) | 0 | 0.036 (10) | 0 |
C5 | 0.26 (2) | 0.248 (19) | 0.128 (8) | 0 | 0.035 (12) | 0 |
C6 | 0.32 (3) | 0.26 (3) | 0.148 (12) | 0 | 0.079 (18) | 0 |
N1 | 0.083 (8) | 0.107 (9) | 0.110 (6) | 0 | 0.002 (6) | 0 |
C7 | 0.152 (14) | 0.211 (17) | 0.098 (6) | 0 | 0.013 (8) | 0 |
C8 | 0.181 (15) | 0.239 (17) | 0.119 (8) | 0 | −0.015 (8) | 0 |
C9 | 0.207 (16) | 0.265 (18) | 0.118 (7) | 0 | −0.020 (9) | 0 |
C10 | 0.239 (18) | 0.30 (2) | 0.145 (9) | 0 | −0.053 (11) | 0 |
C11 | 0.28 (2) | 0.33 (2) | 0.138 (9) | 0 | −0.057 (13) | 0 |
C12 | 0.35 (3) | 0.37 (4) | 0.175 (15) | 0 | −0.11 (2) | 0 |
N2 | 0.102 (9) | 0.107 (9) | 0.097 (6) | 0 | 0.021 (6) | 0 |
Sn1 | 0.0432 (4) | 0.0403 (4) | 0.1023 (7) | 0 | −0.0021 (4) | 0 |
Cl1 | 0.0518 (15) | 0.0732 (19) | 0.108 (3) | 0 | 0.0138 (16) | 0 |
Cl2 | 0.0516 (16) | 0.075 (2) | 0.132 (3) | 0 | 0.0207 (18) | 0 |
Cl3 | 0.0683 (12) | 0.0540 (11) | 0.1163 (18) | −0.0125 (10) | −0.0106 (12) | −0.0146 (12) |
Cl4 | 0.0667 (12) | 0.0510 (11) | 0.1201 (19) | 0.0095 (9) | −0.0147 (12) | 0.0128 (11) |
Geometric parameters (Å, º) top
C1—N1 | 1.380 (18) | C7—H7A | 0.97 |
C1—C2 | 1.52 (2) | C7—H7B | 0.97 |
C1—H1D | 0.97 | C8—C9 | 1.51 (2) |
C1—H1E | 0.97 | C8—H8A | 0.97 |
C2—C3 | 1.51 (2) | C8—H8B | 0.97 |
C2—H2D | 0.97 | C9—C10 | 1.53 (2) |
C2—H2E | 0.97 | C9—H9A | 0.97 |
C3—C4 | 1.52 (2) | C9—H9B | 0.97 |
C3—H3A | 0.97 | C10—C11 | 1.539 (10) |
C3—H3B | 0.97 | C10—H10A | 0.97 |
C4—C5 | 1.54 (2) | C10—H10B | 0.97 |
C4—H4A | 0.97 | C11—C12 | 1.51 (2) |
C4—H4B | 0.97 | C11—H11A | 0.97 |
C5—C6 | 1.52 (2) | C11—H11B | 0.97 |
C5—H5A | 0.97 | C12—H12A | 0.96 |
C5—H5B | 0.97 | C12—H12B | 0.96 |
C6—H6A | 0.96 | C12—H12C | 0.96 |
C6—H6B | 0.96 | N2—H2A | 0.89 |
C6—H6C | 0.96 | N2—H2B | 0.89 |
N1—H1A | 0.89 | N2—H2C | 0.89 |
N1—H1B | 0.89 | Sn1—Cl1 | 2.423 (3) |
N1—H1C | 0.89 | Sn1—Cl2 | 2.400 (3) |
C7—N2 | 1.365 (17) | Sn1—Cl3 | 2.409 (2) |
C7—C8 | 1.50 (2) | Sn1—Cl4 | 2.430 (2) |
| | | |
N1—C1—C2 | 111.9 (14) | H7A—C7—H7B | 107.1 |
N1—C1—H1D | 109.2 | C7—C8—C9 | 111.1 (12) |
C2—C1—H1D | 109.2 | C7—C8—H8A | 109.4 |
N1—C1—H1E | 109.2 | C9—C8—H8A | 109.4 |
C2—C1—H1E | 109.2 | C7—C8—H8B | 109.4 |
H1D—C1—H1E | 107.9 | C9—C8—H8B | 109.4 |
C3—C2—C1 | 109.7 (11) | H8A—C8—H8B | 108 |
C3—C2—H2D | 109.7 | C8—C9—C10 | 109.9 (11) |
C1—C2—H2D | 109.7 | C8—C9—H9A | 109.7 |
C3—C2—H2E | 109.7 | C10—C9—H9A | 109.7 |
C1—C2—H2E | 109.7 | C8—C9—H9B | 109.7 |
H2D—C2—H2E | 108.2 | C10—C9—H9B | 109.7 |
C2—C3—C4 | 112.0 (11) | H9A—C9—H9B | 108.2 |
C2—C3—H3A | 109.2 | C9—C10—C11 | 106.1 (11) |
C4—C3—H3A | 109.2 | C9—C10—H10A | 110.5 |
C2—C3—H3B | 109.2 | C11—C10—H10A | 110.5 |
C4—C3—H3B | 109.2 | C9—C10—H10B | 110.5 |
H3A—C3—H3B | 107.9 | C11—C10—H10B | 110.5 |
C3—C4—C5 | 108.0 (11) | H10A—C10—H10B | 108.7 |
C3—C4—H4A | 110.1 | C12—C11—C10 | 108.8 (13) |
C5—C4—H4A | 110.1 | C12—C11—H11A | 109.9 |
C3—C4—H4B | 110.1 | C10—C11—H11A | 109.9 |
C5—C4—H4B | 110.1 | C12—C11—H11B | 109.9 |
H4A—C4—H4B | 108.4 | C10—C11—H11B | 109.9 |
C6—C5—C4 | 108.7 (12) | H11A—C11—H11B | 108.3 |
C6—C5—H5A | 110 | C11—C12—H12A | 109.5 |
C4—C5—H5A | 110 | C11—C12—H12B | 109.5 |
C6—C5—H5B | 110 | H12A—C12—H12B | 109.5 |
C4—C5—H5B | 110 | C11—C12—H12C | 109.5 |
H5A—C5—H5B | 108.3 | H12A—C12—H12C | 109.5 |
C5—C6—H6A | 109.5 | H12B—C12—H12C | 109.5 |
C5—C6—H6B | 109.5 | C7—N2—H2A | 109.5 |
H6A—C6—H6B | 109.5 | C7—N2—H2B | 109.5 |
C5—C6—H6C | 109.5 | H2A—N2—H2B | 109.5 |
H6A—C6—H6C | 109.5 | C7—N2—H2C | 109.5 |
H6B—C6—H6C | 109.5 | H2A—N2—H2C | 109.5 |
C1—N1—H1A | 109.5 | H2B—N2—H2C | 109.5 |
C1—N1—H1B | 109.5 | Cl1—Sn1—Cl2 | 178.95 (13) |
H1A—N1—H1B | 109.5 | Cl1—Sn1—Cl3 | 89.03 (9) |
C1—N1—H1C | 109.5 | Cl1—Sn1—Cl4 | 90.16 (9) |
H1A—N1—H1C | 109.5 | Cl2—Sn1—Cl3 | 91.70 (9) |
H1B—N1—H1C | 109.5 | Cl2—Sn1—Cl4 | 89.10 (9) |
N2—C7—C8 | 118.4 (15) | Cl3—Sn1—Cl3i | 92.18 (12) |
N2—C7—H7A | 107.7 | Cl3—Sn1—Cl4 | 88.78 (8) |
C8—C7—H7A | 107.7 | Cl3i—Sn1—Cl4 | 178.73 (9) |
N2—C7—H7B | 107.7 | Cl4i—Sn1—Cl4 | 90.25 (11) |
C8—C7—H7B | 107.7 | | |
| | | |
N1—C1—C2—C3 | 180 | N2—C7—C8—C9 | 180 |
C1—C2—C3—C4 | 180 | C7—C8—C9—C10 | 180 |
C2—C3—C4—C5 | 180 | C8—C9—C10—C11 | 180 |
C3—C4—C5—C6 | 180 | C9—C10—C11—C12 | 180 |
Symmetry code: (i) x, −y+1/2, z. |
Hydrogen-bond geometry (Å, º) top
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1A···Cl4ii | 0.89 | 2.54 | 3.434 (10) | 177 |
N1—H1B···Cl4 | 0.89 | 2.68 | 3.443 (10) | 144 |
N1—H1C···Cl4iii | 0.89 | 2.86 | 3.443 (10) | 125 |
N1—H1C···Cl2iv | 0.89 | 2.87 | 3.6680 (9) | 150 |
N2—H2A···Cl1iv | 0.89 | 2.83 | 3.6597 (3) | 156 |
N2—H2A···Cl3iii | 0.89 | 2.88 | 3.537 (10) | 132 |
N2—H2B···Cl3v | 0.89 | 2.92 | 3.660 (12) | 142 |
N2—H2B···Cl1v | 0.89 | 2.76 | 3.484 (13) | 139 |
N2—H2C···Cl4 | 0.89 | 2.73 | 3.599 (11) | 167 |
Symmetry codes: (ii) −x+1, −y+1, −z+1; (iii) x, −y+3/2, z; (iv) x, y+1, z; (v) −x+2, −y+1, −z+1. |
Experimental details
| (I) | (II) | (III) |
Crystal data |
Chemical formula | (C4H12N)2[SnCl6] | (C5H14N)2[SnCl6] | (C6H16N)2[SnCl6] |
Mr | 479.68 | 507.73 | 535.79 |
Crystal system, space group | Orthorhombic, Pnma | Orthorhombic, Pnma | Orthorhombic, Pnma |
Temperature (K) | 243 | 243 | 293 |
a, b, c (Å) | 12.1624 (4), 7.2782 (2), 21.4837 (7) | 12.2351 (5), 7.2021 (3), 24.5723 (9) | 12.3622 (3), 7.3179 (2), 26.6245 (6) |
V (Å3) | 1901.75 (10) | 2165.27 (15) | 2408.59 (10) |
Z | 4 | 4 | 4 |
Radiation type | Mo Kα | Mo Kα | Mo Kα |
µ (mm−1) | 2.17 | 1.91 | 1.72 |
Crystal size (mm) | 0.26 × 0.24 × 0.1 | 0.32 × 0.3 × 0.06 | 0.36 × 0.28 × 0.09 |
|
Data collection |
Diffractometer | Bruker SMART APEXII CCD area-detector diffractometer | Bruker SMART APEXII CCD area-detector diffractometer | Bruker SMART APEXII CCD area-detector diffractometer |
Absorption correction | Integration (XPREP; Bruker, 2004) | Integration (XPREP; Bruker, 2004) | Integration XPREP (Bruker, 2004) |
Tmin, Tmax | 0.535, 0.822 | 0.571, 0.893 | 0.603, 0.856 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 14713, 2470, 2088 | 16581, 2820, 2038 | 18912, 3129, 2094 |
Rint | 0.062 | 0.043 | 0.055 |
(sin θ/λ)max (Å−1) | 0.661 | 0.661 | 0.661 |
|
Refinement |
R[F2 > 2σ(F2)], wR(F2), S | 0.038, 0.103, 1.13 | 0.043, 0.118, 1.07 | 0.075, 0.217, 1.11 |
No. of reflections | 2470 | 2820 | 3129 |
No. of parameters | 98 | 109 | 121 |
No. of restraints | 72 | 92 | 112 |
H-atom treatment | H-atom parameters constrained | H-atom parameters constrained | H-atom parameters constrained |
| w = 1/[σ2(Fo2) + (0.0367P)2 + 3.3848P] where P = (Fo2 + 2Fc2)/3 | w = 1/[σ2(Fo2) + (0.0464P)2 + 4.3427P] where P = (Fo2 + 2Fc2)/3 | w = 1/[σ2(Fo2) + (0.0677P)2 + 14.1291P] where P = (Fo2 + 2Fc2)/3 |
Δρmax, Δρmin (e Å−3) | 0.54, −0.53 | 0.82, −0.59 | 0.68, −0.91 |
Hydrogen-bond geometry (Å, º) for (I) top
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1A···Cl4i | 0.9 | 2.52 | 3.423 (5) | 177 |
N1—H1B···Cl4 | 0.9 | 2.67 | 3.365 (5) | 135 |
N1—H1B···Cl3 | 0.9 | 2.88 | 3.651 (5) | 145 |
N1—H1C···Cl4ii | 0.9 | 2.73 | 3.365 (5) | 128 |
N1—H1C···Cl2iii | 0.9 | 2.85 | 3.6502 (5) | 149 |
N2—H2A···Cl1iii | 0.9 | 2.81 | 3.6408 (2) | 155 |
N2—H2A···Cl3ii | 0.9 | 2.86 | 3.519 (5) | 131 |
N2—H2B···Cl3iv | 0.9 | 2.77 | 3.564 (5) | 147 |
N2—H2B···Cl1iv | 0.9 | 2.83 | 3.533 (6) | 136 |
N2—H2C···Cl4 | 0.9 | 2.76 | 3.630 (5) | 163 |
Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) x, −y+3/2, z; (iii) x, y+1, z; (iv) −x+2, −y+1, −z+1. |
Hydrogen-bond geometry (Å, º) for (II) top
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1A···Cl4i | 0.90 | 2.54 | 3.438 (5) | 177 |
N1—H1B···Cl4 | 0.90 | 2.68 | 3.411 (5) | 139 |
N1—H1B···Cl3 | 0.90 | 2.89 | 3.636 (5) | 142 |
N1—H1C···Cl4ii | 0.90 | 2.80 | 3.411 (5) | 126 |
N1—H1C···Cl2iii | 0.90 | 2.79 | 3.6062 (4) | 151 |
N2—H2A···Cl1iii | 0.90 | 2.76 | 3.6024 (2) | 156 |
N2—H2A···Cl3ii | 0.90 | 2.90 | 3.546 (5) | 130 |
N2—H2B···Cl3iv | 0.90 | 2.92 | 3.661 (5) | 141 |
N2—H2B···Cl1iv | 0.90 | 2.71 | 3.437 (6) | 139 |
N2—H2C···Cl4 | 0.90 | 2.64 | 3.519 (5) | 167 |
Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) x, −y+3/2, z; (iii) x, y+1, z; (iv) −x+2, −y+1, −z+1. |
Hydrogen-bond geometry (Å, º) for (III) top
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1A···Cl4i | 0.89 | 2.54 | 3.434 (10) | 177 |
N1—H1B···Cl4 | 0.89 | 2.68 | 3.443 (10) | 144 |
N1—H1C···Cl4ii | 0.89 | 2.86 | 3.443 (10) | 125 |
N1—H1C···Cl2iii | 0.89 | 2.87 | 3.6680 (9) | 150 |
N2—H2A···Cl1iii | 0.89 | 2.83 | 3.6597 (3) | 156 |
N2—H2A···Cl3ii | 0.89 | 2.88 | 3.537 (10) | 132 |
N2—H2B···Cl3iv | 0.89 | 2.92 | 3.660 (12) | 142 |
N2—H2B···Cl1iv | 0.89 | 2.76 | 3.484 (13) | 139 |
N2—H2C···Cl4 | 0.89 | 2.73 | 3.599 (11) | 167 |
Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) x, −y+3/2, z; (iii) x, y+1, z; (iv) −x+2, −y+1, −z+1. |
Comparative geometric parameters (Å ,° ) in (I), (II) and (III) topParameter | I | II | III |
Sn1—Cl1 | 2.4235 (15) | 2.4303 (11) | 2.423 (3) |
Sn1—Cl2 | 2.4075 (15) | 2.4109 (17) | 2.400 (3) |
Sn1—Cl3 | 2.4172 (10) | 2.4096 (11) | 2.409 (2) |
Sn1—Cl4 | 2.4273 (10) | 2.4311 (11) | 2.430 (2) |
Sn1—Cl3i | 2.4172 (10) | 2.4096 (11) | 2.409 (2) |
Sn1—Cl4i | 2.4273 (10) | 2.4311 (11) | 2.430 (2) |
Average Sn—-Cl | 2.4200 (11) | 2.4204 (11) | 2.417 (2) |
Cl3—Sn1—Cl3i | 92.05 (5) | 92.21 (6) | 92.18 (12) |
Tilt of SnCl6 | 49.08 (2) | 38.25 (2) | 39.11 (4) |
Tilt of cations | 25.7 (1) | 21.8 (1) | 17.8 (2) |
Interplanar Spacing | 10.7415 (7) | 12.2862 (9) | 13.3123 (6) |
Packing Efficiency | 0.674 | 0.643 | 0.632 |
Symmetry code: (i) x, -y + 1/2, z. |
Subscribe to Acta Crystallographica Section C: Structural Chemistry
The full text of this article is available to subscribers to the journal.
If you have already registered and are using a computer listed in your registration details, please email
support@iucr.org for assistance.
The bis-ammonium tetrahalometallate inorganic–organic hybrid materials of general formula (R—NH3)2[MX4] [R = CnH2n + 1– and Ar–(CH2)m–, n = 1–18, m = 1–3, M = Pb, Sn, Cu, Mn and Cd, and X = Cl, Br and I] are characterized by the presence of two-dimensional layers of corner-sharing MX6 octahedra, each sandwiched between two hydrocarbon layers (Mitzi, 1999). The overall structure exhibits an alternation of inorganic and organic layers. The interface between the inorganic and hydrocarbon layers consists of Cl- and –NH3+ ions, in which strong charge-assisted hydrogen bonds connect the separate layers. If the metal is tetravalent, with general formula (R–NH3)2[MX6], the dimensionality is reduced and discrete MX6 octahedra exist. This phenomenon, where the motif of the inorganic part depends on the valency of the metal, has been observed for Sn, and extensive investigations of divalent Sn have been reported (Koutselas et al., 1996; Mitzi et al., 1998; Kagan et al., 1999; Yin & Yo, 1998). However, tetravalent Sn has been less well studied and generally few compounds of the type (CnH2n + 1NH3)2[SnCl6] (Lee et al., 2002, 1998 or???1997; Elleuch et al., 1999; Aruta et al., 2005, and references therein) and [C6H5–(CH2)n–NH3]2[SnCl6] [n = 0 (Rademeyer, 2004a) and 1 (Rademeyer, 2004b)] have been reported in the literature. It has been found that the separation between the Sn atoms is sufficiently long, at 7.3–7.5 Å, that the hydrocarbon chains can interdigitate (Lee et al., 2002).
The aim of the present report is to describe the single-crystal structures of the three isostructural compounds containing tetravalent tin(IV) chloride and butylammonium, (I), pentylammonium, (II), or hexylammonium, (III), counter-cations. The atomic numbering scheme of the asymmetric units in all three compounds is given in Fig. 1. Other compounds with two or fewer H atoms on the N atom have been reported (Knop et al., 1983) but are not considered in this study.
The structure of compound (I), (C4H9NH3)2[SnCl6], has been previously reported by Elleuch et al. (1996) but it was only briefly discussed. The packing arrangement is related to that of (C2H5NH3)2[SnCl6], which crystallizes in space group P3m1 (Knop et al., 1983). Compounds (I), (II) and (III) contain alternating hydrocarbon layers of butylammonium molecules and inorganic layers of isolated SnCl6 octahedra. The layers stack along the c axis (Fig. 2). In the directions of the a and b axes, cohesion between the inorganic and hydrocarbon layers is achieved by N—H···Cl hydrogen bonds, related to the NH3 polar groups.
The inorganic component of the asymmetric unit of (I) contains an SnIV centre, two Cl atoms (Cl1 and Cl2) on a site of m symmetry at y = 1/4, and two Cl atoms (Cl3 and Cl4) on general positions (Fig. 1). Mirror symmetry generates another two Cl atoms [Cl3i and Cl4i; symmetry code: (i) x, 1/2 - y, z] to complete the octahedral coordination around Sn. A consequence of the mirror symmetry within the octahedra are four unique Sn—Cl bond lengths, in a narrow range from 2.4075 (15) to 2.4273 (10) Å and with cis Cl—Sn—Cl bond angles varying from 88.76 (4) to 92.05 (5)°. The SnCl6 octahedra are tilted with respect to the layer they occupy; the vector through Cl1 and Cl2 makes an angle of 49.08 (2)° with the normal to the layers. Successive inorganic layers tilt in opposite directions and are separated by an interlayer spacing of 10.7418 (4) Å, corresponding to half of the unit-cell length extending perpendicular to the inorganic layer.
The asymmetric unit in (I) is completed by two symmetry-independent butylammonium cations lying across the same mirror plane at 3/4, identified as cat1 (containing N1) and cat2 (containing N2). The mirror symmetry implies an all-trans geometry for the hydrocarbon chains. The cations lie parallel to the (010) plane, with the C4···N1 vector making an angle of 25.7 (1)° with the c axis.
The two ammonium groups in the asymmetric unit of (I) display the same pattern of hydrogen-bonding interactions with Cl- ions. Atom H1A on atom N1 forms a single hydrogen bond to Cl4, which exhibits the shortest H···A distance of 2.52 Å. Atoms H1B and H1C both form bifurcated hydrogen bonds to the acceptor atoms Cl2, Cl3 and Cl4 (twice), which are significantly longer than the simple hydrogen bond (see Table 1 and Fig. 3). Atom H2C on atom N2 forms a single hydrogen bond to Cl4, while atoms H2A and H2B both form bifurcated hydrogen bonds to the acceptor atoms Cl1 (twice) and Cl3 (twice). Cat1 forms no hydrogen bonds to Cl1 and, similarly, cat2 forms no hydrogen bonds to Cl2. The hydrogen-bonding geometry is repeated for the pentylammonium cation in (II) (see Table 2). This pattern is interrupted in (III), where atom N1 forms two single hydrogen bonds via atoms H1A and H1B, both to Cl4, and a bifurcated hydrogen bond to Cl4 and Cl2, such that cat1 forms no hydrogen bonds to either Cl1 or Cl3. Atom N2 repeats the same pattern as in (I) and (II) (Table 3 and Fig. 4).
The differences in the geometries of the inorganic layers and the SnCl6 octahedra among the three compounds are summarized in Table 4. The shortest Sn—Cl bond length [2.400 (3) Å] is found for (III) and the longest [2.4311 (11) Å] for (II), with the average Sn—Cl bond lengths increasing from (I) to (III). The widest bond angle involving mutually cis chloride ions varies from 92.05 (5) in (I) to 92.21 (6)° in (II).
The interlayer spacing increases as a function of increasing chain length and the tilt of the SnCl6 octahedra decreases simultaneously. There is a greater increase in the interlayer spacing in going from (I) to (II) than from (II) to (III). The tilt of the cations decreases consistently by approximately 4°, whereas the tilt of the SnCl6 octahedra is greatest in (I) and decreases to approximately 39° for both (II) and (III). The average N···Cl distance within the hydrogen bonds is remarkably consistent.