Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
Room-temperature crystal structures of triammonium hexafluoroaluminate, (NH4)3AlF6 (I), and triammonium oxopentafluorotitanate, (NH4)3TiOF5 (II), were refined, and the crystal structures of dirubidium potassium oxopentaflourotitanate, Rb2KTiOF5, at 297 K (III) and 218 K (IV) were determined using single-crystal X-ray diffraction techniques. In ammonium fluoroelpasolites [(I) and (II)], the ligand (O, F) atoms are located in the mixed 24e + 96j position of the Fm3m unit cell. The 24e position is occupied by the ligand atoms predominantly in (III) and fully in (IV). `Ordered' N1 and Rb atoms are tetrahedrally displaced from the 8c position into the 32f site, and the H atoms of the disordered ammonium group N2 are statistically distributed in the 96k and 32f positions. The Ti atoms in (II) and (IV) are shifted from the 4a position to 24e thus allowing identification of the O and F atoms in the octahedron on a local scale. The disorder in the crystals is of a dynamic nature. Unique Raman spectra of Rb2KTiOF5 under the laser beam of 1064 nm indicate fast octahedral reorientations resulting in physical equalizations of the Ti-O and Ti-F distances as well as in the appearance of totally synchronous Ti-O and Ti-F stretching vibrations at 750 cm-1. This phenomenon is assumed to also take place under X-rays.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108768111044867/bp5038sup1.cif
Contains datablocks I, II, III, IV, publication_text

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108768111044867/bp5038Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108768111044867/bp5038IIsup3.hkl
Contains datablock II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108768111044867/bp5038IIIsup4.hkl
Contains datablock III

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108768111044867/bp5038IVsup5.hkl
Contains datablock IV

Computing details top

For all compounds, data collection: Bruker Smart v5.054 (Bruker, 1998); cell refinement: Bruker SAINT v6.02a (Bruker, 2000); data reduction: Bruker SAINT v6.02a (Bruker, 2000); program(s) used to solve structure: Bruker SHELXTL v5.1 (Bruker, 1998); program(s) used to refine structure: Bruker SHELXTL v5.1 (Bruker, 1998); molecular graphics: Bruker SHELXTL v5.1 (Bruker, 1998); software used to prepare material for publication: Bruker SHELXTL v5.1 (Bruker, 1998).

Figures top
[Figure 1]
[Figure 2]
[Figure 3]
[Figure 4]
[Figure 5]
[Figure 6]
[Figure 7]
[Figure 8]
(I) ammonium hexafluoroaluminate top
Crystal data top
H12N3AlF6)Dx = 1.815 Mg m3
Mr = 195.11Mo Kα radiation, λ = 0.71073 Å
Cubic, Fm3mCell parameters from 512 reflections
Hall symbol: -F 4 2 3θ = 3.2–38.8°
a = 8.9378 (2) ŵ = 0.34 mm1
V = 713.99 (3) Å3T = 297 K
Z = 4Sphere, colorless
F(000) = 4000.30 × 0.30 × 0.30 mm
Data collection top
Bruker P4
diffractometer
138 independent reflections
Radiation source: fine-focus sealed tube137 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.016
Detector resolution: 8.33 pixels mm-1θmax = 38.8°, θmin = 4.0°
ω scansh = 1514
Absorption correction: multi-scan
SADABS v.2.03; Bruker 1999
k = 1515
Tmin = 0.905, Tmax = 0.905l = 1515
4547 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.028Hydrogen site location: difference Fourier map
wR(F2) = 0.077H-atom parameters not refined
S = 1.09 w = 1/[σ2(Fo2) + (0.0389P)2 + 0.5425P]
where P = (Fo2 + 2Fc2)/3
137 reflections(Δ/σ)max = 0.047
15 parametersΔρmax = 0.24 e Å3
0 restraintsΔρmin = 0.37 e Å3
Crystal data top
H12N3AlF6)Z = 4
Mr = 195.11Mo Kα radiation
Cubic, Fm3mµ = 0.34 mm1
a = 8.9378 (2) ÅT = 297 K
V = 713.99 (3) Å30.30 × 0.30 × 0.30 mm
Data collection top
Bruker P4
diffractometer
138 independent reflections
Absorption correction: multi-scan
SADABS v.2.03; Bruker 1999
137 reflections with I > 2σ(I)
Tmin = 0.905, Tmax = 0.905Rint = 0.016
4547 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0280 restraints
wR(F2) = 0.077H-atom parameters not refined
S = 1.09Δρmax = 0.24 e Å3
137 reflectionsΔρmin = 0.37 e Å3
15 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Al10.00000.00000.00000.01748 (12)
N10.2594 (3)0.2594 (3)0.2594 (3)0.0307 (5)0.25
N20.50000.50000.50000.0529 (8)
F10.00000.00000.1971 (3)0.0803 (15)0.33
F20.00000.0525 (4)0.1925 (3)0.0663 (11)0.17
H110.20340.20340.20340.086*0.25
H120.31540.31540.20340.086*0.08
H130.31540.20340.31540.086*0.08
H140.20340.31540.31540.086*0.08
H20.59600.51920.51920.065*0.13
H30.44300.44300.44300.065*0.12
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Al10.01748 (12)0.01748 (12)0.01748 (12)0.0000.0000.000
N10.0307 (5)0.0307 (5)0.0307 (5)0.0028 (8)0.0028 (8)0.0028 (8)
N20.0529 (8)0.0529 (8)0.0529 (8)0.0000.0000.000
F10.115 (2)0.115 (2)0.0102 (8)0.0000.0000.000
F20.085 (2)0.085 (2)0.0296 (9)0.0000.0000.0258 (10)
Geometric parameters (Å, º) top
Al1—F11.762 (3)N2—F1xii2.707 (3)
Al1—F1i1.762 (3)N2—F1xv2.707 (3)
Al1—F2ii1.784 (3)N2—F2ix2.788 (3)
Al1—F2iii1.784 (3)N2—F2xvi2.788 (3)
Al1—F2iv1.784 (3)N2—F2xvii2.788 (3)
Al1—F2v1.784 (3)N2—F2vii2.788 (3)
N1—N1vi0.238 (7)F1—F2ii2.507 (2)
N1—N1vii0.238 (7)F1—F2xviii2.507 (2)
N1—N1viii0.238 (7)F1—F2xix2.507 (2)
N1—F2ix2.794 (4)F1—F2xx2.507 (2)
N1—F2x2.869 (2)F1—F2xxi2.507 (2)
N1—F2xi2.896 (2)F1—F2xxii2.507 (2)
N1—F2i3.025 (4)F1—F2xxiii2.507 (2)
N1—F1xii3.092 (3)F1—F2xxiv2.507 (2)
N1—F1xiii3.1860 (4)F2—F2xxv2.523 (4)
N1—F1xiv3.1860 (4)F2—F2xxvi2.523 (4)
N1—F13.326 (4)
F1xxvii—Al1—F1i180.0F1iv—Al1—F2xviii90.0
F1iv—Al1—F2ii90.0F1—Al1—F2xviii90.0
F1—Al1—F2ii90.0F1xviii—Al1—F2xxvii90.0
F1i—Al1—F2iii90.0F1xxiv—Al1—F2xxvii90.0
F1xxvii—Al1—F2iv90.0N1vi—N1—N1vii60.001 (10)
F1i—Al1—F2iv90.0N1vi—N1—N1viii60.001 (9)
F1xviii—Al1—F2v90.0N1vii—N1—N1viii59.998 (9)
F1xxiv—Al1—F2v90.0
Symmetry codes: (i) z, x, y; (ii) z, y, x; (iii) x, z, y; (iv) x, y, z; (v) y, x, z; (vi) x, y+1/2, z+1/2; (vii) x+1/2, y+1/2, z; (viii) x+1/2, y, z+1/2; (ix) z, y+1/2, x+1/2; (x) z+1/2, y, x+1/2; (xi) z+1/2, y+1/2, x; (xii) y+1/2, z, x+1/2; (xiii) y+1/2, z+1/2, x; (xiv) y, z+1/2, x+1/2; (xv) x+1/2, y+1/2, z; (xvi) x+1/2, z, y+1/2; (xvii) y+1/2, x+1/2, z; (xviii) y, z, x; (xix) z, y, x; (xx) y, z, x; (xxi) z, y, x; (xxii) z, y, x; (xxiii) y, z, x; (xxiv) y, z, x; (xxv) x, z, y; (xxvi) x, z, y; (xxvii) z, x, y.
(II) ammonium oxopentafluorotitanate top
Crystal data top
(NH4)3TiOF5Dx = 1.869 Mg m3
Mr = 213.03Mo Kα radiation, λ = 0.71073 Å
Cubic, Fm3mCell parameters from 846 reflections
Hall symbol: -F 4 2 3θ = 3.9–35.0°
a = 9.1144 (6) ŵ = 1.17 mm1
V = 757.15 (9) Å3T = 297 K
Z = 4Plate, colorless
F(000) = 4320.32 × 0.26 × 0.20 mm
Data collection top
Bruker P4
diffractometer
149 independent reflections
Radiation source: fine-focus sealed tube149 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.020
Detector resolution: 8.33 pixels mm-1θmax = 39.0°, θmin = 3.9°
ω scansh = 1616
Absorption correction: multi-scan
SADABS v.2.03; Bruker 1999
k = 1611
Tmin = 0.706, Tmax = 0.800l = 1616
4778 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.021H-atom parameters not refined
wR(F2) = 0.063 w = 1/[σ2(Fo2) + (0.0274P)2 + 0.372P]
where P = (Fo2 + 2Fc2)/3
S = 1.16(Δ/σ)max = 0.025
149 reflectionsΔρmax = 0.17 e Å3
18 parametersΔρmin = 0.25 e Å3
0 restraintsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0176 (15)
Crystal data top
(NH4)3TiOF5Z = 4
Mr = 213.03Mo Kα radiation
Cubic, Fm3mµ = 1.17 mm1
a = 9.1144 (6) ÅT = 297 K
V = 757.15 (9) Å30.32 × 0.26 × 0.20 mm
Data collection top
Bruker P4
diffractometer
149 independent reflections
Absorption correction: multi-scan
SADABS v.2.03; Bruker 1999
149 reflections with I > 2σ(I)
Tmin = 0.706, Tmax = 0.800Rint = 0.020
4778 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0210 restraints
wR(F2) = 0.063H-atom parameters not refined
S = 1.16Δρmax = 0.17 e Å3
149 reflectionsΔρmin = 0.25 e Å3
18 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Ti10.01769 (12)0.00000.00000.0272 (2)0.17
N10.2597 (3)0.2597 (3)0.2597 (3)0.0439 (6)0.25
N20.50000.50000.50000.0665 (10)
O10.00000.00000.2036 (3)0.0916 (16)0.17
F10.00000.00000.2036 (3)0.0916 (16)0.17
F20.00000.0616 (4)0.1980 (3)0.0833 (11)0.17
H110.20470.20470.20470.086*0.25
H120.31470.31470.20470.086*0.08
H130.31470.20470.31470.086*0.08
H140.20470.31470.31470.086*0.08
H20.59600.51920.51920.065*0.13
H30.44300.44300.44300.065*0.12
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ti10.0266 (6)0.0276 (2)0.0276 (2)0.0000.0000.000
N10.0439 (6)0.0439 (6)0.0439 (6)0.0056 (11)0.0056 (11)0.0056 (11)
N20.0665 (10)0.0665 (10)0.0665 (10)0.0000.0000.000
O10.130 (2)0.130 (2)0.0144 (9)0.0000.0000.000
F10.130 (2)0.130 (2)0.0144 (9)0.0000.0000.000
F20.084 (2)0.123 (3)0.0429 (11)0.0000.0000.0390 (12)
Geometric parameters (Å, º) top
Ti1—Ti1i0.2280 (15)N1—F2xiii2.786 (4)
Ti1—Ti1ii0.322 (2)N1—F2xiv2.864 (2)
Ti1—O1iii1.695 (3)N1—F2xv2.8990 (19)
Ti1—F2iv1.897 (3)N1—F23.030 (5)
Ti1—F2iii1.897 (3)N1—F1xvi3.139 (4)
Ti1—F2v1.897 (3)N1—F1xvii3.2421 (4)
Ti1—F2vi1.897 (3)N1—F1xviii3.2421 (4)
Ti1—F1i2.017 (3)N1—F1xix3.387 (5)
F2—F1vii2.649 (2)N2—F1xx2.701 (3)
F2—F1iii2.649 (2)N2—F1xxi2.701 (3)
F2—F2viii2.673 (4)N2—F2xiii2.809 (3)
F2—F2ix2.673 (4)N2—F2xxii2.809 (3)
N1—N1x0.251 (8)N2—F2xxiii2.809 (3)
N1—N1xi0.251 (8)N2—F2xii2.809 (3)
N1—N1xii0.251 (8)
Ti1i—Ti1—Ti1vii60.0N1x—N1—N1xi60.014 (11)
Ti1i—Ti1—Ti1xix90.0N1xii—N1—N1xi59.972 (10)
Ti1vii—Ti1—Ti1xix60.0F1iii—Ti1—F2iv94.9 (1)
Ti1i—Ti1—Ti1iii60.0F1iii—Ti1—F2v85.1 (1)
Ti1vii—Ti1—Ti1iii90.0F2iv—Ti1—F2v89.6 (1)
Ti1xix—Ti1—Ti1iii60.0F1iii—Ti1—F1xxiv180.0
N1x—N1—N1xii60.014 (12)F2iv—Ti1—F2iii170.3 (2)
Symmetry codes: (i) y, z, x; (ii) x, y, z; (iii) z, x, y; (iv) z, y, x; (v) z, y, x; (vi) z, x, y; (vii) z, x, y; (viii) x, z, y; (ix) x, z, y; (x) x, y+1/2, z+1/2; (xi) x+1/2, y, z+1/2; (xii) x+1/2, y+1/2, z; (xiii) z, y+1/2, x+1/2; (xiv) z+1/2, y, x+1/2; (xv) z+1/2, y+1/2, x; (xvi) y+1/2, z, x+1/2; (xvii) z+1/2, x+1/2, y; (xviii) x, y+1/2, z+1/2; (xix) y, z, x; (xx) y+1/2, z+1, x+1/2; (xxi) x+1/2, y+1/2, z; (xxii) x+1/2, z, y+1/2; (xxiii) y+1/2, x+1/2, z; (xxiv) y, x, z.
(III) rubidium potassium oxopentafuorotitanate top
Crystal data top
Rb2KTiOF5Dx = 3.476 Mg m3
Mr = 368.94Mo Kα radiation, λ = 0.71073 Å
Cubic, Fm3mCell parameters from 512 reflections
Hall symbol: -F 4 2 3θ = 4.0–40.5°
a = 8.9002 (1) ŵ = 15.55 mm1
V = 705.02 (1) Å3T = 297 K
Z = 4Formless, colorless
F(000) = 6720.28 × 0.25 × 0.20 mm
Data collection top
Bruker P4
diffractometer
198 independent reflections
Radiation source: fine-focus sealed tube138 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
Detector resolution: 8.33 pixels mm-1θmax = 46.0°, θmin = 4.0°
ω scansh = 1718
Absorption correction: multi-scan
SADABS v.2.03; Bruker 1999
k = 1718
Tmin = 0.098, Tmax = 0.147l = 1718
5318 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.021 w = 1/[σ2(Fo2) + (0.0304P)2 + 2.5031P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.073(Δ/σ)max = 0.032
S = 1.19Δρmax = 0.75 e Å3
138 reflectionsΔρmin = 1.07 e Å3
16 parametersExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.00044 (9)
Crystal data top
Rb2KTiOF5Z = 4
Mr = 368.94Mo Kα radiation
Cubic, Fm3mµ = 15.55 mm1
a = 8.9002 (1) ÅT = 297 K
V = 705.02 (1) Å30.28 × 0.25 × 0.20 mm
Data collection top
Bruker P4
diffractometer
198 independent reflections
Absorption correction: multi-scan
SADABS v.2.03; Bruker 1999
138 reflections with I > 2σ(I)
Tmin = 0.098, Tmax = 0.147Rint = 0.029
5318 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.02116 parameters
wR(F2) = 0.0730 restraints
S = 1.19Δρmax = 0.75 e Å3
138 reflectionsΔρmin = 1.07 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Ti10.00000.00000.00000.01638 (6)
Rb10.25798 (2)0.25798 (2)0.25798 (2)0.02154 (4)0.25
K10.50000.50000.50000.01367 (6)
O10.00000.00000.21506 (12)0.0354 (3)0.08
F10.00000.00000.21506 (12)0.0354 (3)0.58
O20.00000.0328 (5)0.2077 (3)0.0446 (16)0.02
F20.00000.0328 (5)0.2077 (3)0.0446 (16)0.06
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ti10.01638 (6)0.01638 (6)0.01638 (6)0.0000.0000.000
Rb10.02154 (4)0.02154 (4)0.02154 (4)0.00104 (7)0.00104 (7)0.00104 (7)
K10.01367 (6)0.01367 (6)0.01367 (6)0.0000.0000.000
O10.0487 (4)0.0487 (4)0.0087 (3)0.0000.0000.000
F10.0487 (4)0.0487 (4)0.0087 (3)0.0000.0000.000
O20.040 (2)0.083 (5)0.0106 (8)0.0000.0000.0132 (15)
F20.040 (2)0.083 (5)0.0106 (8)0.0000.0000.0132 (15)
Geometric parameters (Å, º) top
Ti1—F1i1.914 (2)Rb1—F2i2.958 (3)
Ti1—F1ii1.914 (2)Rb1—F2xi2.972 (3)
Ti1—F2iii1.872 (3)Rb1—F2xii3.080 (3)
Ti1—O2iv1.872 (3)K1—F1xiii2.5360 (11)
Ti1—F2v1.872 (3)K1—F1xiv2.5360 (11)
Ti1—F2vi1.872 (3)K1—F2xv2.618 (3)
Rb1—Rb1vii0.2009 (6)K1—F2xvi2.618 (3)
Rb1—Rb1viii0.2009 (6)K1—F2xvii2.618 (3)
Rb1—Rb1ix0.2009 (6)K1—F2i2.618 (3)
Rb1—F1ii3.070 (3)F1—F2xviii2.677 (5)
Rb1—F1x3.157 (3)F2—F2xix2.647 (5)
Rb1—F2ii2.882 (3)
F2iv—Ti1—F2xx180.0 (3)F1iv—Ti1—F2xx90.0 (3)
F2xxi—Ti1—F2xxii180.0 (3)F2iv—Ti1—F2xxi90.0 (4)
Symmetry codes: (i) x+1/2, z, y+1/2; (ii) z, x+1/2, y+1/2; (iii) x, y, z; (iv) z, y, x; (v) y, z, x; (vi) y, z, x; (vii) x, y+1/2, z+1/2; (viii) x+1/2, y, z+1/2; (ix) x+1/2, y+1/2, z; (x) z, x+1/2, y+1/2; (xi) y+1/2, x+1/2, z; (xii) y+1/2, z, x+1/2; (xiii) y+1/2, z+1, x+1/2; (xiv) z+1, x+1/2, y+1/2; (xv) z+1, y+1/2, x+1/2; (xvi) z, y+1/2, x+1/2; (xvii) x+1/2, z+1, y+1/2; (xviii) z, x, y; (xix) y, z, x; (xx) z, y, x; (xxi) x, z, y; (xxii) x, z, y.
(IV) rubidium potassium oxopentafuorotitanate top
Crystal data top
Rb2KTiOF5Dx = 3.490 Mg m3
Mr = 368.94Mo Kα radiation, λ = 0.71073 Å
Cubic, Fm3mCell parameters from 512 reflections
Hall symbol: -F 4 2 3θ = 4.0–39.8°
a = 8.8879 (2) ŵ = 15.61 mm1
V = 702.10 (3) Å3T = 218 K
Z = 4Formless, colorless
F(000) = 6720.35 × 0.25 × 0.25 mm
Data collection top
Bruker P4
diffractometer
155 independent reflections
Radiation source: fine-focus sealed tube130 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
Detector resolution: 8.33 pixels mm-1θmax = 40.9°, θmin = 4.0°
ω scansh = 1614
Absorption correction: multi-scan
SADABS v.2.03; Bruker 1999
k = 1614
Tmin = 0.074, Tmax = 0.112l = 1616
4779 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.023 w = 1/[σ2(Fo2) + (0.0157P)2 + 5.640P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.061(Δ/σ)max = 0.046
S = 1.33Δρmax = 1.09 e Å3
130 reflectionsΔρmin = 0.84 e Å3
12 parametersExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.00086 (17)
Crystal data top
Rb2KTiOF5Z = 4
Mr = 368.94Mo Kα radiation
Cubic, Fm3mµ = 15.61 mm1
a = 8.8879 (2) ÅT = 218 K
V = 702.10 (3) Å30.35 × 0.25 × 0.25 mm
Data collection top
Bruker P4
diffractometer
155 independent reflections
Absorption correction: multi-scan
SADABS v.2.03; Bruker 1999
130 reflections with I > 2σ(I)
Tmin = 0.074, Tmax = 0.112Rint = 0.030
4779 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.02312 parameters
wR(F2) = 0.0610 restraints
S = 1.33Δρmax = 1.09 e Å3
130 reflectionsΔρmin = 0.84 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Ti10.0185 (2)0.00000.00000.0027 (4)0.17
Rb10.25798 (8)0.25798 (8)0.25798 (8)0.01411 (13)0.25
K10.50000.50000.50000.01017 (19)
O10.00000.00000.2147 (2)0.0358 (6)0.17
F10.00000.00000.2147 (2)0.0358 (6)0.83
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ti10.0050 (11)0.0015 (3)0.0015 (3)0.0000.0000.000
Rb10.01411 (13)0.01411 (13)0.01411 (13)0.0007 (2)0.0007 (2)0.0007 (2)
K10.01017 (19)0.01017 (19)0.01017 (19)0.0000.0000.000
O10.0506 (8)0.0506 (8)0.0064 (7)0.0000.0000.000
F10.0506 (8)0.0506 (8)0.0064 (7)0.0000.0000.000
Geometric parameters (Å, º) top
Ti1—Ti1i0.232 (3)Rb1—Rb1x0.201 (2)
Ti1—Ti1ii0.232 (3)Rb1—Rb1xi0.201 (2)
Ti1—Ti1iii0.232 (3)Rb1—F1xviii3.0663 (10)
Ti1—Ti1iv0.232 (3)Rb1—F1xix3.0663 (10)
Ti1—Ti1v0.328 (4)Rb1—F1xx3.0663 (10)
Ti1—F1iv1.744 (3)Rb1—O1xviii3.0663 (10)
Ti1—F1i1.915 (2)Rb1—O1xix3.0663 (10)
Ti1—F1v1.915 (2)Rb1—O1xx3.0663 (10)
Ti1—F11.915 (2)Rb1—F1xxi3.1534 (2)
Ti1—F1iii1.915 (2)Rb1—F1xxii3.1533 (2)
Ti1—F1ii2.072 (3)Rb1—F1xxiii3.1533 (2)
Ti1—Rb1vi3.7128 (11)Rb1—F1iii3.2654 (12)
Ti1—Rb1vii3.7128 (11)Rb1—F1iv3.2654 (12)
Ti1—Rb1viii3.7128 (11)Rb1—O1iii3.2654 (12)
Ti1—Rb1ix3.7128 (11)K1—F1xviii2.536 (2)
Ti1—Rb1x3.7191 (10)K1—F1xix2.536 (2)
Ti1—Rb1xi3.7191 (10)K1—F1xx2.536 (2)
Ti1—Rb1xii3.7191 (10)K1—O1xviii2.536 (2)
Ti1—Rb1xiii3.7191 (10)K1—O1xix2.536 (2)
Ti1—Rb1xiv3.7191 (10)K1—O1xx2.536 (2)
Ti1—Rb1xv3.7191 (10)F1—F1i2.698 (3)
Ti1—Rb1xvi3.7191 (10)F1—F1ii2.698 (3)
Ti1—Rb1xvii3.7191 (10)F1—F1iii2.698 (3)
Ti1—Rb13.8789 (16)F1—F1iv2.698 (3)
Rb1—Rb1vi0.201 (2)
Ti1i—Ti1—Ti1ii60.0F1i—Ti1—O1v89.579 (9)
Ti1i—Ti1—Ti1iii90.0F1v—Ti1—O1i89.579 (9)
Ti1ii—Ti1—Ti1iii60.0O1i—Ti1—O1v89.579 (9)
Ti1i—Ti1—Ti1iv60.0F1i—Ti1—F1ii85.08 (5)
Ti1ii—Ti1—Ti1iv90.0F1v—Ti1—F1ii85.08 (5)
Ti1iii—Ti1—Ti1iv60.0F1iii—Ti1—F1ii85.08 (5)
F1iv—Ti1—F1i94.92 (5)F1iii—Ti1—F1ii85.08 (5)
O1iv—Ti1—F1i94.92 (5)F1i—Ti1—F1iii170.16 (11)
F1iv—Ti1—F1v94.92 (5)F1iv—Ti1—O1ii180.0
O1iv—Ti1—F1v94.92 (5)O1iv—Ti1—O1ii180.0
F1i—Ti1—F1v89.579 (9)
Symmetry codes: (i) y, z, x; (ii) z, x, y; (iii) y, z, x; (iv) z, x, y; (v) x, y, z; (vi) x, y+1/2, z+1/2; (vii) x, y+1/2, z1/2; (viii) x, y1/2, z+1/2; (ix) x, y1/2, z1/2; (x) x+1/2, y, z+1/2; (xi) x+1/2, y+1/2, z; (xii) x+1/2, y1/2, z; (xiii) x+1/2, y, z1/2; (xiv) x+1/2, y1/2, z; (xv) x+1/2, y, z1/2; (xvi) x+1/2, y+1/2, z; (xvii) x+1/2, y, z+1/2; (xviii) y+1/2, z, x+1/2; (xix) z, x+1/2, y+1/2; (xx) x+1/2, y+1/2, z; (xxi) y+1/2, z+1/2, x; (xxii) y, z+1/2, x+1/2; (xxiii) z+1/2, x+1/2, y.

Experimental details

(I)(II)(III)(IV)
Crystal data
Chemical formulaH12N3AlF6)(NH4)3TiOF5Rb2KTiOF5Rb2KTiOF5
Mr195.11213.03368.94368.94
Crystal system, space groupCubic, Fm3mCubic, Fm3mCubic, Fm3mCubic, Fm3m
Temperature (K)297297297218
a (Å)8.9378 (2) 9.1144 (6) 8.9002 (1) 8.8879 (2)
V3)713.99 (3)757.15 (9)705.02 (1)702.10 (3)
Z4444
Radiation typeMo KαMo KαMo KαMo Kα
µ (mm1)0.341.1715.5515.61
Crystal size (mm)0.30 × 0.30 × 0.300.32 × 0.26 × 0.200.28 × 0.25 × 0.200.35 × 0.25 × 0.25
Data collection
DiffractometerBruker P4
diffractometer
Bruker P4
diffractometer
Bruker P4
diffractometer
Bruker P4
diffractometer
Absorption correctionMulti-scan
SADABS v.2.03; Bruker 1999
Multi-scan
SADABS v.2.03; Bruker 1999
Multi-scan
SADABS v.2.03; Bruker 1999
Multi-scan
SADABS v.2.03; Bruker 1999
Tmin, Tmax0.905, 0.9050.706, 0.8000.098, 0.1470.074, 0.112
No. of measured, independent and
observed [I > 2σ(I)] reflections
4547, 138, 137 4778, 149, 149 5318, 198, 138 4779, 155, 130
Rint0.0160.0200.0290.030
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.028, 0.077, 1.09 0.021, 0.063, 1.16 0.021, 0.073, 1.19 0.023, 0.061, 1.33
No. of reflections137149138130
No. of parameters15181612
H-atom treatmentH-atom parameters not refinedH-atom parameters not refined
Δρmax, Δρmin (e Å3)0.24, 0.370.17, 0.250.75, 1.071.09, 0.84

Computer programs: Bruker Smart v5.054 (Bruker, 1998), Bruker SAINT v6.02a (Bruker, 2000), Bruker SHELXTL v5.1 (Bruker, 1998).

 

Subscribe to Acta Crystallographica Section B: Structural Science, Crystal Engineering and Materials

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. B
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds