Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
In the title compound, [Cu(C24H34N6O2)](ClO4)2, the copper(II) coordination geometry is intermediate between square-based-pyramidal and trigonal-bipyramidal. The H atoms of the sixth non-metal-coordinating nitro­gen donor engage in intra­molecular hydrogen bonding with the eth­oxy O atom and the uncoordinated phenanthroline N atom. Hydrogen bonding is also observed between the NH2 H atoms and two of the phenanthroline H atoms with the perchlorate anions.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807032953/bt2424sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807032953/bt2424Isup2.hkl
Contains datablock I

CCDC reference: 629309

Key indicators

  • Single-crystal X-ray study
  • T = 200 K
  • Mean [sigma](C-C) = 0.011 Å
  • R factor = 0.074
  • wR factor = 0.255
  • Data-to-parameter ratio = 13.9

checkCIF/PLATON results

No syntax errors found



Alert level B PLAT222_ALERT_3_B Large Non-Solvent H Ueq(max)/Ueq(min) ... 4.53 Ratio
Alert level C RFACR01_ALERT_3_C The value of the weighted R factor is > 0.25 Weighted R factor given 0.255 PLAT084_ALERT_2_C High R2 Value .................................. 0.26 PLAT094_ALERT_2_C Ratio of Maximum / Minimum Residual Density .... 3.06 PLAT164_ALERT_4_C Nr. of Refined C-H H-Atoms in Heavy-At Struct... 2 PLAT220_ALERT_2_C Large Non-Solvent C Ueq(max)/Ueq(min) ... 3.18 Ratio PLAT230_ALERT_2_C Hirshfeld Test Diff for C17 - C18 .. 5.65 su PLAT242_ALERT_2_C Check Low Ueq as Compared to Neighbors for O10 PLAT244_ALERT_4_C Low 'Solvent' Ueq as Compared to Neighbors for Cl1 PLAT244_ALERT_4_C Low 'Solvent' Ueq as Compared to Neighbors for Cl2 PLAT245_ALERT_2_C U(iso) H2 Smaller than U(eq) C2 by ... 0.02 AngSq PLAT341_ALERT_3_C Low Bond Precision on C-C Bonds (x 1000) Ang ... 11 PLAT360_ALERT_2_C Short C(sp3)-C(sp3) Bond C13 - C14 ... 1.36 Ang.
Alert level G PLAT794_ALERT_5_G Check Predicted Bond Valency for Cu1 (1) 1.19
0 ALERT level A = In general: serious problem 1 ALERT level B = Potentially serious problem 12 ALERT level C = Check and explain 1 ALERT level G = General alerts; check 0 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 7 ALERT type 2 Indicator that the structure model may be wrong or deficient 3 ALERT type 3 Indicator that the structure quality may be low 3 ALERT type 4 Improvement, methodology, query or suggestion 1 ALERT type 5 Informative message, check

Comment top

We have been interested for some time in the design and synthesis of novel macrocyclic and macroacyclic Schiff base compounds (Keypour et al., 2000), The title compound was obtained by the templated condensation of tris(2-aminoethyl)amine (tren) with 2,9-dicarboxaldehyde-1,10-phenathroline in the presence of copper(II) perchlorate. Assignment of the complex as an acyclic Schiff base was based on the observation of a single sharp imine band at 1644 cm-1 in the infrared spectrum, indicating that the imine macroacycle had been formed. The solid-state structure involves a five-coordinate CuN5 chromophore constituted by one imine (N2), one phenanthroline (N1) and three amine (N3, N4, N5) N atoms of the pentadentate ligand. Additionally, the non-coordinating end of the ligand has undergone reaction with the ethanol solvent to yield the observed product. The angles of the coordination polyhedron surrounding the copper(II) centre suggest that the coordination geometry lies between square-based-pyramidal and trigonal-bipyramidal extremes. In this case, the structural index parameter (τ) can be used to identify the coordination geometry of the complex (Addison et al., 1984). τ is expressed as (β - α) /60°, where β and α correspond to two angles showing tendency to linearity and the τ values of square-based-pyramidal and trigonal-bipyramidal extremes are 0 and 1, respectively. For this complex, the N1—Cu—N3 and N2—Cu—N5 angles are 160.3 (2)° and 131.1 (2)°, respectively (table 1), giving a τ value of 0.498. This value is very close to τ = 1/2, which means approximately 50% contribution of each pyramidal form, with a slightly greater tendency toward square-based-pyramidal geometry (τ < 1/2). Consequently, the N1, N2, N3 and N5 atoms form the equatorial plane of the square-pyramid, while the N4 atom occupies the axial position (Yilmaz et al., 2003).

One of the H atoms of each of the amine groups not bonded to the copper forms intramolecular hydrogen bonds to the oxygen and the uncoordinated phenanthralene N atoms (N6), (Table 2). Hydrogen bonding is also observed between the oxygen atoms of the perchlorate anions and H(4 A), H(5 A), H(23) and H(24). In this way a network is formed.

Related literature top

For related literature, see: Addison et al. (1984); Chandler et al. (1981); Keypour et al. (2000, 2007); Yilmaz et al. (2003).

Experimental top

Safety note: Perchlorate complexes are potentially explosive. While we have not experienced any problems with the compounds described, they should be treated with caution and handled in small quantities. All of the reagents and solvents used were of analytical grade and purchased commercially. 2,9-dicarboxyaldehyde-1,10-phenanthroline was prepared by reaction of neocuproine with selenium dioxide (Chandler et al., 1981).

The title compound was prepared based on a previous method (Keypour et al., 2007). The chloride salt of the amine(0.5 mmol) was added to a solution of 2,9-dicarboxyaldehyde-1,10-phenanthroline (0.118 g, 0.5 mmol) and CuCl2 (0.5 mmol) in 200 ml EtOH/H2O (3/1 ratio). A NaOH solution was added dropwise over 2–3 hr to the above solution to give a pH of 7–7.5.The resulting solution was heated for 18–24 h. The solution was reduced in volume to ca 20–30 ml, then sodium perchlorate (1 mmol) was added and precipitate was filtered. Suitable crystals were obtained by slow diffusion of diethylether vapour into the MeOH/MeCN solution of the above solid.

[CuL](ClO4)2.MeCN.H2O Yield: 0.13 g (34%). analysis, calculated for C29H39N7Cl2O11Cu: C 41.1, H 5.2, N 12.9%; found: C 40.8, H 5.4, N 13.3%.IR (Nujol mull, ν cm-1): 3607, 3350, 3292, 1644 (νCN imine), 1600, 1506, 1314, 1272, 1250, 1236, 1086, 934, 900, 885, 868, 721, 624, 568, 556.

Refinement top

All H atoms were initially located in a difference Fourier map. The methyl H atoms were then constrained to an ideal geometry with C—H distances of 0.98 Å and Uiso(H) = 1.5Ueq(C), but each group was allowed to rotate freely about its C—C bond. All other H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms with C—H distances in the range 0.95–1.00 Å and Uiso(H) = 1.2Ueq(C). The R factor is slightly high because of the high vibrational amplitude associated with the perchlorate anions.

Structure description top

We have been interested for some time in the design and synthesis of novel macrocyclic and macroacyclic Schiff base compounds (Keypour et al., 2000), The title compound was obtained by the templated condensation of tris(2-aminoethyl)amine (tren) with 2,9-dicarboxaldehyde-1,10-phenathroline in the presence of copper(II) perchlorate. Assignment of the complex as an acyclic Schiff base was based on the observation of a single sharp imine band at 1644 cm-1 in the infrared spectrum, indicating that the imine macroacycle had been formed. The solid-state structure involves a five-coordinate CuN5 chromophore constituted by one imine (N2), one phenanthroline (N1) and three amine (N3, N4, N5) N atoms of the pentadentate ligand. Additionally, the non-coordinating end of the ligand has undergone reaction with the ethanol solvent to yield the observed product. The angles of the coordination polyhedron surrounding the copper(II) centre suggest that the coordination geometry lies between square-based-pyramidal and trigonal-bipyramidal extremes. In this case, the structural index parameter (τ) can be used to identify the coordination geometry of the complex (Addison et al., 1984). τ is expressed as (β - α) /60°, where β and α correspond to two angles showing tendency to linearity and the τ values of square-based-pyramidal and trigonal-bipyramidal extremes are 0 and 1, respectively. For this complex, the N1—Cu—N3 and N2—Cu—N5 angles are 160.3 (2)° and 131.1 (2)°, respectively (table 1), giving a τ value of 0.498. This value is very close to τ = 1/2, which means approximately 50% contribution of each pyramidal form, with a slightly greater tendency toward square-based-pyramidal geometry (τ < 1/2). Consequently, the N1, N2, N3 and N5 atoms form the equatorial plane of the square-pyramid, while the N4 atom occupies the axial position (Yilmaz et al., 2003).

One of the H atoms of each of the amine groups not bonded to the copper forms intramolecular hydrogen bonds to the oxygen and the uncoordinated phenanthralene N atoms (N6), (Table 2). Hydrogen bonding is also observed between the oxygen atoms of the perchlorate anions and H(4 A), H(5 A), H(23) and H(24). In this way a network is formed.

For related literature, see: Addison et al. (1984); Chandler et al. (1981); Keypour et al. (2000, 2007); Yilmaz et al. (2003).

Computing details top

Data collection: Collect (Nonius, 2000); cell refinement: HKL SCALEPACK (Otwinowski & Minor, 1997); data reduction: HKL DENZO and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. View of the molecule of (I) showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented by circles of arbitrary size.
[Figure 2] Fig. 2. A representation of the intra- and intermolecular hydrogen bonding interactions present in I.
[<it>N</it>-(2-Aminoethyl)-<it>N</it>-(2-{(<it>E</it>)-[9-(diethoxymethyl)-\1,10-phenanthrolin-2-yl]methylideneamino}ethyl)ethane-1,2-diamine]copper(II) bis(perchlorate) top
Crystal data top
[Cu(C24H34N6O2)](ClO4)2F(000) = 2904
Mr = 701.01Dx = 1.531 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 11162 reflections
a = 14.1439 (3) Åθ = 1.0–25.4°
b = 16.6060 (3) ŵ = 0.96 mm1
c = 25.8952 (6) ÅT = 200 K
V = 6082.1 (2) Å3Prism, green
Z = 80.25 × 0.2 × 0.15 mm
Data collection top
Nonius KappaCCD
diffractometer
5524 independent reflections
Radiation source: Enraf Nonius FR5902925 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.076
Detector resolution: 9 pixels mm-1θmax = 25.3°, θmin = 3.0°
CCD rotation images, thick slices scansh = 1717
Absorption correction: multi-scan
Blessing (1995)
k = 1919
Tmin = 0.796, Tmax = 0.870l = 3131
19358 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.074Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.256H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.153P)2 + 0.4527P]
where P = (Fo2 + 2Fc2)/3
5524 reflections(Δ/σ)max = 0.003
396 parametersΔρmax = 1.25 e Å3
0 restraintsΔρmin = 0.41 e Å3
Crystal data top
[Cu(C24H34N6O2)](ClO4)2V = 6082.1 (2) Å3
Mr = 701.01Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 14.1439 (3) ŵ = 0.96 mm1
b = 16.6060 (3) ÅT = 200 K
c = 25.8952 (6) Å0.25 × 0.2 × 0.15 mm
Data collection top
Nonius KappaCCD
diffractometer
5524 independent reflections
Absorption correction: multi-scan
Blessing (1995)
2925 reflections with I > 2σ(I)
Tmin = 0.796, Tmax = 0.870Rint = 0.076
19358 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0740 restraints
wR(F2) = 0.256H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 1.25 e Å3
5524 reflectionsΔρmin = 0.41 e Å3
396 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.6258 (4)0.4963 (4)0.6678 (3)0.0773 (18)
C20.6055 (6)0.5122 (6)0.7212 (3)0.089 (2)
C30.5350 (6)0.6030 (5)0.7832 (3)0.090 (2)
H3A0.58240.58540.80890.109*
H3B0.47220.58240.79360.109*
C40.5336 (5)0.6947 (5)0.7789 (3)0.088 (2)
H4A0.50260.71830.80960.106*
H4B0.5990.71570.77690.106*
C50.3769 (4)0.7059 (5)0.7378 (2)0.0756 (18)
H5A0.34980.75330.75560.091*
H5B0.36530.65780.75950.091*
C60.3301 (5)0.6952 (5)0.6867 (3)0.0782 (18)
H6A0.26260.68150.69180.094*
H6B0.33370.7460.66680.094*
C70.5050 (5)0.8008 (5)0.7152 (3)0.085 (2)
H7A0.5140.83430.74650.102*
H7B0.45250.82430.69490.102*
C80.5945 (5)0.8017 (4)0.6833 (3)0.084 (2)
H8A0.60520.85610.66870.101*
H8B0.64950.78730.7050.101*
C90.4628 (4)0.6876 (4)0.5202 (3)0.0733 (17)
C100.3885 (5)0.7492 (5)0.5363 (3)0.081 (2)
C110.2258 (5)0.7414 (5)0.5623 (3)0.100 (2)
H11A0.20720.76250.5280.121*
H11B0.2280.78690.5870.121*
C120.1561 (5)0.6799 (6)0.5801 (4)0.107 (3)
H12A0.09320.70450.58240.161*
H12B0.17480.65980.61420.161*
H12C0.15440.63520.55550.161*
C130.4060 (10)0.8864 (6)0.5616 (5)0.145 (4)
H13A0.4050.89460.52370.175*
H13B0.34160.89790.57470.175*
C140.4668 (11)0.9410 (8)0.5827 (8)0.211 (8)
H14A0.44680.99560.57330.317*
H14B0.53080.93130.56960.317*
H14C0.46640.93540.62040.317*
C150.6083 (4)0.5367 (4)0.5825 (3)0.0667 (16)
C160.5673 (4)0.5878 (4)0.5432 (2)0.0663 (16)
C170.6808 (6)0.4294 (5)0.6533 (4)0.096 (2)
H170.70090.39120.67830.115*
C180.7038 (5)0.4207 (4)0.6045 (4)0.099 (3)
H180.7440.37740.59480.119*
C190.6708 (5)0.4735 (4)0.5662 (3)0.083 (2)
C200.6942 (5)0.4650 (5)0.5126 (4)0.097 (2)
H200.73650.42350.50230.116*
C210.6587 (5)0.5133 (5)0.4773 (3)0.091 (2)
H210.67770.50760.44230.109*
C220.5912 (5)0.5748 (4)0.4909 (3)0.0793 (19)
C230.5473 (5)0.6220 (5)0.4538 (3)0.087 (2)
H230.56240.61430.41840.105*
C240.4832 (5)0.6790 (5)0.4672 (3)0.083 (2)
H240.45330.71180.4420.099*
O10.2518 (6)0.3662 (4)0.7218 (3)0.132 (2)
O20.3490 (6)0.4692 (4)0.7325 (3)0.155 (3)
O30.3851 (9)0.3810 (8)0.6723 (3)0.229 (6)
O40.2604 (6)0.4672 (5)0.6607 (3)0.155 (3)
O50.7883 (6)0.6157 (6)0.6525 (3)0.185 (4)
O60.7609 (5)0.6826 (6)0.5753 (3)0.176 (4)
O70.8571 (11)0.7340 (5)0.6342 (3)0.239 (7)
O80.9110 (8)0.6377 (7)0.5957 (5)0.235 (6)
O90.3156 (3)0.7038 (3)0.55923 (17)0.0819 (13)
O100.4268 (4)0.8049 (3)0.5714 (2)0.0931 (14)
Cl10.30966 (14)0.42004 (11)0.69472 (7)0.0820 (5)
Cl20.82578 (12)0.66199 (12)0.61327 (7)0.0840 (6)
Cu10.52275 (5)0.64203 (5)0.67161 (3)0.0631 (3)
N10.5886 (3)0.5476 (3)0.6334 (2)0.0653 (12)
N20.5600 (4)0.5739 (4)0.7319 (2)0.0773 (15)
N30.4799 (4)0.7174 (4)0.7308 (2)0.0739 (14)
N40.3779 (3)0.6302 (3)0.6584 (2)0.0654 (13)
H4C0.36530.63420.62360.078*
H4D0.35710.58080.66980.078*
N50.5829 (4)0.7423 (3)0.6412 (2)0.0721 (14)
H5C0.64080.72990.62710.087*
H5D0.5450.76310.61570.087*
N60.5035 (4)0.6447 (3)0.5569 (2)0.0648 (13)
H20.628 (4)0.476 (4)0.743 (3)0.07 (2)*
H100.363 (5)0.777 (4)0.511 (3)0.08 (2)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.063 (4)0.063 (4)0.105 (6)0.005 (3)0.001 (4)0.011 (4)
C20.084 (5)0.085 (6)0.097 (6)0.004 (4)0.004 (4)0.024 (5)
C30.095 (5)0.106 (6)0.070 (4)0.016 (4)0.006 (4)0.016 (4)
C40.085 (5)0.108 (6)0.071 (4)0.017 (4)0.010 (4)0.007 (4)
C50.066 (4)0.095 (5)0.067 (4)0.011 (3)0.009 (3)0.006 (3)
C60.066 (4)0.089 (5)0.080 (4)0.006 (4)0.003 (3)0.001 (4)
C70.095 (5)0.077 (5)0.083 (5)0.010 (4)0.011 (4)0.018 (4)
C80.079 (4)0.075 (5)0.098 (5)0.007 (4)0.009 (4)0.009 (4)
C90.070 (4)0.077 (4)0.073 (4)0.008 (3)0.006 (3)0.003 (4)
C100.076 (4)0.085 (5)0.083 (5)0.013 (4)0.003 (4)0.013 (4)
C110.076 (5)0.107 (6)0.118 (6)0.025 (4)0.007 (4)0.021 (5)
C120.069 (4)0.122 (7)0.132 (7)0.005 (5)0.003 (5)0.006 (6)
C130.189 (12)0.069 (6)0.179 (10)0.018 (7)0.042 (9)0.015 (7)
C140.192 (13)0.109 (10)0.33 (2)0.023 (9)0.066 (14)0.049 (12)
C150.051 (3)0.054 (4)0.096 (5)0.003 (3)0.006 (3)0.008 (3)
C160.059 (3)0.065 (4)0.075 (4)0.006 (3)0.005 (3)0.013 (3)
C170.105 (6)0.071 (5)0.112 (6)0.018 (4)0.009 (5)0.001 (5)
C180.078 (5)0.060 (5)0.160 (9)0.021 (4)0.007 (5)0.011 (5)
C190.066 (4)0.069 (4)0.113 (6)0.003 (3)0.003 (4)0.020 (4)
C200.087 (5)0.078 (5)0.126 (7)0.006 (4)0.022 (5)0.041 (5)
C210.076 (4)0.104 (6)0.093 (5)0.016 (4)0.018 (4)0.028 (5)
C220.065 (4)0.094 (5)0.080 (5)0.012 (4)0.012 (4)0.019 (4)
C230.075 (4)0.112 (6)0.075 (5)0.033 (4)0.021 (4)0.018 (5)
C240.076 (4)0.103 (5)0.070 (4)0.013 (4)0.004 (4)0.009 (4)
O10.169 (6)0.092 (4)0.134 (5)0.038 (4)0.036 (4)0.016 (4)
O20.192 (7)0.113 (5)0.161 (6)0.054 (5)0.059 (5)0.012 (5)
O30.230 (11)0.331 (14)0.126 (6)0.134 (10)0.080 (6)0.052 (7)
O40.161 (6)0.137 (6)0.166 (6)0.010 (5)0.072 (5)0.056 (5)
O50.178 (7)0.261 (9)0.116 (5)0.134 (7)0.059 (5)0.088 (6)
O60.101 (4)0.321 (11)0.107 (4)0.030 (6)0.015 (4)0.085 (6)
O70.446 (19)0.138 (7)0.132 (6)0.105 (9)0.090 (9)0.024 (6)
O80.195 (9)0.278 (13)0.232 (10)0.127 (9)0.085 (9)0.083 (10)
O90.070 (3)0.092 (3)0.084 (3)0.012 (2)0.009 (2)0.013 (3)
O100.104 (3)0.069 (3)0.106 (4)0.007 (3)0.023 (3)0.002 (3)
Cl10.1012 (13)0.0670 (11)0.0779 (11)0.0026 (9)0.0058 (10)0.0090 (9)
Cl20.0669 (10)0.0998 (14)0.0853 (12)0.0182 (9)0.0058 (9)0.0140 (10)
Cu10.0602 (5)0.0609 (5)0.0682 (5)0.0034 (3)0.0013 (3)0.0005 (3)
N10.055 (3)0.058 (3)0.083 (3)0.002 (2)0.004 (3)0.005 (3)
N20.075 (3)0.077 (4)0.081 (4)0.006 (3)0.005 (3)0.013 (3)
N30.071 (3)0.082 (4)0.069 (3)0.009 (3)0.004 (3)0.005 (3)
N40.068 (3)0.056 (3)0.072 (3)0.003 (2)0.010 (2)0.002 (2)
N50.065 (3)0.066 (3)0.085 (4)0.003 (3)0.002 (3)0.005 (3)
N60.065 (3)0.063 (3)0.065 (3)0.004 (2)0.005 (2)0.001 (3)
Geometric parameters (Å, º) top
C1—N11.340 (8)C13—H13A0.99
C1—C171.408 (10)C13—H13B0.99
C1—C21.438 (10)C14—H14A0.98
C2—N21.240 (10)C14—H14B0.98
C2—H20.89 (7)C14—H14C0.98
C3—N21.457 (9)C15—N11.360 (8)
C3—C41.528 (12)C15—C191.437 (9)
C3—H3A0.99C15—C161.445 (9)
C3—H3B0.99C16—N61.356 (8)
C4—N31.506 (8)C16—C221.411 (9)
C4—H4A0.99C17—C181.311 (11)
C4—H4B0.99C17—H170.95
C5—N31.480 (8)C18—C191.404 (11)
C5—C61.489 (9)C18—H180.95
C5—H5A0.99C19—C201.434 (11)
C5—H5B0.99C20—C211.316 (11)
C6—N41.471 (8)C20—H200.95
C6—H6A0.99C21—C221.442 (10)
C6—H6B0.99C21—H210.95
C7—N31.486 (10)C22—C231.387 (11)
C7—C81.512 (10)C23—C241.355 (11)
C7—H7A0.99C23—H230.95
C7—H7B0.99C24—H240.95
C8—N51.479 (9)O1—Cl11.401 (6)
C8—H8A0.99O2—Cl11.390 (7)
C8—H8B0.99O3—Cl11.376 (9)
C9—N61.320 (8)O4—Cl11.369 (6)
C9—C241.409 (10)O5—Cl21.379 (6)
C9—C101.525 (10)O6—Cl21.388 (7)
C10—O101.407 (9)O7—Cl21.386 (8)
C10—O91.408 (9)O8—Cl21.350 (9)
C10—H100.89 (7)Cu1—N21.999 (6)
C11—O91.418 (8)Cu1—N52.028 (5)
C11—C121.492 (12)Cu1—N32.069 (5)
C11—H11A0.99Cu1—N12.074 (5)
C11—H11B0.99Cu1—N42.086 (5)
C12—H12A0.98N4—H4C0.92
C12—H12B0.98N4—H4D0.92
C12—H12C0.98N5—H5C0.92
C13—C141.364 (16)N5—H5D0.92
C13—O101.408 (10)
N1—C1—C17122.8 (8)C19—C15—C16118.0 (6)
N1—C1—C2116.4 (7)N6—C16—C22121.1 (6)
C17—C1—C2120.8 (8)N6—C16—C15119.5 (6)
N2—C2—C1117.9 (8)C22—C16—C15119.3 (6)
N2—C2—H2127 (4)C18—C17—C1118.8 (8)
C1—C2—H2115 (4)C18—C17—H17120.6
N2—C3—C4105.5 (6)C1—C17—H17120.6
N2—C3—H3A110.6C17—C18—C19121.9 (7)
C4—C3—H3A110.6C17—C18—H18119
N2—C3—H3B110.6C19—C18—H18119
C4—C3—H3B110.6C18—C19—C20123.1 (8)
H3A—C3—H3B108.8C18—C19—C15117.0 (7)
N3—C4—C3108.4 (6)C20—C19—C15119.9 (7)
N3—C4—H4A110C21—C20—C19121.6 (7)
C3—C4—H4A110C21—C20—H20119.2
N3—C4—H4B110C19—C20—H20119.2
C3—C4—H4B110C20—C21—C22121.0 (7)
H4A—C4—H4B108.4C20—C21—H21119.5
N3—C5—C6110.2 (5)C22—C21—H21119.5
N3—C5—H5A109.6C23—C22—C16118.1 (6)
C6—C5—H5A109.6C23—C22—C21121.8 (7)
N3—C5—H5B109.6C16—C22—C21120.1 (7)
C6—C5—H5B109.6C24—C23—C22121.2 (7)
H5A—C5—H5B108.1C24—C23—H23119.4
N4—C6—C5109.0 (5)C22—C23—H23119.4
N4—C6—H6A109.9C23—C24—C9117.1 (7)
C5—C6—H6A109.9C23—C24—H24121.4
N4—C6—H6B109.9C9—C24—H24121.4
C5—C6—H6B109.9C10—O9—C11116.4 (6)
H6A—C6—H6B108.3C10—O10—C13115.7 (7)
N3—C7—C8110.9 (6)O4—Cl1—O3113.1 (5)
N3—C7—H7A109.5O4—Cl1—O2108.7 (5)
C8—C7—H7A109.5O3—Cl1—O2105.2 (8)
N3—C7—H7B109.5O4—Cl1—O1113.0 (5)
C8—C7—H7B109.5O3—Cl1—O1111.3 (7)
H7A—C7—H7B108.1O2—Cl1—O1104.8 (4)
N5—C8—C7107.7 (6)O8—Cl2—O5115.2 (7)
N5—C8—H8A110.2O8—Cl2—O795.9 (9)
C7—C8—H8A110.2O5—Cl2—O7108.4 (6)
N5—C8—H8B110.2O8—Cl2—O6115.1 (6)
C7—C8—H8B110.2O5—Cl2—O6113.9 (4)
H8A—C8—H8B108.5O7—Cl2—O6106.0 (7)
N6—C9—C24123.9 (7)N2—Cu1—N5131.1 (2)
N6—C9—C10117.8 (6)N2—Cu1—N380.9 (2)
C24—C9—C10118.3 (7)N5—Cu1—N385.0 (2)
O10—C10—O9111.1 (6)N2—Cu1—N180.0 (2)
O10—C10—C9110.6 (6)N5—Cu1—N1104.3 (2)
O9—C10—C9105.1 (6)N3—Cu1—N1160.3 (2)
O10—C10—H10107 (4)N2—Cu1—N4109.5 (2)
O9—C10—H10107 (4)N5—Cu1—N4115.2 (2)
C9—C10—H10116 (4)N3—Cu1—N483.8 (2)
O9—C11—C12108.0 (6)N1—Cu1—N4106.90 (19)
O9—C11—H11A110.1C1—N1—C15118.7 (5)
C12—C11—H11A110.1C1—N1—Cu1109.9 (4)
O9—C11—H11B110.1C15—N1—Cu1130.9 (4)
C12—C11—H11B110.1C2—N2—C3127.0 (7)
H11A—C11—H11B108.4C2—N2—Cu1115.5 (6)
C11—C12—H12A109.5C3—N2—Cu1117.4 (5)
C11—C12—H12B109.5C5—N3—C7112.8 (5)
H12A—C12—H12B109.5C5—N3—C4111.3 (5)
C11—C12—H12C109.5C7—N3—C4109.7 (6)
H12A—C12—H12C109.5C5—N3—Cu1107.5 (4)
H12B—C12—H12C109.5C7—N3—Cu1107.1 (4)
C14—C13—O10115.8 (10)C4—N3—Cu1108.3 (4)
C14—C13—H13A108.3C6—N4—Cu1107.5 (4)
O10—C13—H13A108.3C6—N4—H4C110.2
C14—C13—H13B108.3Cu1—N4—H4C110.2
O10—C13—H13B108.3C6—N4—H4D110.2
H13A—C13—H13B107.4Cu1—N4—H4D110.2
C13—C14—H14A109.5H4C—N4—H4D108.5
C13—C14—H14B109.5C8—N5—Cu1108.0 (4)
H14A—C14—H14B109.5C8—N5—H5C110.1
C13—C14—H14C109.5Cu1—N5—H5C110.1
H14A—C14—H14C109.5C8—N5—H5D110.1
H14B—C14—H14C109.5Cu1—N5—H5D110.1
N1—C15—C19120.5 (6)H5C—N5—H5D108.4
N1—C15—C16121.5 (5)C9—N6—C16118.6 (6)
N1—C1—C2—N23.9 (10)N4—Cu1—N1—C1112.0 (4)
C17—C1—C2—N2177.0 (7)N2—Cu1—N1—C15175.4 (5)
N2—C3—C4—N346.2 (7)N5—Cu1—N1—C1545.3 (6)
N3—C5—C6—N453.2 (8)N3—Cu1—N1—C15162.0 (6)
N3—C7—C8—N551.2 (8)N4—Cu1—N1—C1577.1 (5)
N6—C9—C10—O1057.6 (8)C1—C2—N2—C3177.4 (7)
C24—C9—C10—O10123.2 (7)C1—C2—N2—Cu10.3 (9)
N6—C9—C10—O962.4 (8)C4—C3—N2—C2148.1 (7)
C24—C9—C10—O9116.8 (7)C4—C3—N2—Cu129.0 (7)
N1—C15—C16—N64.0 (8)N5—Cu1—N2—C297.7 (6)
C19—C15—C16—N6175.8 (5)N3—Cu1—N2—C2172.9 (6)
N1—C15—C16—C22179.0 (5)N1—Cu1—N2—C22.6 (5)
C19—C15—C16—C221.1 (8)N4—Cu1—N2—C2107.1 (6)
N1—C1—C17—C186.3 (12)N5—Cu1—N2—C379.8 (6)
C2—C1—C17—C18174.7 (7)N3—Cu1—N2—C34.6 (5)
C1—C17—C18—C193.7 (13)N1—Cu1—N2—C3179.9 (5)
C17—C18—C19—C20179.5 (8)N4—Cu1—N2—C375.4 (6)
C17—C18—C19—C151.6 (11)C6—C5—N3—C779.5 (7)
N1—C15—C19—C184.8 (9)C6—C5—N3—C4156.7 (6)
C16—C15—C19—C18175.1 (6)C6—C5—N3—Cu138.3 (7)
N1—C15—C19—C20177.2 (6)C8—C7—N3—C5151.0 (6)
C16—C15—C19—C202.9 (9)C8—C7—N3—C484.3 (7)
C18—C19—C20—C21176.8 (7)C8—C7—N3—Cu133.0 (7)
C15—C19—C20—C211.0 (11)C3—C4—N3—C574.3 (7)
C19—C20—C21—C222.7 (12)C3—C4—N3—C7160.2 (6)
N6—C16—C22—C230.0 (9)C3—C4—N3—Cu143.6 (6)
C15—C16—C22—C23176.9 (6)N2—Cu1—N3—C598.5 (5)
N6—C16—C22—C21179.4 (6)N5—Cu1—N3—C5128.5 (5)
C15—C16—C22—C212.5 (9)N1—Cu1—N3—C5111.8 (6)
C20—C21—C22—C23174.8 (7)N4—Cu1—N3—C512.5 (4)
C20—C21—C22—C164.5 (10)N2—Cu1—N3—C7140.0 (4)
C16—C22—C23—C240.1 (10)N5—Cu1—N3—C77.1 (5)
C21—C22—C23—C24179.3 (7)N1—Cu1—N3—C7126.7 (6)
C22—C23—C24—C90.4 (11)N4—Cu1—N3—C7109.0 (4)
N6—C9—C24—C231.2 (11)N2—Cu1—N3—C421.9 (5)
C10—C9—C24—C23177.9 (6)N5—Cu1—N3—C4111.1 (5)
O10—C10—O9—C1180.3 (8)N1—Cu1—N3—C48.6 (9)
C9—C10—O9—C11160.0 (6)N4—Cu1—N3—C4132.8 (5)
C12—C11—O9—C10171.5 (7)C5—C6—N4—Cu139.9 (6)
O9—C10—O10—C13109.5 (9)N2—Cu1—N4—C693.0 (4)
C9—C10—O10—C13134.1 (8)N5—Cu1—N4—C666.5 (4)
C14—C13—O10—C10157.8 (13)N3—Cu1—N4—C615.0 (4)
C17—C1—N1—C153.1 (9)N1—Cu1—N4—C6178.1 (4)
C2—C1—N1—C15177.9 (6)C7—C8—N5—Cu142.9 (6)
C17—C1—N1—Cu1175.3 (6)N2—Cu1—N5—C853.3 (5)
C2—C1—N1—Cu15.7 (7)N3—Cu1—N5—C820.1 (4)
C19—C15—N1—C12.5 (8)N1—Cu1—N5—C8142.3 (4)
C16—C15—N1—C1177.4 (5)N4—Cu1—N5—C8100.8 (4)
C19—C15—N1—Cu1167.8 (4)C24—C9—N6—C161.3 (10)
C16—C15—N1—Cu112.3 (8)C10—C9—N6—C16177.8 (6)
N2—Cu1—N1—C14.4 (4)C22—C16—N6—C90.7 (9)
N5—Cu1—N1—C1125.6 (4)C15—C16—N6—C9176.2 (5)
N3—Cu1—N1—C18.9 (8)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4C···O90.922.152.977 (7)150
N4—H4C···N60.922.613.182 (7)120
N5—H5D···O100.922.143.037 (8)164
N5—H5D···N60.922.562.942 (7)106
C4—H4A···O7i0.992.533.424 (15)150
C5—H5A···O1ii0.992.523.251 (10)131
C23—H23···O3iii0.952.463.403 (11)169
C24—H24···O7iv0.952.563.488 (13)166
Symmetry codes: (i) x1/2, y, z+3/2; (ii) x+1/2, y+1/2, z; (iii) x+1, y+1, z+1; (iv) x1/2, y+3/2, z+1.

Experimental details

Crystal data
Chemical formula[Cu(C24H34N6O2)](ClO4)2
Mr701.01
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)200
a, b, c (Å)14.1439 (3), 16.6060 (3), 25.8952 (6)
V3)6082.1 (2)
Z8
Radiation typeMo Kα
µ (mm1)0.96
Crystal size (mm)0.25 × 0.2 × 0.15
Data collection
DiffractometerNonius KappaCCD
Absorption correctionMulti-scan
Blessing (1995)
Tmin, Tmax0.796, 0.870
No. of measured, independent and
observed [I > 2σ(I)] reflections
19358, 5524, 2925
Rint0.076
(sin θ/λ)max1)0.602
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.074, 0.256, 1.03
No. of reflections5524
No. of parameters396
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)1.25, 0.41

Computer programs: Collect (Nonius, 2000), HKL SCALEPACK (Otwinowski & Minor, 1997), HKL DENZO and SCALEPACK (Otwinowski & Minor, 1997), SIR92 (Altomare et al., 1993), SHELXL97 (Sheldrick, 1997), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Selected bond angles (º) top
N2—Cu1—N5131.1 (2)N3—Cu1—N1160.3 (2)
N2—Cu1—N380.9 (2)N2—Cu1—N4109.5 (2)
N5—Cu1—N385.0 (2)N5—Cu1—N4115.2 (2)
N2—Cu1—N180.0 (2)N3—Cu1—N483.8 (2)
N5—Cu1—N1104.3 (2)N1—Cu1—N4106.90 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4C···O90.922.152.977 (7)150
N4—H4C···N60.922.613.182 (7)120
N5—H5D···O100.922.143.037 (8)164
N5—H5D···N60.922.562.942 (7)106
C4—H4A···O7i0.992.533.424 (15)150
C5—H5A···O1ii0.992.523.251 (10)131
C23—H23···O3iii0.952.463.403 (11)169
C24—H24···O7iv0.952.563.488 (13)166
Symmetry codes: (i) x1/2, y, z+3/2; (ii) x+1/2, y+1/2, z; (iii) x+1, y+1, z+1; (iv) x1/2, y+3/2, z+1.
 

Subscribe to Acta Crystallographica Section E: Crystallographic Communications

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds