Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The three isostructural compounds butyl­ammonium hexa­chlorido­tin(IV), pentyl­ammonium hexa­chlorido­tin(IV) and hexyl­ammonium hexa­chlorido­tin(IV), (CnH2n+1NH3)2[SnCl6], with n = 4, 5 and 6, respectively, crystallize as inorganic-organic hybrids. As such, the structures consist of layers of [SnCl6]2- octa­hedra, separated by hydro­carbon layers of inter­digitated butyl­ammonium, pentyl­ammonium or hexyl­ammonium cations. Corrugated layers of cations alternate with tin(IV) chloride layers. The asymmetric unit in each compound consists of an anionic component comprising one Sn and two Cl atoms on a mirror plane, and two Cl atoms in general positions; the two cations lie on another mirror plane. Application of the mirror symmetry generates octa­hedral coordination around the Sn atom. All compounds exhibit bifurcated and simple hydrogen-bonding inter­actions between the ammonium groups and the Cl atoms, with little variation in the hydrogen-bonding geometries.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270107004659/bm3022sup1.cif
Contains datablocks global, I, II, III

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270107004659/bm3022Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270107004659/bm3022IIsup3.hkl
Contains datablock II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270107004659/bm3022IIIsup4.hkl
Contains datablock III

CCDC references: 641783; 641784; 641785

Comment top

The bis-ammonium tetrahalometallate inorganic–organic hybrid materials of general formula (R—NH3)2[MX4] [R = CnH2n + 1– and Ar–(CH2)m–, n = 1–18, m = 1–3, M = Pb, Sn, Cu, Mn and Cd, and X = Cl, Br and I] are characterized by the presence of two-dimensional layers of corner-sharing MX6 octahedra, each sandwiched between two hydrocarbon layers (Mitzi, 1999). The overall structure exhibits an alternation of inorganic and organic layers. The interface between the inorganic and hydrocarbon layers consists of Cl- and –NH3+ ions, in which strong charge-assisted hydrogen bonds connect the separate layers. If the metal is tetravalent, with general formula (R–NH3)2[MX6], the dimensionality is reduced and discrete MX6 octahedra exist. This phenomenon, where the motif of the inorganic part depends on the valency of the metal, has been observed for Sn, and extensive investigations of divalent Sn have been reported (Koutselas et al., 1996; Mitzi et al., 1998; Kagan et al., 1999; Yin & Yo, 1998). However, tetravalent Sn has been less well studied and generally few compounds of the type (CnH2n + 1NH3)2[SnCl6] (Lee et al., 2002, 1998 or???1997; Elleuch et al., 1999; Aruta et al., 2005, and references therein) and [C6H5–(CH2)n–NH3]2[SnCl6] [n = 0 (Rademeyer, 2004a) and 1 (Rademeyer, 2004b)] have been reported in the literature. It has been found that the separation between the Sn atoms is sufficiently long, at 7.3–7.5 Å, that the hydrocarbon chains can interdigitate (Lee et al., 2002).

The aim of the present report is to describe the single-crystal structures of the three isostructural compounds containing tetravalent tin(IV) chloride and butylammonium, (I), pentylammonium, (II), or hexylammonium, (III), counter-cations. The atomic numbering scheme of the asymmetric units in all three compounds is given in Fig. 1. Other compounds with two or fewer H atoms on the N atom have been reported (Knop et al., 1983) but are not considered in this study.

The structure of compound (I), (C4H9NH3)2[SnCl6], has been previously reported by Elleuch et al. (1996) but it was only briefly discussed. The packing arrangement is related to that of (C2H5NH3)2[SnCl6], which crystallizes in space group P3m1 (Knop et al., 1983). Compounds (I), (II) and (III) contain alternating hydrocarbon layers of butylammonium molecules and inorganic layers of isolated SnCl6 octahedra. The layers stack along the c axis (Fig. 2). In the directions of the a and b axes, cohesion between the inorganic and hydrocarbon layers is achieved by N—H···Cl hydrogen bonds, related to the NH3 polar groups.

The inorganic component of the asymmetric unit of (I) contains an SnIV centre, two Cl atoms (Cl1 and Cl2) on a site of m symmetry at y = 1/4, and two Cl atoms (Cl3 and Cl4) on general positions (Fig. 1). Mirror symmetry generates another two Cl atoms [Cl3i and Cl4i; symmetry code: (i) x, 1/2 - y, z] to complete the octahedral coordination around Sn. A consequence of the mirror symmetry within the octahedra are four unique Sn—Cl bond lengths, in a narrow range from 2.4075 (15) to 2.4273 (10) Å and with cis Cl—Sn—Cl bond angles varying from 88.76 (4) to 92.05 (5)°. The SnCl6 octahedra are tilted with respect to the layer they occupy; the vector through Cl1 and Cl2 makes an angle of 49.08 (2)° with the normal to the layers. Successive inorganic layers tilt in opposite directions and are separated by an interlayer spacing of 10.7418 (4) Å, corresponding to half of the unit-cell length extending perpendicular to the inorganic layer.

The asymmetric unit in (I) is completed by two symmetry-independent butylammonium cations lying across the same mirror plane at 3/4, identified as cat1 (containing N1) and cat2 (containing N2). The mirror symmetry implies an all-trans geometry for the hydrocarbon chains. The cations lie parallel to the (010) plane, with the C4···N1 vector making an angle of 25.7 (1)° with the c axis.

The two ammonium groups in the asymmetric unit of (I) display the same pattern of hydrogen-bonding interactions with Cl- ions. Atom H1A on atom N1 forms a single hydrogen bond to Cl4, which exhibits the shortest H···A distance of 2.52 Å. Atoms H1B and H1C both form bifurcated hydrogen bonds to the acceptor atoms Cl2, Cl3 and Cl4 (twice), which are significantly longer than the simple hydrogen bond (see Table 1 and Fig. 3). Atom H2C on atom N2 forms a single hydrogen bond to Cl4, while atoms H2A and H2B both form bifurcated hydrogen bonds to the acceptor atoms Cl1 (twice) and Cl3 (twice). Cat1 forms no hydrogen bonds to Cl1 and, similarly, cat2 forms no hydrogen bonds to Cl2. The hydrogen-bonding geometry is repeated for the pentylammonium cation in (II) (see Table 2). This pattern is interrupted in (III), where atom N1 forms two single hydrogen bonds via atoms H1A and H1B, both to Cl4, and a bifurcated hydrogen bond to Cl4 and Cl2, such that cat1 forms no hydrogen bonds to either Cl1 or Cl3. Atom N2 repeats the same pattern as in (I) and (II) (Table 3 and Fig. 4).

The differences in the geometries of the inorganic layers and the SnCl6 octahedra among the three compounds are summarized in Table 4. The shortest Sn—Cl bond length [2.400 (3) Å] is found for (III) and the longest [2.4311 (11) Å] for (II), with the average Sn—Cl bond lengths increasing from (I) to (III). The widest bond angle involving mutually cis chloride ions varies from 92.05 (5) in (I) to 92.21 (6)° in (II).

The interlayer spacing increases as a function of increasing chain length and the tilt of the SnCl6 octahedra decreases simultaneously. There is a greater increase in the interlayer spacing in going from (I) to (II) than from (II) to (III). The tilt of the cations decreases consistently by approximately 4°, whereas the tilt of the SnCl6 octahedra is greatest in (I) and decreases to approximately 39° for both (II) and (III). The average N···Cl distance within the hydrogen bonds is remarkably consistent.

Related literature top

For related literature, see: Aruta et al. (2005); Elleuch et al. (1996, 1999); Kagan (1999); Knop et al. (1983); Koutselas et al. (1996); Lee et al. (1998, 2002); Mitzi (1999); Mitzi et al. (1998); Rademeyer (2004a, 2004b); Yin & Yo (1998).

Experimental top

For the preparation of (I), C4H9NH2 (0.098 g, 1.34 mmol) was combined with SnCl2 (0.119 g, 0.628 mmol) in 33% aqueous HCl (2 ml). The resulting precipitate was dissolved by refluxing for 48 h at 353 K. The solution was then cooled slowly to room temperature at 2 K h-1, and colourless blocky crystals were harvested. For the preparation of (II), C5H11NH2 (0.123 g, 1.41 mmol) was combined with SnCl2 (0.119 g, 0.570 mmol) and dissolved in aqueous HCl (33%, 5 ml). The resulting solution was left open to the atmosphere, and colourless plate-like crystals were grown by slow evaporation. For the preparation of (III), C6H13NH2 (0.155 g, 1.53 mmol) was combined with SnCl2 (0.119 g, 0.533 mmol) and dissolved in aqueous HCl (33%, 5 ml). The resulting solution was left open to the atmosphere, and colourless plate-like crystals were grown by slow evaporation.

Refinement top

##AUTHOR: Please check the following modification:

H atoms were placed geomertically and refined using a riding model, with C—H distances in the range 0.96–0.98 Å, N—H distances of either 0.90 Å [(I) and (II)] or 0.89 Å [(III)], and Uiso(H) values of 1.5Ueq(C,N) or 1.2Ueq(C). The highest residual peak was 0.83 Å from atom Sn1 in (I), 0.25 Å from C8 in (II) and 2.19 Å from Cl3 in (III). The ammonium end groups on each of the two cations have their three H atoms [labelled H1A, H1B, H1C (cat1) and H2A, H2B, H2C (cat2)] disordered over two sets of positions, each with a site occupancy factor of 50%, related by the mirror plane on which the two cations are situated. Only the positions of the H atoms as they occur in the asymmetric unit are shown in the figures. The disorder is a result of the long, and by inference weak, N—H···Cl hydrogen bonds, which limits their directionality.

Computing details top

For all compounds, data collection: APEX2 (Bruker, 2005); cell refinement: SAINT-Plus (Bruker, 2004). Data reduction: SAINT-Plus and XPREP (Bruker, 2004) for (I); SAINT-Plus and XPREP (Bruker 2004) for (II), (III). For all compounds, program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and DIAMOND (Brandenburg, 1999); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. The asymmetric units of (a) (I), (b) (II) and (c) (III), showing the atomic numbering scheme. Displacement ellipsoids are shown at the 50% probability level and H atoms are shown as small spheres of arbitrary radii. [Symmetry code: (i) x, 1/2 - y, z.]
[Figure 2] Fig. 2. The packing of (I), viewed along the b axis.
[Figure 3] Fig. 3. A magnified view of the hydrogen bonding of the two butylammonium cations in (I). Each cation has two bifurcated and one simple H···Cl bond. The same geometry is seen in (II).
[Figure 4] Fig. 4. A magnified view of the hydrogen bonding of the two hexylammonium cations in (III). Cat1 has one bifurcated and two simple H···Cl bonds. Cat 2 has two bifurcated and one simple H···Cl bond as in (I) and (II).
(I) butylammonium hexachloridotin(IV) top
Crystal data top
(C4H12N)2[SnCl6]F(000) = 952
Mr = 479.68Dx = 1.675 Mg m3
Orthorhombic, PnmaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2nCell parameters from 6210 reflections
a = 12.1624 (4) Åθ = 2.5–28.3°
b = 7.2782 (2) ŵ = 2.17 mm1
c = 21.4837 (7) ÅT = 243 K
V = 1901.75 (10) Å3Blocky, colourless
Z = 40.26 × 0.24 × 0.1 mm
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
2088 reflections with I > 2σ(I)
ω scansRint = 0.062
Absorption correction: integration
(XPREP; Bruker, 2004)
θmax = 28°, θmin = 1.9°
Tmin = 0.535, Tmax = 0.822h = 1516
14713 measured reflectionsk = 99
2470 independent reflectionsl = 2827
Refinement top
Refinement on F2H-atom parameters constrained
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.0367P)2 + 3.3848P]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.038(Δ/σ)max < 0.001
wR(F2) = 0.103Δρmax = 0.54 e Å3
S = 1.13Δρmin = 0.53 e Å3
2470 reflectionsExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
98 parametersExtinction coefficient: 0.0113 (7)
72 restraints
Crystal data top
(C4H12N)2[SnCl6]V = 1901.75 (10) Å3
Mr = 479.68Z = 4
Orthorhombic, PnmaMo Kα radiation
a = 12.1624 (4) ŵ = 2.17 mm1
b = 7.2782 (2) ÅT = 243 K
c = 21.4837 (7) Å0.26 × 0.24 × 0.1 mm
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
2470 independent reflections
Absorption correction: integration
(XPREP; Bruker, 2004)
2088 reflections with I > 2σ(I)
Tmin = 0.535, Tmax = 0.822Rint = 0.062
14713 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.03872 restraints
wR(F2) = 0.103H-atom parameters constrained
S = 1.13Δρmax = 0.54 e Å3
2470 reflectionsΔρmin = 0.53 e Å3
98 parameters
Special details top

Experimental. Numerical integration absorption corrections based on indexed crystal faces were applied using the XPREP routine (Bruker, 2004)

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.6054 (8)0.750.6418 (4)0.100 (3)
H1D0.64930.85880.65210.12*0.5
H1E0.64930.64120.65210.12*0.5
C20.5051 (8)0.750.6803 (4)0.136 (4)
H2D0.46150.64150.66930.163*0.5
H2E0.46150.85850.66930.163*0.5
C30.5220 (10)0.750.7491 (4)0.143 (4)
H3A0.56360.85920.76160.172*0.5
H3B0.56360.64080.76160.172*0.5
C40.4111 (12)0.750.7798 (6)0.200 (7)
H4A0.41990.72960.82410.301*0.5
H4B0.36630.65280.76220.301*0.5
H4C0.37560.86760.77290.301*0.5
N10.5833 (4)0.750.5769 (3)0.0607 (14)
H1A0.51980.69030.56960.091*0.5
H1B0.63840.69310.55660.091*0.5
H1C0.57770.86660.56330.091*0.5
C50.9087 (8)0.750.3745 (4)0.120 (4)
H5A0.95150.6420.3620.144*0.5
H5B0.95150.8580.3620.144*0.5
C60.8103 (9)0.750.3375 (4)0.153 (4)
H6A0.76710.85830.34910.183*0.5
H6B0.76710.64170.34910.183*0.5
C70.8219 (9)0.750.2682 (4)0.146 (5)
H7A0.86220.64070.25440.175*0.5
H7B0.86220.85930.25440.175*0.5
C80.7073 (11)0.750.2410 (6)0.200 (7)
H8A0.67360.86920.24760.301*0.5
H8B0.66350.6560.26120.301*0.5
H8C0.71120.72480.19670.301*0.5
N20.9055 (4)0.750.4391 (3)0.0612 (14)
H2A0.90040.86640.4530.092*0.5
H2B0.96720.69810.45410.092*0.5
H2C0.84670.68550.45210.092*0.5
Sn10.74611 (2)0.250.51434 (2)0.03951 (16)
Cl10.89672 (12)0.250.44048 (8)0.0585 (4)
Cl20.59657 (12)0.250.58776 (8)0.0582 (4)
Cl30.83950 (8)0.48901 (14)0.57185 (6)0.0553 (3)
Cl40.65350 (8)0.48666 (14)0.45444 (5)0.0530 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.111 (6)0.123 (8)0.065 (4)00.002 (4)0
C20.132 (7)0.203 (10)0.072 (4)00.016 (5)0
C30.179 (10)0.182 (11)0.070 (4)00.019 (6)0
C40.237 (14)0.233 (17)0.132 (10)00.094 (11)0
N10.051 (3)0.069 (4)0.062 (3)00.007 (2)0
C50.108 (7)0.192 (11)0.060 (4)00.006 (4)0
C60.145 (8)0.241 (12)0.072 (5)00.024 (5)0
C70.159 (9)0.211 (12)0.069 (5)00.028 (6)0
C80.183 (12)0.287 (19)0.131 (11)00.072 (10)0
N20.054 (3)0.073 (4)0.057 (3)00.000 (2)0
Sn10.0286 (2)0.0297 (2)0.0602 (3)00.00119 (15)0
Cl10.0409 (7)0.0607 (9)0.0739 (11)00.0154 (7)0
Cl20.0392 (7)0.0604 (9)0.0750 (11)00.0127 (7)0
Cl30.0486 (5)0.0420 (5)0.0754 (7)0.0096 (4)0.0093 (5)0.0098 (5)
Cl40.0507 (5)0.0384 (5)0.0698 (7)0.0080 (4)0.0084 (5)0.0071 (5)
Geometric parameters (Å, º) top
C1—N11.422 (10)C5—H5A0.98
C1—C21.474 (8)C5—H5B0.98
C1—H1D0.98C6—C71.496 (8)
C1—H1E0.98C6—H6A0.98
C2—C31.492 (8)C6—H6B0.98
C2—H2D0.98C7—C81.511 (9)
C2—H2E0.98C7—H7A0.98
C3—C41.501 (9)C7—H7B0.98
C3—H3A0.98C8—H8A0.97
C3—H3B0.98C8—H8B0.97
C4—H4A0.97C8—H8C0.97
C4—H4B0.97N2—H2A0.9
C4—H4C0.97N2—H2B0.9
N1—H1A0.9N2—H2C0.9
N1—H1B0.9Sn1—Cl12.4235 (15)
N1—H1C0.9Sn1—Cl22.4075 (15)
C5—N21.388 (10)Sn1—Cl32.4172 (10)
C5—C61.438 (9)Sn1—Cl42.4273 (10)
N1—C1—C2113.2 (8)H5A—C5—H5B106.7
N1—C1—H1D108.9C5—C6—C7118.2 (9)
C2—C1—H1D108.9C5—C6—H6A107.7
N1—C1—H1E108.9C7—C6—H6A107.7
C2—C1—H1E108.9C5—C6—H6B107.7
H1D—C1—H1E107.8C7—C6—H6B107.7
C1—C2—C3116.1 (9)H6A—C6—H6B107.1
C1—C2—H2D108.2C6—C7—C8107.3 (9)
C3—C2—H2D108.2C6—C7—H7A110.2
C1—C2—H2E108.2C8—C7—H7A110.2
C3—C2—H2E108.2C6—C7—H7B110.2
H2D—C2—H2E107.4C8—C7—H7B110.2
C2—C3—C4108.1 (9)H7A—C7—H7B108.5
C2—C3—H3A110.1C7—C8—H8A109.5
C4—C3—H3A110.1C7—C8—H8B109.5
C2—C3—H3B110.1H8A—C8—H8B109.5
C4—C3—H3B110.1C7—C8—H8C109.5
H3A—C3—H3B108.4H8A—C8—H8C109.5
C3—C4—H4A109.5H8B—C8—H8C109.5
C3—C4—H4B109.5C5—N2—H2A109.5
H4A—C4—H4B109.5C5—N2—H2B109.5
C3—C4—H4C109.5H2A—N2—H2B109.5
H4A—C4—H4C109.5C5—N2—H2C109.5
H4B—C4—H4C109.5H2A—N2—H2C109.5
C1—N1—H1A109.5H2B—N2—H2C109.5
C1—N1—H1B109.5Cl1—Sn1—Cl2179.97 (6)
H1A—N1—H1B109.5Cl1—Sn1—Cl388.83 (4)
C1—N1—H1C109.5Cl1—Sn1—Cl490.21 (4)
H1A—N1—H1C109.5Cl2—Sn1—Cl391.15 (4)
H1B—N1—H1C109.5Cl2—Sn1—Cl489.82 (4)
N2—C5—C6122.0 (9)Cl3—Sn1—Cl3i92.05 (5)
N2—C5—H5A106.8Cl3—Sn1—Cl488.76 (4)
C6—C5—H5A106.8Cl3i—Sn1—Cl4178.72 (4)
N2—C5—H5B106.8Cl4i—Sn1—Cl490.41 (5)
C6—C5—H5B106.8
N1—C1—C2—C3180N2—C5—C6—C7180
C1—C2—C3—C4180C5—C6—C7—C8180
Symmetry code: (i) x, y+1/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···Cl4ii0.92.523.423 (5)177
N1—H1B···Cl40.92.673.365 (5)135
N1—H1B···Cl30.92.883.651 (5)145
N1—H1C···Cl4iii0.92.733.365 (5)128
N1—H1C···Cl2iv0.92.853.6502 (5)149
N2—H2A···Cl1iv0.92.813.6408 (2)155
N2—H2A···Cl3iii0.92.863.519 (5)131
N2—H2B···Cl3v0.92.773.564 (5)147
N2—H2B···Cl1v0.92.833.533 (6)136
N2—H2C···Cl40.92.763.630 (5)163
Symmetry codes: (ii) x+1, y+1, z+1; (iii) x, y+3/2, z; (iv) x, y+1, z; (v) x+2, y+1, z+1.
(II) pentylammonium hexachloridotin(IV) top
Crystal data top
(C5H14N)2[SnCl6]F(000) = 1016
Mr = 507.73Dx = 1.558 Mg m3
Orthorhombic, PnmaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2nCell parameters from 4930 reflections
a = 12.2351 (5) Åθ = 2.4–27.8°
b = 7.2021 (3) ŵ = 1.91 mm1
c = 24.5723 (9) ÅT = 243 K
V = 2165.27 (15) Å3Plate, colourless
Z = 40.32 × 0.3 × 0.06 mm
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
2038 reflections with I > 2σ(I)
ω scansRint = 0.043
Absorption correction: integration
(XPREP; Bruker, 2004)
θmax = 28°, θmin = 1.7°
Tmin = 0.571, Tmax = 0.893h = 1516
16581 measured reflectionsk = 99
2820 independent reflectionsl = 3227
Refinement top
Refinement on F292 restraints
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.043 w = 1/[σ2(Fo2) + (0.0464P)2 + 4.3427P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.118(Δ/σ)max = 0.001
S = 1.07Δρmax = 0.82 e Å3
2820 reflectionsΔρmin = 0.59 e Å3
109 parameters
Crystal data top
(C5H14N)2[SnCl6]V = 2165.27 (15) Å3
Mr = 507.73Z = 4
Orthorhombic, PnmaMo Kα radiation
a = 12.2351 (5) ŵ = 1.91 mm1
b = 7.2021 (3) ÅT = 243 K
c = 24.5723 (9) Å0.32 × 0.3 × 0.06 mm
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
2820 independent reflections
Absorption correction: integration
(XPREP; Bruker, 2004)
2038 reflections with I > 2σ(I)
Tmin = 0.571, Tmax = 0.893Rint = 0.043
16581 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.04392 restraints
wR(F2) = 0.118H-atom parameters constrained
S = 1.07Δρmax = 0.82 e Å3
2820 reflectionsΔρmin = 0.59 e Å3
109 parameters
Special details top

Experimental. Numerical integration absorption corrections based on indexed crystal faces were applied using the XPREP routine (Bruker, 2004)

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.6009 (7)0.750.6209 (3)0.094 (3)
H1D0.64510.85970.62930.113*0.5
H1E0.64510.64030.62930.113*0.5
C20.5046 (8)0.750.6566 (3)0.115 (3)
H2D0.46030.64020.64850.138*0.5
H2E0.46030.85980.64850.138*0.5
C30.5321 (9)0.750.7170 (3)0.123 (4)
H3A0.57560.63980.72590.148*0.5
H3B0.57560.86020.72590.148*0.5
C40.4288 (10)0.750.7503 (4)0.167 (5)
H4A0.38540.63990.74120.201*0.5
H4B0.38540.86010.74120.201*0.5
C50.4529 (12)0.750.8105 (4)0.169 (6)
H5A0.38480.750.83060.254*
H5B0.49470.860.81970.254*0.5
H5C0.49470.640.81970.254*0.5
N10.5782 (5)0.750.5640 (2)0.0605 (15)
H1A0.51490.690.55780.091*0.5
H1B0.63270.69220.54620.091*0.5
H1C0.57270.86780.55210.091*0.5
C60.9190 (7)0.750.3901 (3)0.103 (3)
H6A0.96290.64060.38090.124*0.5
H6B0.96290.85940.38090.124*0.5
C70.8240 (8)0.750.3549 (3)0.117 (3)
H7A0.780.85950.36380.141*0.5
H7B0.780.64050.36380.141*0.5
C80.8432 (9)0.750.2943 (3)0.126 (4)
H8A0.88570.86010.28420.152*0.5
H8B0.88570.63990.28420.152*0.5
C90.7371 (9)0.750.2636 (4)0.165 (5)
H9A0.69490.64010.27410.199*0.5
H9B0.69490.85990.27410.199*0.5
C100.7517 (11)0.750.2030 (4)0.184 (7)
H10A0.68060.750.18560.275*
H10B0.79190.640.19220.275*0.5
H10C0.79190.860.19220.275*0.5
N20.9041 (5)0.750.4467 (2)0.0595 (15)
H2A0.89840.86770.45870.089*0.5
H2B0.96170.69490.46280.089*0.5
H2C0.84270.68740.4550.089*0.5
Sn10.74770 (3)0.250.51138 (2)0.04132 (16)
Cl10.90468 (12)0.250.45078 (7)0.0542 (4)
Cl20.58916 (13)0.250.56964 (9)0.0629 (5)
Cl30.83338 (9)0.49109 (15)0.56432 (5)0.0541 (3)
Cl40.66184 (9)0.48860 (15)0.45598 (5)0.0558 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.085 (6)0.129 (8)0.068 (4)00.000 (4)0
C20.102 (6)0.169 (9)0.073 (4)00.012 (4)0
C30.143 (8)0.157 (9)0.070 (4)00.018 (5)0
C40.184 (10)0.227 (12)0.091 (5)00.046 (6)0
C50.225 (15)0.199 (14)0.083 (5)00.053 (7)0
N10.055 (3)0.063 (4)0.063 (3)00.009 (3)0
C60.090 (6)0.160 (9)0.059 (4)00.004 (4)0
C70.101 (6)0.182 (9)0.069 (4)00.016 (4)0
C80.137 (8)0.175 (9)0.068 (4)00.019 (5)0
C90.165 (9)0.243 (12)0.088 (5)00.042 (6)0
C100.205 (15)0.259 (18)0.086 (6)00.053 (7)0
N20.054 (3)0.068 (4)0.056 (3)00.003 (3)0
Sn10.0282 (2)0.0266 (2)0.0692 (3)00.00223 (18)0
Cl10.0380 (7)0.0541 (9)0.0705 (11)00.0092 (7)0
Cl20.0344 (8)0.0592 (10)0.0951 (14)00.0131 (8)0
Cl30.0474 (6)0.0374 (5)0.0776 (8)0.0072 (5)0.0068 (5)0.0094 (5)
Cl40.0498 (6)0.0345 (5)0.0830 (9)0.0072 (5)0.0128 (6)0.0075 (5)
Geometric parameters (Å, º) top
C1—N11.425 (9)C6—H6A0.98
C1—C21.469 (8)C6—H6B0.98
C1—H1D0.98C7—C81.508 (8)
C1—H1E0.98C7—H7A0.98
C2—C31.522 (8)C7—H7B0.98
C2—H2D0.98C8—C91.501 (9)
C2—H2E0.98C8—H8A0.98
C3—C41.505 (9)C8—H8B0.98
C3—H3A0.98C9—C101.499 (9)
C3—H3B0.98C9—H9A0.98
C4—C51.508 (9)C9—H9B0.98
C4—H4A0.98C10—H10A0.97
C4—H4B0.98C10—H10B0.97
C5—H5A0.97C10—H10C0.97
C5—H5B0.97N2—H2A0.9
C5—H5C0.97N2—H2B0.9
N1—H1A0.9N2—H2C0.9
N1—H1B0.9Sn1—Cl12.4303 (16)
N1—H1C0.9Sn1—Cl22.4109 (17)
C6—N21.403 (9)Sn1—Cl32.4096 (11)
C6—C71.450 (8)Sn1—Cl42.4311 (11)
N1—C1—C2115.5 (8)H6A—C6—H6B107
N1—C1—H1D108.4C6—C7—C8117.7 (8)
C2—C1—H1D108.4C6—C7—H7A107.9
N1—C1—H1E108.4C8—C7—H7A107.9
C2—C1—H1E108.4C6—C7—H7B107.9
H1D—C1—H1E107.5C8—C7—H7B107.9
C1—C2—C3114.0 (8)H7A—C7—H7B107.2
C1—C2—H2D108.8C9—C8—C7111.1 (8)
C3—C2—H2D108.8C9—C8—H8A109.4
C1—C2—H2E108.8C7—C8—H8A109.4
C3—C2—H2E108.8C9—C8—H8B109.4
H2D—C2—H2E107.7C7—C8—H8B109.4
C4—C3—C2110.1 (8)H8A—C8—H8B108
C4—C3—H3A109.6C10—C9—C8113.3 (9)
C2—C3—H3A109.6C10—C9—H9A108.9
C4—C3—H3B109.6C8—C9—H9A108.9
C2—C3—H3B109.6C10—C9—H9B108.9
H3A—C3—H3B108.1C8—C9—H9B108.9
C3—C4—C5111.6 (9)H9A—C9—H9B107.7
C3—C4—H4A109.3C9—C10—H10A109.5
C5—C4—H4A109.3C9—C10—H10B109.5
C3—C4—H4B109.3H10A—C10—H10B109.5
C5—C4—H4B109.3C9—C10—H10C109.5
H4A—C4—H4B108H10A—C10—H10C109.5
C4—C5—H5A109.5H10B—C10—H10C109.5
C4—C5—H5B109.5C6—N2—H2A109.5
H5A—C5—H5B109.5C6—N2—H2B109.5
C4—C5—H5C109.5H2A—N2—H2B109.5
H5A—C5—H5C109.5C6—N2—H2C109.5
H5B—C5—H5C109.5H2A—N2—H2C109.5
C1—N1—H1A109.5H2B—N2—H2C109.5
C1—N1—H1B109.5Cl1—Sn1—Cl2178.64 (7)
H1A—N1—H1B109.5Cl1—Sn1—Cl389.26 (4)
C1—N1—H1C109.5Cl1—Sn1—Cl489.91 (4)
H1A—N1—H1C109.5Cl2—Sn1—Cl391.69 (5)
H1B—N1—H1C109.5Cl2—Sn1—Cl489.13 (5)
N2—C6—C7119.2 (8)Cl3—Sn1—Cl3i92.21 (6)
N2—C6—H6A107.5Cl3—Sn1—Cl4i178.59 (5)
C7—C6—H6A107.5Cl3—Sn1—Cl488.91 (4)
N2—C6—H6B107.5Cl4i—Sn1—Cl489.96 (6)
C7—C6—H6B107.5
N1—C1—C2—C3180N2—C6—C7—C8180
C1—C2—C3—C4180C6—C7—C8—C9180
C2—C3—C4—C5180C7—C8—C9—C10180
Symmetry code: (i) x, y+1/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···Cl4ii0.902.543.438 (5)177
N1—H1B···Cl40.902.683.411 (5)139
N1—H1B···Cl30.902.893.636 (5)142
N1—H1C···Cl4iii0.902.803.411 (5)126
N1—H1C···Cl2iv0.902.793.6062 (4)151
N2—H2A···Cl1iv0.902.763.6024 (2)156
N2—H2A···Cl3iii0.902.903.546 (5)130
N2—H2B···Cl3v0.902.923.661 (5)141
N2—H2B···Cl1v0.902.713.437 (6)139
N2—H2C···Cl40.902.643.519 (5)167
Symmetry codes: (ii) x+1, y+1, z+1; (iii) x, y+3/2, z; (iv) x, y+1, z; (v) x+2, y+1, z+1.
(III) hexylammonium hexachloridotin(IV) top
Crystal data top
(C6H16N)2[SnCl6]F(000) = 1080
Mr = 535.79Dx = 1.478 Mg m3
Orthorhombic, PnmaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2nCell parameters from 4671 reflections
a = 12.3622 (3) Åθ = 2.3–26.5°
b = 7.3179 (2) ŵ = 1.72 mm1
c = 26.6245 (6) ÅT = 293 K
V = 2408.59 (10) Å3Plate, colourless
Z = 40.36 × 0.28 × 0.09 mm
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
2094 reflections with I > 2σ(I)
ω scansRint = 0.055
Absorption correction: integration
XPREP (Bruker, 2004)
θmax = 28°, θmin = 1.5°
Tmin = 0.603, Tmax = 0.856h = 1616
18912 measured reflectionsk = 99
3129 independent reflectionsl = 3534
Refinement top
Refinement on F2112 restraints
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.075 w = 1/[σ2(Fo2) + (0.0677P)2 + 14.1291P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.217(Δ/σ)max < 0.001
S = 1.11Δρmax = 0.68 e Å3
3129 reflectionsΔρmin = 0.91 e Å3
121 parameters
Crystal data top
(C6H16N)2[SnCl6]V = 2408.59 (10) Å3
Mr = 535.79Z = 4
Orthorhombic, PnmaMo Kα radiation
a = 12.3622 (3) ŵ = 1.72 mm1
b = 7.3179 (2) ÅT = 293 K
c = 26.6245 (6) Å0.36 × 0.28 × 0.09 mm
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
3129 independent reflections
Absorption correction: integration
XPREP (Bruker, 2004)
2094 reflections with I > 2σ(I)
Tmin = 0.603, Tmax = 0.856Rint = 0.055
18912 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.075112 restraints
wR(F2) = 0.217H-atom parameters constrained
S = 1.11 w = 1/[σ2(Fo2) + (0.0677P)2 + 14.1291P]
where P = (Fo2 + 2Fc2)/3
3129 reflectionsΔρmax = 0.68 e Å3
121 parametersΔρmin = 0.91 e Å3
Special details top

Experimental. Numerical integration absorption corrections based on indexed crystal faces were applied using the XPREP routine (Bruker, 2004)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.6071 (15)0.750.6082 (6)0.141 (6)
H1D0.65110.85720.61480.17*0.5
H1E0.65110.64280.61480.17*0.5
C20.5101 (14)0.750.6434 (5)0.160 (6)
H2D0.46610.85740.63720.192*0.5
H2E0.46610.64260.63720.192*0.5
C30.5486 (15)0.750.6974 (5)0.177 (7)
H3A0.5930.85720.70320.212*0.5
H3B0.5930.64280.70320.212*0.5
C40.4548 (15)0.750.7342 (5)0.200 (8)
H4A0.41030.64250.72910.24*0.5
H4B0.41030.85750.72910.24*0.5
C50.5020 (17)0.750.7877 (6)0.211 (9)
H5A0.54670.64250.79270.253*0.5
H5B0.54670.85750.79270.253*0.5
C60.409 (2)0.750.8251 (7)0.242 (13)
H6A0.43760.750.85870.363*
H6B0.36570.64290.82010.363*0.5
H6C0.36570.85710.82010.363*0.5
N10.5761 (10)0.750.5584 (5)0.100 (4)
H1A0.5140.68960.55510.15*0.5
H1B0.62690.69580.540.15*0.5
H1C0.56730.86460.5480.15*0.5
C70.9203 (16)0.750.4006 (6)0.154 (7)
H7A0.96310.64340.3920.185*0.5
H7B0.96310.85660.3920.185*0.5
C80.8216 (15)0.750.3675 (5)0.180 (7)
H8A0.77820.85730.37470.215*0.5
H8B0.77820.64270.37470.215*0.5
C90.8527 (15)0.750.3125 (5)0.196 (7)
H9A0.89580.64260.30510.236*0.5
H9B0.89580.85740.30510.236*0.5
C100.7508 (16)0.750.2799 (6)0.229 (9)
H10A0.70740.85770.28660.275*0.5
H10B0.70740.64230.28660.275*0.5
C110.7904 (18)0.750.2251 (6)0.249 (10)
H11A0.83430.85750.21880.298*0.5
H11B0.83430.64250.21880.298*0.5
C120.693 (2)0.750.1906 (8)0.298 (16)
H12A0.71720.750.15630.447*
H12B0.65050.85710.19680.447*0.5
H12C0.65050.64290.19680.447*0.5
N20.9061 (11)0.750.4514 (4)0.102 (4)
H2A0.90070.86460.46230.153*0.5
H2B0.96240.6960.4660.153*0.5
H2C0.84590.68940.4590.153*0.5
Sn10.74764 (5)0.250.50943 (3)0.0619 (3)
Cl10.9014 (2)0.250.45304 (14)0.0776 (9)
Cl20.5931 (2)0.250.56400 (16)0.0862 (10)
Cl30.83397 (17)0.4872 (3)0.55771 (10)0.0795 (7)
Cl40.66125 (17)0.4853 (3)0.45906 (10)0.0792 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.128 (12)0.183 (15)0.113 (7)00.008 (7)0
C20.156 (13)0.208 (15)0.115 (7)00.011 (8)0
C30.188 (15)0.225 (16)0.117 (7)00.006 (8)0
C40.228 (17)0.243 (17)0.130 (8)00.036 (10)0
C50.26 (2)0.248 (19)0.128 (8)00.035 (12)0
C60.32 (3)0.26 (3)0.148 (12)00.079 (18)0
N10.083 (8)0.107 (9)0.110 (6)00.002 (6)0
C70.152 (14)0.211 (17)0.098 (6)00.013 (8)0
C80.181 (15)0.239 (17)0.119 (8)00.015 (8)0
C90.207 (16)0.265 (18)0.118 (7)00.020 (9)0
C100.239 (18)0.30 (2)0.145 (9)00.053 (11)0
C110.28 (2)0.33 (2)0.138 (9)00.057 (13)0
C120.35 (3)0.37 (4)0.175 (15)00.11 (2)0
N20.102 (9)0.107 (9)0.097 (6)00.021 (6)0
Sn10.0432 (4)0.0403 (4)0.1023 (7)00.0021 (4)0
Cl10.0518 (15)0.0732 (19)0.108 (3)00.0138 (16)0
Cl20.0516 (16)0.075 (2)0.132 (3)00.0207 (18)0
Cl30.0683 (12)0.0540 (11)0.1163 (18)0.0125 (10)0.0106 (12)0.0146 (12)
Cl40.0667 (12)0.0510 (11)0.1201 (19)0.0095 (9)0.0147 (12)0.0128 (11)
Geometric parameters (Å, º) top
C1—N11.380 (18)C7—H7A0.97
C1—C21.52 (2)C7—H7B0.97
C1—H1D0.97C8—C91.51 (2)
C1—H1E0.97C8—H8A0.97
C2—C31.51 (2)C8—H8B0.97
C2—H2D0.97C9—C101.53 (2)
C2—H2E0.97C9—H9A0.97
C3—C41.52 (2)C9—H9B0.97
C3—H3A0.97C10—C111.539 (10)
C3—H3B0.97C10—H10A0.97
C4—C51.54 (2)C10—H10B0.97
C4—H4A0.97C11—C121.51 (2)
C4—H4B0.97C11—H11A0.97
C5—C61.52 (2)C11—H11B0.97
C5—H5A0.97C12—H12A0.96
C5—H5B0.97C12—H12B0.96
C6—H6A0.96C12—H12C0.96
C6—H6B0.96N2—H2A0.89
C6—H6C0.96N2—H2B0.89
N1—H1A0.89N2—H2C0.89
N1—H1B0.89Sn1—Cl12.423 (3)
N1—H1C0.89Sn1—Cl22.400 (3)
C7—N21.365 (17)Sn1—Cl32.409 (2)
C7—C81.50 (2)Sn1—Cl42.430 (2)
N1—C1—C2111.9 (14)H7A—C7—H7B107.1
N1—C1—H1D109.2C7—C8—C9111.1 (12)
C2—C1—H1D109.2C7—C8—H8A109.4
N1—C1—H1E109.2C9—C8—H8A109.4
C2—C1—H1E109.2C7—C8—H8B109.4
H1D—C1—H1E107.9C9—C8—H8B109.4
C3—C2—C1109.7 (11)H8A—C8—H8B108
C3—C2—H2D109.7C8—C9—C10109.9 (11)
C1—C2—H2D109.7C8—C9—H9A109.7
C3—C2—H2E109.7C10—C9—H9A109.7
C1—C2—H2E109.7C8—C9—H9B109.7
H2D—C2—H2E108.2C10—C9—H9B109.7
C2—C3—C4112.0 (11)H9A—C9—H9B108.2
C2—C3—H3A109.2C9—C10—C11106.1 (11)
C4—C3—H3A109.2C9—C10—H10A110.5
C2—C3—H3B109.2C11—C10—H10A110.5
C4—C3—H3B109.2C9—C10—H10B110.5
H3A—C3—H3B107.9C11—C10—H10B110.5
C3—C4—C5108.0 (11)H10A—C10—H10B108.7
C3—C4—H4A110.1C12—C11—C10108.8 (13)
C5—C4—H4A110.1C12—C11—H11A109.9
C3—C4—H4B110.1C10—C11—H11A109.9
C5—C4—H4B110.1C12—C11—H11B109.9
H4A—C4—H4B108.4C10—C11—H11B109.9
C6—C5—C4108.7 (12)H11A—C11—H11B108.3
C6—C5—H5A110C11—C12—H12A109.5
C4—C5—H5A110C11—C12—H12B109.5
C6—C5—H5B110H12A—C12—H12B109.5
C4—C5—H5B110C11—C12—H12C109.5
H5A—C5—H5B108.3H12A—C12—H12C109.5
C5—C6—H6A109.5H12B—C12—H12C109.5
C5—C6—H6B109.5C7—N2—H2A109.5
H6A—C6—H6B109.5C7—N2—H2B109.5
C5—C6—H6C109.5H2A—N2—H2B109.5
H6A—C6—H6C109.5C7—N2—H2C109.5
H6B—C6—H6C109.5H2A—N2—H2C109.5
C1—N1—H1A109.5H2B—N2—H2C109.5
C1—N1—H1B109.5Cl1—Sn1—Cl2178.95 (13)
H1A—N1—H1B109.5Cl1—Sn1—Cl389.03 (9)
C1—N1—H1C109.5Cl1—Sn1—Cl490.16 (9)
H1A—N1—H1C109.5Cl2—Sn1—Cl391.70 (9)
H1B—N1—H1C109.5Cl2—Sn1—Cl489.10 (9)
N2—C7—C8118.4 (15)Cl3—Sn1—Cl3i92.18 (12)
N2—C7—H7A107.7Cl3—Sn1—Cl488.78 (8)
C8—C7—H7A107.7Cl3i—Sn1—Cl4178.73 (9)
N2—C7—H7B107.7Cl4i—Sn1—Cl490.25 (11)
C8—C7—H7B107.7
N1—C1—C2—C3180N2—C7—C8—C9180
C1—C2—C3—C4180C7—C8—C9—C10180
C2—C3—C4—C5180C8—C9—C10—C11180
C3—C4—C5—C6180C9—C10—C11—C12180
Symmetry code: (i) x, y+1/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···Cl4ii0.892.543.434 (10)177
N1—H1B···Cl40.892.683.443 (10)144
N1—H1C···Cl4iii0.892.863.443 (10)125
N1—H1C···Cl2iv0.892.873.6680 (9)150
N2—H2A···Cl1iv0.892.833.6597 (3)156
N2—H2A···Cl3iii0.892.883.537 (10)132
N2—H2B···Cl3v0.892.923.660 (12)142
N2—H2B···Cl1v0.892.763.484 (13)139
N2—H2C···Cl40.892.733.599 (11)167
Symmetry codes: (ii) x+1, y+1, z+1; (iii) x, y+3/2, z; (iv) x, y+1, z; (v) x+2, y+1, z+1.

Experimental details

(I)(II)(III)
Crystal data
Chemical formula(C4H12N)2[SnCl6](C5H14N)2[SnCl6](C6H16N)2[SnCl6]
Mr479.68507.73535.79
Crystal system, space groupOrthorhombic, PnmaOrthorhombic, PnmaOrthorhombic, Pnma
Temperature (K)243243293
a, b, c (Å)12.1624 (4), 7.2782 (2), 21.4837 (7)12.2351 (5), 7.2021 (3), 24.5723 (9)12.3622 (3), 7.3179 (2), 26.6245 (6)
V3)1901.75 (10)2165.27 (15)2408.59 (10)
Z444
Radiation typeMo KαMo KαMo Kα
µ (mm1)2.171.911.72
Crystal size (mm)0.26 × 0.24 × 0.10.32 × 0.3 × 0.060.36 × 0.28 × 0.09
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Bruker SMART APEXII CCD area-detector
diffractometer
Bruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionIntegration
(XPREP; Bruker, 2004)
Integration
(XPREP; Bruker, 2004)
Integration
XPREP (Bruker, 2004)
Tmin, Tmax0.535, 0.8220.571, 0.8930.603, 0.856
No. of measured, independent and
observed [I > 2σ(I)] reflections
14713, 2470, 2088 16581, 2820, 2038 18912, 3129, 2094
Rint0.0620.0430.055
(sin θ/λ)max1)0.6610.6610.661
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.103, 1.13 0.043, 0.118, 1.07 0.075, 0.217, 1.11
No. of reflections247028203129
No. of parameters98109121
No. of restraints7292112
H-atom treatmentH-atom parameters constrainedH-atom parameters constrainedH-atom parameters constrained
w = 1/[σ2(Fo2) + (0.0367P)2 + 3.3848P]
where P = (Fo2 + 2Fc2)/3
w = 1/[σ2(Fo2) + (0.0464P)2 + 4.3427P]
where P = (Fo2 + 2Fc2)/3
w = 1/[σ2(Fo2) + (0.0677P)2 + 14.1291P]
where P = (Fo2 + 2Fc2)/3
Δρmax, Δρmin (e Å3)0.54, 0.530.82, 0.590.68, 0.91

Computer programs: APEX2 (Bruker, 2005), SAINT-Plus (Bruker, 2004), SAINT-Plus and XPREP (Bruker, 2004), SAINT-Plus and XPREP (Bruker 2004), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEP-3 for Windows (Farrugia, 1997) and DIAMOND (Brandenburg, 1999), WinGX (Farrugia, 1999) and PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) for (I) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···Cl4i0.92.523.423 (5)177
N1—H1B···Cl40.92.673.365 (5)135
N1—H1B···Cl30.92.883.651 (5)145
N1—H1C···Cl4ii0.92.733.365 (5)128
N1—H1C···Cl2iii0.92.853.6502 (5)149
N2—H2A···Cl1iii0.92.813.6408 (2)155
N2—H2A···Cl3ii0.92.863.519 (5)131
N2—H2B···Cl3iv0.92.773.564 (5)147
N2—H2B···Cl1iv0.92.833.533 (6)136
N2—H2C···Cl40.92.763.630 (5)163
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+3/2, z; (iii) x, y+1, z; (iv) x+2, y+1, z+1.
Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···Cl4i0.902.543.438 (5)177
N1—H1B···Cl40.902.683.411 (5)139
N1—H1B···Cl30.902.893.636 (5)142
N1—H1C···Cl4ii0.902.803.411 (5)126
N1—H1C···Cl2iii0.902.793.6062 (4)151
N2—H2A···Cl1iii0.902.763.6024 (2)156
N2—H2A···Cl3ii0.902.903.546 (5)130
N2—H2B···Cl3iv0.902.923.661 (5)141
N2—H2B···Cl1iv0.902.713.437 (6)139
N2—H2C···Cl40.902.643.519 (5)167
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+3/2, z; (iii) x, y+1, z; (iv) x+2, y+1, z+1.
Hydrogen-bond geometry (Å, º) for (III) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···Cl4i0.892.543.434 (10)177
N1—H1B···Cl40.892.683.443 (10)144
N1—H1C···Cl4ii0.892.863.443 (10)125
N1—H1C···Cl2iii0.892.873.6680 (9)150
N2—H2A···Cl1iii0.892.833.6597 (3)156
N2—H2A···Cl3ii0.892.883.537 (10)132
N2—H2B···Cl3iv0.892.923.660 (12)142
N2—H2B···Cl1iv0.892.763.484 (13)139
N2—H2C···Cl40.892.733.599 (11)167
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+3/2, z; (iii) x, y+1, z; (iv) x+2, y+1, z+1.
Comparative geometric parameters (Å ,° ) in (I), (II) and (III) top
ParameterIIIIII
Sn1—Cl12.4235 (15)2.4303 (11)2.423 (3)
Sn1—Cl22.4075 (15)2.4109 (17)2.400 (3)
Sn1—Cl32.4172 (10)2.4096 (11)2.409 (2)
Sn1—Cl42.4273 (10)2.4311 (11)2.430 (2)
Sn1—Cl3i2.4172 (10)2.4096 (11)2.409 (2)
Sn1—Cl4i2.4273 (10)2.4311 (11)2.430 (2)
Average Sn—-Cl2.4200 (11)2.4204 (11)2.417 (2)
Cl3—Sn1—Cl3i92.05 (5)92.21 (6)92.18 (12)
Tilt of SnCl649.08 (2)38.25 (2)39.11 (4)
Tilt of cations25.7 (1)21.8 (1)17.8 (2)
Interplanar Spacing10.7415 (7)12.2862 (9)13.3123 (6)
Packing Efficiency0.6740.6430.632
Symmetry code: (i) x, -y + 1/2, z.
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds