Buy article online - an online subscription or single-article purchase is required to access this article.
We show that the lack of good quality data, normally essential to successful crystal structure analysis, can in part be compensated for by measuring data from several crystals and merging the resulting data sets. The crystal structure of the flame retardant di-p-bromophenyl ether, C12H8Br2O, a twofold axially symmetric molecule, has been redetermined and refined from such a merged multi-crystal diffraction data set to an acceptable conventional R factor (R1 = 0.06), a result which could not have been obtained from any one of our single-crystal diffraction data sets used alone in the normal manner.
Supporting information
CCDC reference: 237219
Data collection: Expose (STOE, 1997); cell refinement: Cell (STOE, 1997); data reduction: Integrate (STOE, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997).
Bis(4-bromophenyl) ether
top
Crystal data top
C12H8Br2O | F(000) = 632 |
Mr = 328.00 | Dx = 1.858 Mg m−3 |
Orthorhombic, Ccc2 | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: C 2 -2c | Cell parameters from 19 reflections |
a = 26.645 (6) Å | θ = 3.1–16.4° |
b = 7.6902 (14) Å | µ = 6.88 mm−1 |
c = 5.7223 (8) Å | T = 293 K |
V = 1172.5 (4) Å3 | Plate, colourless |
Z = 4 | 0.25 × 0.20 × 0.10 mm |
Data collection top
STOE IPDS diffractometer | 1166 independent reflections |
Radiation source: fine-focus sealed tube | 495 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.397 |
Detector resolution: 6.0 pixels mm-1 | θmax = 26.4°, θmin = 2.8° |
area detector ϕ–scans | h = −32→32 |
Absorption correction: multi-scan X-RED (Stoe, 1997) | k = −9→9 |
Tmin = 0.15, Tmax = 0.45 | l = −7→7 |
18000 measured reflections | |
Refinement top
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.063 | H-atom parameters constrained |
wR(F2) = 0.148 | w = 1/[σ2(Fo2) + (0.020P)2] where P = (Fo2 + 2Fc2)/3 |
S = 1.01 | (Δ/σ)max < 0.001 |
1166 reflections | Δρmax = 0.34 e Å−3 |
70 parameters | Δρmin = −0.55 e Å−3 |
7 restraints | Absolute structure: (Flack, 1983) |
Primary atom site location: structure-invariant direct methods | Absolute structure parameter: 0.00 (5) |
Crystal data top
C12H8Br2O | V = 1172.5 (4) Å3 |
Mr = 328.00 | Z = 4 |
Orthorhombic, Ccc2 | Mo Kα radiation |
a = 26.645 (6) Å | µ = 6.88 mm−1 |
b = 7.6902 (14) Å | T = 293 K |
c = 5.7223 (8) Å | 0.25 × 0.20 × 0.10 mm |
Data collection top
STOE IPDS diffractometer | 1166 independent reflections |
Absorption correction: multi-scan X-RED (Stoe, 1997) | 495 reflections with I > 2σ(I) |
Tmin = 0.15, Tmax = 0.45 | Rint = 0.397 |
18000 measured reflections | |
Refinement top
R[F2 > 2σ(F2)] = 0.063 | H-atom parameters constrained |
wR(F2) = 0.148 | Δρmax = 0.34 e Å−3 |
S = 1.01 | Δρmin = −0.55 e Å−3 |
1166 reflections | Absolute structure: (Flack, 1983) |
70 parameters | Absolute structure parameter: 0.00 (5) |
7 restraints | |
Special details top
Experimental. Cell parameters derived from powder diffraction data calibrated with Si (SRM640a) as internal standard for the 2theta scale. |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top | x | y | z | Uiso*/Ueq | |
Br | 0.45342 (4) | 0.22972 (14) | 0.4895 (7) | 0.1052 (6) | |
C1 | 0.2949 (3) | 0.2494 (11) | 0.8273 (16) | 0.059 (3) | |
C2 | 0.3351 (4) | 0.3304 (13) | 0.940 (2) | 0.071 (3) | |
H2 | 0.3301 | 0.3884 | 1.0802 | 0.086* | |
C3 | 0.3826 (4) | 0.3237 (14) | 0.8397 (18) | 0.072 (3) | |
H3 | 0.4098 | 0.3760 | 0.9139 | 0.087* | |
C4 | 0.3892 (4) | 0.2389 (11) | 0.6295 (19) | 0.064 (3) | |
C5 | 0.3505 (4) | 0.1627 (13) | 0.514 (3) | 0.072 (3) | |
H5 | 0.3556 | 0.1079 | 0.3716 | 0.086* | |
C6 | 0.3025 (4) | 0.1682 (13) | 0.6152 (18) | 0.064 (3) | |
H6 | 0.2756 | 0.1166 | 0.5383 | 0.076* | |
O | 0.2500 | 0.2500 | 0.959 (4) | 0.081 (4) | |
Atomic displacement parameters (Å2) top | U11 | U22 | U33 | U12 | U13 | U23 |
Br | 0.0724 (7) | 0.1349 (11) | 0.1084 (11) | 0.0050 (6) | 0.0015 (14) | 0.0093 (19) |
C1 | 0.073 (6) | 0.070 (8) | 0.035 (5) | 0.001 (5) | 0.009 (5) | 0.001 (6) |
C2 | 0.094 (7) | 0.062 (6) | 0.058 (9) | −0.002 (5) | −0.015 (7) | −0.004 (6) |
C3 | 0.090 (8) | 0.070 (7) | 0.058 (8) | −0.004 (6) | −0.019 (6) | 0.007 (6) |
C4 | 0.071 (7) | 0.042 (6) | 0.080 (8) | 0.010 (5) | −0.002 (5) | 0.003 (6) |
C5 | 0.079 (6) | 0.081 (6) | 0.056 (8) | 0.003 (5) | −0.003 (8) | 0.003 (9) |
C6 | 0.078 (7) | 0.073 (7) | 0.040 (6) | −0.006 (5) | −0.007 (5) | −0.015 (5) |
O | 0.079 (6) | 0.100 (7) | 0.063 (11) | 0.004 (4) | 0.000 | 0.000 |
Geometric parameters (Å, º) top
Br—C4 | 1.892 (11) | C3—C4 | 1.379 (12) |
C1—C6 | 1.380 (12) | C3—H3 | 0.9300 |
C1—C2 | 1.395 (12) | C4—C5 | 1.357 (13) |
C1—Oi | 1.415 (15) | C5—C6 | 1.403 (12) |
C1—O | 1.415 (15) | C5—H5 | 0.9300 |
C2—C3 | 1.392 (12) | C6—H6 | 0.9300 |
C2—H2 | 0.9300 | O—C1i | 1.415 (15) |
| | | |
C6—C1—C2 | 119.7 (10) | C5—C4—C3 | 122.1 (11) |
C6—C1—Oi | 126.5 (11) | C5—C4—Br | 117.8 (9) |
C2—C1—Oi | 113.7 (11) | C3—C4—Br | 120.1 (8) |
C6—C1—O | 126.5 (11) | C4—C5—C6 | 118.7 (13) |
C2—C1—O | 113.7 (11) | C4—C5—H5 | 120.6 |
C3—C2—C1 | 119.6 (11) | C6—C5—H5 | 120.6 |
C3—C2—H2 | 120.2 | C1—C6—C5 | 120.5 (10) |
C1—C2—H2 | 120.2 | C1—C6—H6 | 119.7 |
C4—C3—C2 | 119.4 (10) | C5—C6—H6 | 119.7 |
C4—C3—H3 | 120.3 | C1i—O—C1 | 115.4 (18) |
C2—C3—H3 | 120.3 | | |
| | | |
C6—C1—C2—C3 | −1.9 (16) | Br—C4—C5—C6 | −179.9 (7) |
Oi—C1—C2—C3 | 173.6 (9) | C2—C1—C6—C5 | 1.6 (15) |
O—C1—C2—C3 | 173.6 (9) | Oi—C1—C6—C5 | −173.3 (10) |
C1—C2—C3—C4 | 0.8 (16) | O—C1—C6—C5 | −173.3 (10) |
C2—C3—C4—C5 | 0.7 (15) | C4—C5—C6—C1 | −0.1 (16) |
C2—C3—C4—Br | 179.5 (8) | C6—C1—O—C1i | −34.2 (8) |
C3—C4—C5—C6 | −1.1 (15) | C2—C1—O—C1i | 150.6 (9) |
Symmetry code: (i) −x+1/2, −y+1/2, z. |
Experimental details
Crystal data |
Chemical formula | C12H8Br2O |
Mr | 328.00 |
Crystal system, space group | Orthorhombic, Ccc2 |
Temperature (K) | 293 |
a, b, c (Å) | 26.645 (6), 7.6902 (14), 5.7223 (8) |
V (Å3) | 1172.5 (4) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 6.88 |
Crystal size (mm) | 0.25 × 0.20 × 0.10 |
|
Data collection |
Diffractometer | STOE IPDS diffractometer |
Absorption correction | Multi-scan X-RED (Stoe, 1997) |
Tmin, Tmax | 0.15, 0.45 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 18000, 1166, 495 |
Rint | 0.397 |
(sin θ/λ)max (Å−1) | 0.625 |
|
Refinement |
R[F2 > 2σ(F2)], wR(F2), S | 0.063, 0.148, 1.01 |
No. of reflections | 1166 |
No. of parameters | 70 |
No. of restraints | 7 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.34, −0.55 |
Absolute structure | (Flack, 1983) |
Absolute structure parameter | 0.00 (5) |
Subscribe to Acta Crystallographica Section B: Structural Science, Crystal Engineering and Materials
The full text of this article is available to subscribers to the journal.
If you have already registered and are using a computer listed in your registration details, please email
support@iucr.org for assistance.