Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The title compound, [Ca(C16H12O4)(H2O)6]·H2O, adopts a conformation about the central C—C bond that places the two carboxylate groups in an anti orientation. The crystal consists of layers of two-dimensional arrays of 2,3-di­phenyl­succinate dianions which are linked by bridging Ca2+ cations. The unit cell contains two Ca2+ cations in an unusual four-membered Ca—O—Ca—O ring in which the bridging O atoms belong to water mol­ecules rather than carboxyl­ates, i.e. poly­[[[di-μ-aqua-bis­[penta­aqua­calcium(II)]]-μ-(meso-2,3-di­phenyl­succinato-O:O′)] succinate dihydrate].

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270100001578/da1102sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270100001578/da1102Isup2.hkl
Contains datablock I

CCDC reference: 145522

Comment top

As part of our ongoing study of shape-switchable molecules (Monahan et al., 1998), we have examined some of the structural and environmental factors that control the conformation of meso-2,3-succinate derivatives (-O2CCHXCHXCO2-). In the case of X = OH (meso-tartrate), previous NMR evidence indicates that in aqueous solution the dianion adopts a conformation with the carboxylate groups in a gauche arrangement when the molecule is viewed along the central C2—C3 bond (Ascenso & Gil, 1980). It was of interest to know if other derivatives adopted, or could be forced to adopt, the same unusual conformation. The conformations in alkaline solution were assigned from vicinal H—H coupling constants (3JHH). In the case of X = OCH3, 3JHH = 5.5 Hz, which indicates that a gauche conformation is predominant (Ascenso & Gil, 1980). In the case of X = Br and X = Ph, the 3JHH values of 11.4 and 12.5 Hz, respectively, suggest conformations with the carboxylate groups in an anti orientation. In the case of X = Ph, attempts were made to induce a conformational change to gauche by adding CaCl2 or MgCl2 to the basic aqueous solutions. In both cases, there were only minor changes in 3JHH values (<0.5 Hz) indicating that even in the presence of chelating dications, meso-2,3-diphenylsuccinate remains in an anti conformation. Since this result is counter to that obtained with a related sysytem (Monahan et al., 1998), we decided to confirm our structural assignments with an X-ray analysis of the title crystalline calcium meso-2,3-diphenylsuccinate, (I). \scheme

The crystal structures of a number of succinate salts are known, including the mono- and trihydrates of calcium succinate (Karipides & Reed, 1980; Mathew et al., 1994). However, this is the first reported structure of a 2,3-diphenylsuccinate salt. X-ray analysis of (I) shows that the molecule adopts an anti conformation about the C2—C3 bond (Fig. 1). The crystal consists of layers of a two-dimensional array of succinate dianions that are linked by bridging Ca2+ ions. Along one axis, the carboxylates are directly bonded to the Ca2+ ions, whereas along the other axis they are hydrogen bonded to bridging water molecules. The phenyl rings pack in face-to-face and edge-to-face orientations to form square-shaped nanotubes with aromatic walls, and the interiors of the tubes contain the hydrated calcium carboxylate ion pairs.

The literature structures of calcium succinate show the Ca and the carboxylate O atoms in two types of four-membered rings (Karipides & Reed, 1980; Mathew et al., 1994). Either a carboxylate group forms a bidentate Ca—O—C—O ring, or it provides a bridging unidentate O atom which is part of a four-membered Ca—O—Ca—O ring. As shown in Fig. 1, compound (I) forms a different type of Ca—O—Ca—O ring in which the bridging O atoms belong to water molecules rather than to carboxylates. The internuclear Ca—Ca distance is 4.3110 (7) Å; which is longer than the 3.98–4.01 Å found in the literature succinate Ca—O—Ca—O rings (Karipides & Reed, 1980; Mathew et al., 1994).

Experimental top

meso-2,3-Diphenylsuccinic acid (182 mg, 0.673 mmol), synthesized according to the method of Wawzonek (1940), was added to solution of Ca(OH)2 (50 mg, 0.673 mmol) in water (100 ml). Slow evaporation of the water produced satisfactory crystals of (I).

Refinement top

Phenyl H atoms were refined with a riding model. All other H atoms were refined with a free variable to restrain H—O and H—H distances.

Computing details top

Data collection: CAD-4 ARGUS (Enraf-Nonius, 1994); cell refinement: CAD-4 ARGUS; data reduction: CHI90S (Boyle, 1997); program(s) used to solve structure: SHELXS86 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXTL (Siemens, 1994).

Figures top
[Figure 1] Fig. 1. The representation of the unit cell of (I), drawn with 40% probability displacement ellipsoids. The uncoordinated water molecules and non-aqueous H atoms are not shown [symmetry codes: (i) 1 - x, 1 - y, 1 - z; (ii) 1 - x, 1 - y, -z].
Calcium(II) meso-2,3-diphenylsuccinate heptahydrate top
Crystal data top
[Ca(C16H12O4)(H2O)6]·H2OZ = 2
Mr = 434.45F(000) = 460
Triclinic, P1Dx = 1.420 Mg m3
a = 6.2394 (8) ÅMo Kα radiation, λ = 0.71073 Å
b = 11.6342 (8) ÅCell parameters from 25 reflections
c = 14.1648 (12) Åθ = 15–16°
α = 89.697 (7)°µ = 0.36 mm1
β = 88.440 (9)°T = 293 K
γ = 81.320 (8)°Plate-like, colorless
V = 1016.1 (2) Å30.42 × 0.40 × 0.15 mm
Data collection top
Enraf-Nonius CAD-4
diffractometer
3307 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.010
Graphite monochromatorθmax = 25.0°, θmin = 2.3°
θ/2θ scansh = 70
Absorption correction: ψ-scan
(North et al., 1968)
k = 1313
Tmin = 0.922, Tmax = 0.947l = 1616
3939 measured reflections3 standard reflections every 200 reflections
3580 independent reflections intensity decay: none
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032Hydrogen site location: difference Fourier map
wR(F2) = 0.083H atoms treated by a mixture of independent and constrained refinement
S = 1.06Calculated w = 1/[σ2(Fo2) + (0.0345P)2 + 0.5761P]
where P = (Fo2 + 2Fc2)/3
3580 reflections(Δ/σ)max = 0.001
305 parametersΔρmax = 0.32 e Å3
27 restraintsΔρmin = 0.21 e Å3
Crystal data top
[Ca(C16H12O4)(H2O)6]·H2Oγ = 81.320 (8)°
Mr = 434.45V = 1016.1 (2) Å3
Triclinic, P1Z = 2
a = 6.2394 (8) ÅMo Kα radiation
b = 11.6342 (8) ŵ = 0.36 mm1
c = 14.1648 (12) ÅT = 293 K
α = 89.697 (7)°0.42 × 0.40 × 0.15 mm
β = 88.440 (9)°
Data collection top
Enraf-Nonius CAD-4
diffractometer
3307 reflections with I > 2σ(I)
Absorption correction: ψ-scan
(North et al., 1968)
Rint = 0.010
Tmin = 0.922, Tmax = 0.9473 standard reflections every 200 reflections
3939 measured reflections intensity decay: none
3580 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.03227 restraints
wR(F2) = 0.083H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.32 e Å3
3580 reflectionsΔρmin = 0.21 e Å3
305 parameters
Special details top

Experimental. North A·C·T., Phillips D·C. & Mathews F·S. (1968) Acta. Cryst. A24, 351 Number of psi-scan sets used was 7. Theta correction was applied. Weighted transmission curves were used. No Fourier smoothing was applied.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement on F2 for ALL reflections except for 0 with very negative F2 or flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating R_factor_obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Ca0.37991 (5)0.47407 (3)0.36167 (2)0.02282 (11)
O10.2858 (2)0.53681 (11)0.53998 (9)0.0273 (3)
H110.201 (3)0.4974 (16)0.5640 (14)0.033*
H120.221 (3)0.6022 (16)0.5413 (14)0.033*
O20.3643 (2)0.29612 (11)0.45747 (9)0.0301 (3)
H210.454 (3)0.2439 (17)0.4399 (15)0.036*
H220.250 (3)0.2711 (18)0.4574 (15)0.036*
O30.4686 (2)0.66553 (11)0.37107 (10)0.0363 (3)
H310.517 (4)0.6937 (19)0.4153 (14)0.044*
H320.445 (4)0.7134 (19)0.3335 (14)0.044*
O40.0164 (2)0.59266 (12)0.37396 (9)0.0323 (3)
H410.046 (3)0.6081 (18)0.3242 (14)0.039*
H420.021 (4)0.6506 (17)0.3990 (14)0.039*
O50.6662 (2)0.32689 (13)0.28615 (10)0.0416 (3)
H510.686 (4)0.2639 (19)0.3128 (15)0.050*
H520.639 (4)0.315 (2)0.2352 (14)0.050*
O60.1447 (2)0.36844 (14)0.27377 (10)0.0434 (4)
H610.138 (4)0.399 (2)0.2215 (15)0.052*
H620.035 (4)0.351 (2)0.2846 (17)0.052*
O70.4400 (2)0.53731 (11)0.20218 (8)0.0330 (3)
C10.3591 (3)0.52495 (15)0.12349 (12)0.0279 (4)
O80.1779 (2)0.49517 (13)0.11197 (9)0.0401 (3)
C20.4933 (3)0.5502 (2)0.03496 (12)0.0315 (4)
H2A0.64070.55610.054440.038*
C30.3991 (3)0.6655 (2)0.01053 (13)0.0348 (4)
C40.1878 (3)0.6888 (2)0.04200 (15)0.0440 (5)
H4A0.09740.63230.036460.053*
C50.1115 (4)0.7957 (2)0.0815 (2)0.0584 (6)
H5A0.03040.81100.10190.070*
C60.2447 (5)0.8795 (2)0.0908 (2)0.0681 (8)
H6A0.19280.95170.11670.082*
C70.4537 (5)0.8557 (2)0.0617 (2)0.0630 (7)
H7A0.54470.91180.06860.076*
C80.5308 (4)0.7499 (2)0.0222 (2)0.0473 (5)
H8A0.67380.73490.00320.057*
O110.7241 (2)0.14112 (11)0.41269 (11)0.0408 (3)
C110.8902 (3)0.1541 (2)0.45469 (14)0.0344 (4)
C12A0.9960 (6)0.0581 (3)0.5249 (3)0.0271 (7)0.50
H12A1.14460.07100.53660.032*0.50
C12B1.0542 (6)0.0382 (3)0.4654 (3)0.0306 (8)0.50
H12B1.18550.05710.49420.037*0.50
O120.9558 (2)0.24924 (10)0.46731 (10)0.0362 (3)
C130.8740 (4)0.0448 (3)0.6234 (2)0.0581 (7)
C140.6745 (4)0.0199 (2)0.6484 (2)0.0614 (7)
H14A0.59900.01990.60700.074*
C150.5850 (5)0.0540 (4)0.7355 (3)0.1023 (15)
H15A0.44840.03730.75330.123*
C160.6961 (10)0.1120 (4)0.7953 (2)0.120 (2)
H16A0.63570.13410.85440.144*
C170.8890 (9)0.1374 (2)0.7708 (2)0.0993 (15)
H17A0.96270.17830.81220.119*
C180.9791 (5)0.1043 (3)0.6861 (2)0.0765 (9)
H18A1.11560.12230.66970.092*
O210.1697 (3)0.6331 (2)0.20785 (11)0.0480 (4)
H2110.277 (4)0.605 (2)0.2053 (18)0.058*
H2120.082 (4)0.594 (2)0.1728 (17)0.058*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ca0.0227 (2)0.0244 (2)0.0212 (2)0.00323 (13)0.00017 (12)0.00170 (12)
O10.0245 (6)0.0241 (6)0.0320 (6)0.0004 (5)0.0016 (5)0.0026 (5)
O20.0294 (7)0.0267 (6)0.0340 (7)0.0043 (5)0.0007 (5)0.0011 (5)
O30.0502 (8)0.0299 (7)0.0303 (7)0.0098 (6)0.0082 (6)0.0042 (5)
O40.0293 (7)0.0373 (7)0.0301 (7)0.0034 (6)0.0042 (5)0.0029 (6)
O50.0491 (8)0.0423 (8)0.0301 (7)0.0026 (7)0.0034 (6)0.0021 (6)
O60.0486 (9)0.0536 (9)0.0337 (7)0.0257 (7)0.0045 (7)0.0055 (6)
O70.0368 (7)0.0444 (7)0.0198 (6)0.0126 (6)0.0005 (5)0.0026 (5)
C10.0316 (9)0.0289 (9)0.0230 (8)0.0048 (7)0.0041 (7)0.0002 (7)
O80.0354 (7)0.0630 (9)0.0250 (6)0.0179 (6)0.0008 (5)0.0016 (6)
C20.0301 (9)0.0423 (10)0.0231 (8)0.0093 (8)0.0017 (7)0.0007 (7)
C30.0406 (10)0.0350 (10)0.0276 (9)0.0038 (8)0.0088 (8)0.0003 (7)
C40.0418 (11)0.0463 (12)0.0436 (11)0.0062 (9)0.0013 (9)0.0059 (9)
C50.0503 (13)0.064 (2)0.0550 (14)0.0098 (11)0.0008 (11)0.0172 (12)
C60.079 (2)0.0422 (13)0.075 (2)0.0115 (12)0.0175 (14)0.0238 (12)
C70.075 (2)0.0389 (12)0.076 (2)0.0171 (12)0.0137 (14)0.0101 (11)
C80.0455 (12)0.0465 (12)0.0513 (13)0.0123 (10)0.0038 (10)0.0068 (10)
O110.0352 (7)0.0252 (6)0.0610 (9)0.0007 (5)0.0093 (6)0.0001 (6)
C110.0258 (9)0.0261 (9)0.0496 (11)0.0010 (7)0.0000 (8)0.0102 (8)
C12A0.025 (2)0.024 (2)0.032 (2)0.0028 (14)0.000 (2)0.002 (2)
C12B0.028 (2)0.023 (2)0.039 (2)0.0003 (15)0.003 (2)0.001 (2)
O120.0315 (7)0.0254 (6)0.0514 (8)0.0028 (5)0.0025 (6)0.0039 (6)
C130.0366 (11)0.099 (2)0.0322 (11)0.0106 (12)0.0001 (9)0.0128 (11)
C140.0472 (13)0.0386 (12)0.098 (2)0.0044 (10)0.0095 (13)0.0065 (12)
C150.065 (2)0.112 (3)0.117 (3)0.017 (2)0.049 (2)0.067 (3)
C160.191 (5)0.100 (3)0.041 (2)0.067 (3)0.030 (3)0.009 (2)
C170.208 (5)0.0410 (14)0.051 (2)0.016 (2)0.051 (2)0.0006 (13)
C180.075 (2)0.106 (2)0.060 (2)0.048 (2)0.0282 (14)0.039 (2)
O210.0359 (8)0.0702 (11)0.0399 (8)0.0140 (7)0.0020 (6)0.0037 (7)
Geometric parameters (Å, º) top
Ca—O32.3799 (13)C5—C61.377 (4)
Ca—O72.4093 (12)C6—C71.367 (4)
Ca—O62.4237 (14)C7—C81.374 (3)
Ca—O42.4728 (13)O11—C111.238 (2)
Ca—O22.4822 (13)C11—O121.252 (2)
Ca—O52.5017 (15)C11—C12A1.572 (4)
Ca—O1i2.5264 (13)C11—C12B1.574 (4)
Ca—O12.6582 (13)C12A—C12Aiii1.522 (7)
Ca—Cai4.3110 (7)C12A—C131.590 (5)
O1—Cai2.5264 (13)C12B—C12Biii1.531 (8)
O7—C11.254 (2)C12B—C13iii1.603 (5)
C1—O81.247 (2)C13—C141.358 (4)
C1—C21.540 (2)C13—C181.368 (4)
C2—C2ii1.526 (4)C13—C12Biii1.603 (5)
C2—C31.528 (3)C14—C151.375 (5)
C3—C81.379 (3)C15—C161.353 (7)
C3—C41.390 (3)C16—C171.319 (6)
C4—C51.384 (3)C17—C181.345 (5)
O3—Ca—O773.03 (5)C1—O7—Ca136.09 (11)
O3—Ca—O6138.96 (5)O8—C1—O7124.8 (2)
O7—Ca—O678.01 (5)O8—C1—C2117.97 (15)
O3—Ca—O478.32 (5)O7—C1—C2117.2 (2)
O7—Ca—O492.66 (5)C2ii—C2—C3111.3 (2)
O6—Ca—O474.60 (5)C2ii—C2—C1110.1 (2)
O3—Ca—O2142.01 (5)C3—C2—C1111.14 (14)
O7—Ca—O2141.86 (4)C8—C3—C4118.4 (2)
O6—Ca—O276.27 (5)C8—C3—C2118.4 (2)
O4—Ca—O2106.93 (5)C4—C3—C2123.1 (2)
O3—Ca—O5115.20 (5)C5—C4—C3120.3 (2)
O7—Ca—O572.39 (5)C6—C5—C4120.3 (2)
O6—Ca—O581.81 (5)C7—C6—C5119.4 (2)
O4—Ca—O5154.35 (5)C6—C7—C8120.7 (2)
O2—Ca—O576.44 (5)C7—C8—C3120.9 (2)
O3—Ca—O1i72.66 (5)O11—C11—O12125.3 (2)
O7—Ca—O1i112.62 (4)O11—C11—C12A120.4 (2)
O6—Ca—O1i146.96 (5)O12—C11—C12A111.7 (2)
O4—Ca—O1i132.88 (4)O11—C11—C12B113.5 (2)
O2—Ca—O1i77.50 (4)O12—C11—C12B118.9 (2)
O5—Ca—O1i72.76 (5)C12Aiii—C12A—C11106.6 (4)
O3—Ca—O175.66 (4)C12Aiii—C12A—C13105.6 (4)
O7—Ca—O1146.65 (4)C11—C12A—C13117.8 (3)
O6—Ca—O1121.18 (5)C12Biii—C12B—C11106.2 (4)
O4—Ca—O169.83 (4)C12Biii—C12B—C13iii104.3 (4)
O2—Ca—O171.48 (4)C11—C12B—C13iii121.1 (3)
O5—Ca—O1133.04 (4)C14—C13—C18118.5 (2)
O1i—Ca—O167.52 (4)C14—C13—C12A133.7 (2)
O3—Ca—Cai70.89 (4)C18—C13—C12A104.6 (2)
O7—Ca—Cai137.77 (3)C14—C13—C12Biii103.7 (2)
O6—Ca—Cai144.14 (4)C18—C13—C12Biii135.4 (3)
O4—Ca—Cai100.73 (3)C13—C14—C15119.5 (3)
O2—Ca—Cai71.18 (3)C16—C15—C14119.9 (3)
O5—Ca—Cai104.31 (4)C17—C16—C15120.8 (3)
O1i—Ca—Cai34.73 (3)C16—C17—C18120.1 (3)
O1—Ca—Cai32.79 (3)C17—C18—C13121.3 (3)
Cai—O1—Ca112.48 (4)
O3—Ca—O1—Ca76.87 (6)C6—C7—C8—C30.5 (4)
O7—Ca—O1—Ca97.38 (8)C4—C3—C8—C71.8 (3)
O6—Ca—O1—Ca144.09 (6)C2—C3—C8—C7179.2 (2)
O4—Ca—O1—Ca159.47 (6)O11—C11—C12A—C12A46.2 (4)
O2—Ca—O1—Ca83.77 (5)O12—C11—C12A—C12A151.4 (3)
O5—Ca—O1—Ca34.38 (8)C12B—C11—C12A—C12A41.5 (3)
O1—Ca—O1—Ca0.0O11—C11—C12A—C1372.2 (3)
Ca—Ca—O1—Ca0.0O12—C11—C12A—C1390.3 (3)
O3—Ca—O7—C1143.4 (2)C12B—C11—C12A—C13159.9 (5)
O6—Ca—O7—C17.2 (2)O11—C11—C12B—C12B68.9 (4)
O4—Ca—O7—C166.5 (2)O12—C11—C12B—C12B127.6 (3)
O2—Ca—O7—C155.6 (2)C12A—C11—C12B—C12B41.1 (3)
O5—Ca—O7—C192.3 (2)O11—C11—C12B—C1349.5 (3)
O1—Ca—O7—C1154.3 (2)O12—C11—C12B—C13114.1 (3)
O1—Ca—O7—C1122.6 (2)C12A—C11—C12B—C13159.4 (5)
Ca—Ca—O7—C1175.64 (14)C12A—C12A—C13—C1459.0 (5)
Ca—O7—C1—O818.9 (3)C11—C12A—C13—C1459.9 (4)
Ca—O7—C1—C2161.96 (12)C12A—C12A—C13—C18142.3 (3)
O8—C1—C2—C250.4 (3)C11—C12A—C13—C1898.8 (3)
O7—C1—C2—C2130.4 (2)C12A—C12A—C13—C12B0.9 (3)
O8—C1—C2—C373.3 (2)C11—C12A—C13—C12B119.8 (4)
O7—C1—C2—C3105.9 (2)C18—C13—C14—C150.5 (4)
C2—C2—C3—C8114.3 (2)C12A—C13—C14—C15156.8 (3)
C1—C2—C3—C8122.7 (2)C12B—C13—C14—C15164.4 (3)
C2—C2—C3—C464.7 (3)C13—C14—C15—C160.0 (5)
C1—C2—C3—C458.3 (2)C14—C15—C16—C170.7 (6)
C8—C3—C4—C51.8 (3)C15—C16—C17—C180.9 (6)
C2—C3—C4—C5179.2 (2)C16—C17—C18—C130.4 (5)
C3—C4—C5—C60.6 (4)C14—C13—C18—C170.3 (4)
C4—C5—C6—C70.8 (4)C12A—C13—C18—C17162.8 (3)
C5—C6—C7—C80.8 (4)C12B—C13—C18—C17158.6 (3)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y+1, z; (iii) x+2, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H11···O4iv0.82 (2)2.02 (2)2.833 (2)177 (2)
O1—H12···O12i0.81 (2)1.91 (2)2.712 (2)173 (2)
O2—H21···O110.80 (2)1.94 (2)2.722 (2)165 (2)
O2—H22···O12v0.81 (2)1.89 (2)2.686 (2)166 (2)
O3—H31···O2i0.80 (2)1.98 (2)2.744 (2)158 (2)
O4—H41···O210.82 (2)1.84 (2)2.660 (2)175 (2)
O4—H42···O12i0.77 (2)2.25 (2)2.938 (2)150 (2)
O5—H51···O110.82 (2)2.00 (2)2.788 (2)162 (2)
O6—H61···O80.82 (2)1.94 (2)2.739 (2)165 (2)
O6—H62···O5v0.75 (3)2.36 (3)3.096 (2)166 (2)
O21—H211···O7v0.79 (2)2.04 (2)2.830 (2)178 (2)
O21—H212···O80.82 (2)2.02 (2)2.817 (2)167 (2)
Symmetry codes: (i) x+1, y+1, z+1; (iv) x, y+1, z+1; (v) x1, y, z.

Experimental details

Crystal data
Chemical formula[Ca(C16H12O4)(H2O)6]·H2O
Mr434.45
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)6.2394 (8), 11.6342 (8), 14.1648 (12)
α, β, γ (°)89.697 (7), 88.440 (9), 81.320 (8)
V3)1016.1 (2)
Z2
Radiation typeMo Kα
µ (mm1)0.36
Crystal size (mm)0.42 × 0.40 × 0.15
Data collection
DiffractometerEnraf-Nonius CAD-4
diffractometer
Absorption correctionψ-scan
(North et al., 1968)
Tmin, Tmax0.922, 0.947
No. of measured, independent and
observed [I > 2σ(I)] reflections
3939, 3580, 3307
Rint0.010
(sin θ/λ)max1)0.594
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.083, 1.06
No. of reflections3580
No. of parameters305
No. of restraints27
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.32, 0.21

Computer programs: CAD-4 ARGUS (Enraf-Nonius, 1994), CAD-4 ARGUS, CHI90S (Boyle, 1997), SHELXS86 (Sheldrick, 1990), SHELXL97 (Sheldrick, 1997), ORTEP-3 for Windows (Farrugia, 1997), SHELXTL (Siemens, 1994).

Selected geometric parameters (Å, º) top
Ca—O32.3799 (13)Ca—O22.4822 (13)
Ca—O72.4093 (12)Ca—O52.5017 (15)
Ca—O62.4237 (14)Ca—Cai4.3110 (7)
Ca—O42.4728 (13)C2—C31.528 (3)
O3—Ca—O773.03 (5)O7—Ca—O1146.65 (4)
O3—Ca—O6138.96 (5)O6—Ca—O1121.18 (5)
O7—Ca—O678.01 (5)O5—Ca—O1133.04 (4)
O3—Ca—O478.32 (5)O3—Ca—Cai70.89 (4)
O3—Ca—O2142.01 (5)C1—O7—Ca136.09 (11)
O7—Ca—O2141.86 (4)C2ii—C2—C3111.3 (2)
O4—Ca—O2106.93 (5)C2ii—C2—C1110.1 (2)
O4—Ca—O5154.35 (5)
O6—Ca—O7—C17.2 (2)C1—C2—C3—C458.3 (2)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H11···O4iii0.82 (2)2.02 (2)2.833 (2)177 (2)
O1—H12···O12i0.81 (2)1.91 (2)2.712 (2)173 (2)
O2—H21···O110.80 (2)1.94 (2)2.722 (2)165 (2)
O2—H22···O12iv0.81 (2)1.89 (2)2.686 (2)166 (2)
O3—H31···O2i0.80 (2)1.98 (2)2.744 (2)158 (2)
O4—H41···O210.82 (2)1.84 (2)2.660 (2)175 (2)
O4—H42···O12i0.77 (2)2.25 (2)2.938 (2)150 (2)
O5—H51···O110.82 (2)2.00 (2)2.788 (2)162 (2)
O6—H61···O80.82 (2)1.94 (2)2.739 (2)165 (2)
O6—H62···O5iv0.75 (3)2.36 (3)3.096 (2)166 (2)
O21—H211···O7iv0.79 (2)2.04 (2)2.830 (2)178 (2)
O21—H212···O80.82 (2)2.02 (2)2.817 (2)167 (2)
Symmetry codes: (i) x+1, y+1, z+1; (iii) x, y+1, z+1; (iv) x1, y, z.
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds