Supporting information
Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270100001608/da1125sup1.cif | |
Structure factor file (CIF format) https://doi.org/10.1107/S0108270100001608/da1125Isup2.hkl | |
Structure factor file (CIF format) https://doi.org/10.1107/S0108270100001608/da1125IIsup3.hkl |
CCDC references: 145543; 145544
Compound (I) was prepared from a mixture of VCl3 (50 mg, 0.3 mmol) and K[Se2P(OEt)2] (280 mg, 0.9 mmol) in previously degassed absolute ethanol (10 ml). The deep purple solution was stirred at room temperature for 2 h. The solvent was removed under vacuum. The residue was disolved in diethyl ether (10 ml) and the resulting solution was stored at 277 K. Yellow crystals grew in 35% yield over two weeks. Spectroscopic analysis: 1H NMR (CD3OD, p.p.m.): 4.16 (m, CH2), 1.80 (t, CH3); 31P NMR (CD3OD, p.p.m., 1JPSe in Hz): 69.5 (901, 570). Some pink crystals of unknown composition were also obtained. Compound (II) was prepared according to the synthesis reported by Kudchadker et al. (1968). Orange crystals were grown directly from the reaction mixture in 55% yield. Spectroscopic analysis: 1H NMR (CD3OD, p.p.m.): 5.11 (m, CH), 1.56 (d, CH3); 31P NMR (CD3OD, p.p.m., 1JPSe in Hz): 63.3 (884, 532).
H atoms were generated in calculated positions and constrained with the use of a riding model·The isotropic displacement parameter for each H atom was set 20% larger than that of the parent atom.
For both compounds, data collection: SMART (Bruker, 1999); cell refinement: SMART (Bruker, 1999); data reduction: SAINT-Plus (Bruker, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997b); molecular graphics: SHELXTL97 (Sheldrick, 1997a); software used to prepare material for publication: SHELXTL97.
[(C2H5O)4P2Se5] | Z = 2 |
Mr = 636.98 | F(000) = 600 |
Triclinic, P1 | Dx = 2.161 Mg m−3 |
a = 8.320 (2) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 11.222 (3) Å | Cell parameters from 8192 reflections |
c = 12.409 (3) Å | θ = 2.1–25.0° |
α = 115.317 (4)° | µ = 9.52 mm−1 |
β = 107.351 (4)° | T = 153 K |
γ = 92.688 (4)° | Needle, yellow |
V = 979.0 (5) Å3 | 0.31 × 0.07 × 0.03 mm |
Bruker SMART 1000 CCD diffractometer | 3398 independent reflections |
Radiation source: standard-focus sealed tube | 2893 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.017 |
ω scans | θmax = 25°, θmin = 2.1° |
Absorption correction: numerical face-indexed (SHELXTL; Sheldrick, 1997a) | h = −9→9 |
Tmin = 0.434, Tmax = 0.921 | k = −13→13 |
6938 measured reflections | l = −14→14 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.021 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.054 | H-atom parameters constrained |
S = 0.90 | w = 1/[σ2(Fo2) + (0.04Fo2)2] |
3398 reflections | (Δ/σ)max = 0.001 |
172 parameters | Δρmax = 0.54 e Å−3 |
0 restraints | Δρmin = −0.46 e Å−3 |
[(C2H5O)4P2Se5] | γ = 92.688 (4)° |
Mr = 636.98 | V = 979.0 (5) Å3 |
Triclinic, P1 | Z = 2 |
a = 8.320 (2) Å | Mo Kα radiation |
b = 11.222 (3) Å | µ = 9.52 mm−1 |
c = 12.409 (3) Å | T = 153 K |
α = 115.317 (4)° | 0.31 × 0.07 × 0.03 mm |
β = 107.351 (4)° |
Bruker SMART 1000 CCD diffractometer | 3398 independent reflections |
Absorption correction: numerical face-indexed (SHELXTL; Sheldrick, 1997a) | 2893 reflections with I > 2σ(I) |
Tmin = 0.434, Tmax = 0.921 | Rint = 0.017 |
6938 measured reflections |
R[F2 > 2σ(F2)] = 0.021 | 0 restraints |
wR(F2) = 0.054 | H-atom parameters constrained |
S = 0.90 | Δρmax = 0.54 e Å−3 |
3398 reflections | Δρmin = −0.46 e Å−3 |
172 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Hydrogen atoms were generated in calculated positions and constrained with the use of a riding model·The isotropic displacement parameter for each hydrogen atom was set 20% larger than the atom to which it is attached. The final models were restricted to anisotropic displacement parameters for all non-hydrogen atoms. |
x | y | z | Uiso*/Ueq | ||
Se1 | 0.25242 (4) | 0.05311 (3) | 0.49913 (3) | 0.02567 (9) | |
Se2 | 0.05647 (4) | 0.19214 (3) | 0.54976 (3) | 0.02582 (9) | |
Se3 | 0.48764 (4) | 0.19252 (3) | 0.51663 (3) | 0.02733 (9) | |
Se4 | 0.62316 (4) | 0.26035 (4) | 0.30999 (4) | 0.04279 (11) | |
Se5 | −0.01517 (5) | 0.37428 (4) | 0.83322 (4) | 0.04576 (11) | |
P1 | 0.15677 (10) | 0.26861 (8) | 0.76130 (8) | 0.02794 (18) | |
P2 | 0.40586 (10) | 0.17483 (8) | 0.32058 (8) | 0.02652 (17) | |
O1 | 0.3479 (3) | 0.3455 (2) | 0.80858 (19) | 0.0303 (5) | |
O2 | 0.2037 (3) | 0.1489 (2) | 0.7901 (2) | 0.0387 (5) | |
O3 | 0.3155 (2) | 0.0257 (2) | 0.21968 (19) | 0.0298 (5) | |
O4 | 0.2399 (3) | 0.2371 (2) | 0.3001 (2) | 0.0325 (5) | |
C1 | 0.3815 (4) | 0.4689 (3) | 0.7984 (3) | 0.0371 (8) | |
H1A | 0.3262 | 0.5363 | 0.8455 | 0.045* | |
H1B | 0.3371 | 0.4505 | 0.7099 | 0.045* | |
C2 | 0.5721 (4) | 0.5181 (4) | 0.8526 (3) | 0.0447 (9) | |
H2A | 0.5989 | 0.5997 | 0.8482 | 0.067* | |
H2B | 0.6252 | 0.4510 | 0.8046 | 0.067* | |
H2C | 0.6146 | 0.5353 | 0.9399 | 0.067* | |
C3 | 0.0941 (4) | 0.0686 (4) | 0.8169 (4) | 0.0461 (9) | |
H3A | −0.0170 | 0.0946 | 0.8061 | 0.055* | |
H3B | 0.0759 | −0.0258 | 0.7571 | 0.055* | |
C4 | 0.1718 (6) | 0.0878 (6) | 0.9452 (5) | 0.0873 (18) | |
H4A | 0.0974 | 0.0349 | 0.9616 | 0.131* | |
H4B | 0.1892 | 0.1812 | 1.0042 | 0.131* | |
H4C | 0.2804 | 0.0601 | 0.9551 | 0.131* | |
C5 | 0.4089 (4) | −0.0845 (3) | 0.1960 (3) | 0.0431 (9) | |
H5A | 0.3994 | −0.1271 | 0.2479 | 0.052* | |
H5B | 0.5297 | −0.0495 | 0.2192 | 0.052* | |
C6 | 0.3381 (5) | −0.1834 (4) | 0.0613 (3) | 0.0519 (10) | |
H6A | 0.4012 | −0.2548 | 0.0461 | 0.078* | |
H6B | 0.3471 | −0.1408 | 0.0102 | 0.078* | |
H6C | 0.2194 | −0.2197 | 0.0393 | 0.078* | |
C7 | 0.2477 (4) | 0.3807 (3) | 0.3734 (4) | 0.0406 (8) | |
H7A | 0.3152 | 0.4322 | 0.3501 | 0.049* | |
H7B | 0.3012 | 0.4090 | 0.4637 | 0.049* | |
C8 | 0.0699 (5) | 0.4035 (4) | 0.3446 (4) | 0.0591 (11) | |
H8A | 0.0715 | 0.4977 | 0.3910 | 0.089* | |
H8B | 0.0048 | 0.3533 | 0.3691 | 0.089* | |
H8C | 0.0179 | 0.3745 | 0.2549 | 0.089* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Se1 | 0.02814 (16) | 0.02575 (16) | 0.02378 (16) | 0.00686 (12) | 0.01256 (12) | 0.00965 (13) |
Se2 | 0.02637 (16) | 0.02703 (17) | 0.02482 (16) | 0.00786 (12) | 0.00974 (12) | 0.01196 (13) |
Se3 | 0.02533 (16) | 0.02883 (17) | 0.02313 (16) | 0.00381 (12) | 0.00845 (12) | 0.00813 (13) |
Se4 | 0.03507 (19) | 0.0523 (2) | 0.0535 (2) | 0.00681 (15) | 0.02461 (17) | 0.02969 (19) |
Se5 | 0.0414 (2) | 0.0587 (2) | 0.0402 (2) | 0.02487 (17) | 0.02564 (17) | 0.01663 (18) |
P1 | 0.0287 (4) | 0.0352 (4) | 0.0243 (4) | 0.0119 (3) | 0.0143 (3) | 0.0138 (4) |
P2 | 0.0247 (4) | 0.0308 (4) | 0.0261 (4) | 0.0068 (3) | 0.0117 (3) | 0.0131 (3) |
O1 | 0.0298 (11) | 0.0329 (12) | 0.0264 (11) | 0.0082 (9) | 0.0098 (9) | 0.0122 (10) |
O2 | 0.0427 (13) | 0.0507 (14) | 0.0471 (14) | 0.0184 (11) | 0.0267 (11) | 0.0361 (12) |
O3 | 0.0274 (11) | 0.0305 (12) | 0.0263 (11) | 0.0089 (9) | 0.0096 (9) | 0.0082 (9) |
O4 | 0.0304 (11) | 0.0312 (12) | 0.0364 (12) | 0.0099 (9) | 0.0128 (10) | 0.0151 (10) |
C1 | 0.0385 (18) | 0.0281 (17) | 0.0378 (19) | 0.0072 (14) | 0.0126 (15) | 0.0096 (15) |
C2 | 0.039 (2) | 0.048 (2) | 0.037 (2) | −0.0002 (16) | 0.0075 (16) | 0.0156 (17) |
C3 | 0.0378 (19) | 0.058 (2) | 0.049 (2) | −0.0033 (16) | 0.0107 (17) | 0.035 (2) |
C4 | 0.062 (3) | 0.148 (5) | 0.073 (3) | −0.015 (3) | 0.006 (3) | 0.085 (4) |
C5 | 0.045 (2) | 0.040 (2) | 0.036 (2) | 0.0204 (16) | 0.0101 (16) | 0.0116 (16) |
C6 | 0.059 (2) | 0.041 (2) | 0.037 (2) | 0.0197 (18) | 0.0123 (18) | 0.0035 (17) |
C7 | 0.047 (2) | 0.0330 (19) | 0.050 (2) | 0.0161 (15) | 0.0267 (17) | 0.0189 (17) |
C8 | 0.053 (2) | 0.050 (2) | 0.084 (3) | 0.0283 (19) | 0.027 (2) | 0.035 (2) |
Se1—Se3 | 2.3439 (6) | P2—O4 | 1.578 (2) |
Se1—Se2 | 2.3448 (6) | O1—C1 | 1.465 (4) |
Se2—P1 | 2.2412 (11) | O2—C3 | 1.454 (4) |
Se3—P2 | 2.2378 (10) | O3—C5 | 1.461 (4) |
Se4—P2 | 2.0721 (9) | O4—C7 | 1.460 (4) |
Se5—P1 | 2.0652 (9) | C1—C2 | 1.495 (5) |
P1—O2 | 1.569 (2) | C3—C4 | 1.442 (5) |
P1—O1 | 1.581 (2) | C5—C6 | 1.462 (5) |
P2—O3 | 1.569 (2) | C7—C8 | 1.477 (5) |
Se3—Se1—Se2 | 105.44 (3) | O3—P2—Se3 | 109.68 (9) |
P1—Se2—Se1 | 98.43 (3) | O4—P2—Se3 | 107.83 (9) |
P2—Se3—Se1 | 101.07 (2) | Se4—P2—Se3 | 105.24 (4) |
O2—P1—O1 | 96.40 (12) | C1—O1—P1 | 120.07 (19) |
O2—P1—Se5 | 118.86 (9) | C3—O2—P1 | 125.3 (2) |
O1—P1—Se5 | 118.51 (9) | C5—O3—P2 | 122.22 (19) |
O2—P1—Se2 | 108.76 (10) | C7—O4—P2 | 121.1 (2) |
O1—P1—Se2 | 105.30 (8) | O1—C1—C2 | 107.2 (3) |
Se5—P1—Se2 | 107.83 (4) | C4—C3—O2 | 110.5 (3) |
O3—P2—O4 | 96.42 (11) | O3—C5—C6 | 109.8 (3) |
O3—P2—Se4 | 118.67 (9) | O4—C7—C8 | 107.8 (3) |
O4—P2—Se4 | 118.52 (9) | ||
P1—Se2—Se1—Se3 | −87.84 (3) | Se2—Se1—Se3—P2 | −87.75 (3) |
[(C3H7O)4P2Se4] | Z = 1 |
Mr = 614.12 | F(000) = 298 |
Triclinic, P1 | Dx = 1.831 Mg m−3 |
a = 8.3796 (10) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 8.5314 (10) Å | Cell parameters from 8192 reflections |
c = 8.5577 (10) Å | θ = 2.4–25.0° |
α = 98.668 (2)° | µ = 6.74 mm−1 |
β = 111.851 (2)° | T = 153 K |
γ = 93.459 (2)° | Block, orange |
V = 556.81 (11) Å3 | 0.13 × 0.09 × 0.04 mm |
Bruker SMART 1000 CCD diffractometer | 1933 independent reflections |
Radiation source: standard-focus sealed tube | 1745 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.018 |
ω scans | θmax = 25.0°, θmin = 2.4° |
Absorption correction: numerical face-indexed (SHELXTL; Sheldrick, 1997a) | h = −9→9 |
Tmin = 0.425, Tmax = 0.877 | k = −10→10 |
4701 measured reflections | l = −10→10 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.026 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.071 | H-atom parameters constrained |
S = 1.33 | w = 1/[σ2(Fo2) + (0.04Fo2)2] |
1933 reflections | (Δ/σ)max = 0.001 |
100 parameters | Δρmax = 1.16 e Å−3 |
0 restraints | Δρmin = −0.45 e Å−3 |
[(C3H7O)4P2Se4] | γ = 93.459 (2)° |
Mr = 614.12 | V = 556.81 (11) Å3 |
Triclinic, P1 | Z = 1 |
a = 8.3796 (10) Å | Mo Kα radiation |
b = 8.5314 (10) Å | µ = 6.74 mm−1 |
c = 8.5577 (10) Å | T = 153 K |
α = 98.668 (2)° | 0.13 × 0.09 × 0.04 mm |
β = 111.851 (2)° |
Bruker SMART 1000 CCD diffractometer | 1933 independent reflections |
Absorption correction: numerical face-indexed (SHELXTL; Sheldrick, 1997a) | 1745 reflections with I > 2σ(I) |
Tmin = 0.425, Tmax = 0.877 | Rint = 0.018 |
4701 measured reflections |
R[F2 > 2σ(F2)] = 0.026 | 0 restraints |
wR(F2) = 0.071 | H-atom parameters constrained |
S = 1.33 | Δρmax = 1.16 e Å−3 |
1933 reflections | Δρmin = −0.45 e Å−3 |
100 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Hydrogen atoms were generated in calculated positions and constrained with the use of a riding model·The isotropic displacement parameter for each hydrogen atom was set 20% larger than the atom to which it is attached. The final models were restricted to anisotropic displacement parameters for all non-hydrogen atoms. |
x | y | z | Uiso*/Ueq | ||
P1 | 0.32173 (9) | 0.30607 (8) | 0.11244 (8) | 0.02269 (17) | |
Se1 | 0.40785 (4) | 0.16835 (3) | 0.30048 (3) | 0.03273 (12) | |
Se2 | 0.56404 (3) | 0.42694 (4) | 0.11210 (4) | 0.03466 (13) | |
O1 | 0.2052 (2) | 0.2225 (2) | −0.0758 (2) | 0.0288 (4) | |
O2 | 0.2007 (2) | 0.4351 (2) | 0.1291 (2) | 0.0272 (4) | |
C1 | 0.2520 (4) | 0.0823 (3) | −0.1653 (4) | 0.0331 (7) | |
H1A | 0.3753 | 0.0681 | −0.1002 | 0.040* | |
C2 | 0.1341 (5) | −0.0624 (4) | −0.1754 (4) | 0.0484 (8) | |
H2A | 0.1544 | −0.0804 | −0.0595 | 0.073* | |
H2B | 0.1580 | −0.1562 | −0.2408 | 0.073* | |
H2C | 0.0131 | −0.0450 | −0.2326 | 0.073* | |
C3 | 0.2312 (5) | 0.1195 (4) | −0.3391 (4) | 0.0434 (8) | |
H3A | 0.3111 | 0.2147 | −0.3236 | 0.065* | |
H3B | 0.1118 | 0.1394 | −0.3997 | 0.065* | |
H3C | 0.2575 | 0.0286 | −0.4062 | 0.065* | |
C4 | 0.2473 (4) | 0.5548 (3) | 0.2891 (3) | 0.0284 (6) | |
H4A | 0.3671 | 0.5464 | 0.3702 | 0.034* | |
C5 | 0.1185 (5) | 0.5168 (4) | 0.3666 (4) | 0.0455 (8) | |
H5A | 0.1295 | 0.4104 | 0.3966 | 0.068* | |
H5B | 0.0009 | 0.5186 | 0.2836 | 0.068* | |
H5C | 0.1414 | 0.5966 | 0.4701 | 0.068* | |
C6 | 0.2402 (4) | 0.7174 (4) | 0.2393 (4) | 0.0372 (7) | |
H6A | 0.3278 | 0.7360 | 0.1915 | 0.056* | |
H6B | 0.2633 | 0.7998 | 0.3408 | 0.056* | |
H6C | 0.1249 | 0.7220 | 0.1533 | 0.056* |
U11 | U22 | U33 | U12 | U13 | U23 | |
P1 | 0.0222 (3) | 0.0238 (4) | 0.0219 (3) | 0.0017 (3) | 0.0083 (3) | 0.0047 (3) |
Se1 | 0.0383 (2) | 0.03172 (19) | 0.02818 (18) | 0.00304 (13) | 0.01040 (14) | 0.01274 (13) |
Se2 | 0.02215 (18) | 0.0449 (2) | 0.0406 (2) | 0.00306 (13) | 0.01094 (14) | 0.02222 (15) |
O1 | 0.0277 (10) | 0.0316 (10) | 0.0220 (9) | 0.0089 (8) | 0.0049 (8) | 0.0001 (8) |
O2 | 0.0240 (10) | 0.0304 (10) | 0.0236 (9) | 0.0053 (8) | 0.0066 (8) | 0.0008 (8) |
C1 | 0.0362 (16) | 0.0338 (16) | 0.0258 (13) | 0.0146 (13) | 0.0082 (12) | 0.0010 (12) |
C2 | 0.065 (2) | 0.0345 (18) | 0.0406 (18) | 0.0081 (16) | 0.0157 (17) | 0.0038 (15) |
C3 | 0.055 (2) | 0.0468 (19) | 0.0273 (15) | 0.0105 (16) | 0.0172 (15) | −0.0019 (14) |
C4 | 0.0298 (15) | 0.0270 (15) | 0.0243 (13) | 0.0049 (11) | 0.0078 (12) | −0.0005 (11) |
C5 | 0.057 (2) | 0.046 (2) | 0.0415 (18) | 0.0025 (16) | 0.0308 (17) | 0.0032 (15) |
C6 | 0.0375 (17) | 0.0315 (16) | 0.0380 (16) | 0.0046 (13) | 0.0111 (14) | 0.0027 (13) |
P1—O2 | 1.5670 (18) | O2—C4 | 1.484 (3) |
P1—O1 | 1.5673 (19) | C1—C2 | 1.505 (5) |
P1—Se1 | 2.0733 (7) | C1—C3 | 1.516 (4) |
P1—Se2 | 2.2223 (8) | C4—C5 | 1.505 (4) |
Se2—Se2i | 2.3951 (6) | C4—C6 | 1.510 (4) |
O1—C1 | 1.475 (3) | ||
O2—P1—O1 | 96.46 (10) | C4—O2—P1 | 121.26 (16) |
O2—P1—Se1 | 119.29 (8) | O1—C1—C2 | 108.0 (2) |
O1—P1—Se1 | 119.34 (8) | O1—C1—C3 | 105.7 (2) |
O2—P1—Se2 | 108.85 (8) | C2—C1—C3 | 113.5 (3) |
O1—P1—Se2 | 108.40 (8) | O2—C4—C5 | 106.9 (2) |
Se1—P1—Se2 | 104.04 (3) | O2—C4—C6 | 106.9 (2) |
P1—Se2—Se2i | 98.35 (2) | C5—C4—C6 | 113.2 (3) |
C1—O1—P1 | 122.28 (17) | ||
P1—Se2—Se2i—P1i | 180.0 |
Symmetry code: (i) −x+1, −y+1, −z. |
Experimental details
(I) | (II) | |
Crystal data | ||
Chemical formula | [(C2H5O)4P2Se5] | [(C3H7O)4P2Se4] |
Mr | 636.98 | 614.12 |
Crystal system, space group | Triclinic, P1 | Triclinic, P1 |
Temperature (K) | 153 | 153 |
a, b, c (Å) | 8.320 (2), 11.222 (3), 12.409 (3) | 8.3796 (10), 8.5314 (10), 8.5577 (10) |
α, β, γ (°) | 115.317 (4), 107.351 (4), 92.688 (4) | 98.668 (2), 111.851 (2), 93.459 (2) |
V (Å3) | 979.0 (5) | 556.81 (11) |
Z | 2 | 1 |
Radiation type | Mo Kα | Mo Kα |
µ (mm−1) | 9.52 | 6.74 |
Crystal size (mm) | 0.31 × 0.07 × 0.03 | 0.13 × 0.09 × 0.04 |
Data collection | ||
Diffractometer | Bruker SMART 1000 CCD diffractometer | Bruker SMART 1000 CCD diffractometer |
Absorption correction | Numerical face-indexed (SHELXTL; Sheldrick, 1997a) | Numerical face-indexed (SHELXTL; Sheldrick, 1997a) |
Tmin, Tmax | 0.434, 0.921 | 0.425, 0.877 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 6938, 3398, 2893 | 4701, 1933, 1745 |
Rint | 0.017 | 0.018 |
(sin θ/λ)max (Å−1) | 0.595 | 0.594 |
Refinement | ||
R[F2 > 2σ(F2)], wR(F2), S | 0.021, 0.054, 0.90 | 0.026, 0.071, 1.33 |
No. of reflections | 3398 | 1933 |
No. of parameters | 172 | 100 |
H-atom treatment | H-atom parameters constrained | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.54, −0.46 | 1.16, −0.45 |
Computer programs: SMART (Bruker, 1999), SAINT-Plus (Bruker, 1999), SHELXS97 (Sheldrick, 1990), SHELXL97 (Sheldrick, 1997b), SHELXTL97 (Sheldrick, 1997a), SHELXTL97.
Se1—Se3 | 2.3439 (6) | P2—O4 | 1.578 (2) |
Se1—Se2 | 2.3448 (6) | O1—C1 | 1.465 (4) |
Se2—P1 | 2.2412 (11) | O2—C3 | 1.454 (4) |
Se3—P2 | 2.2378 (10) | O3—C5 | 1.461 (4) |
Se4—P2 | 2.0721 (9) | O4—C7 | 1.460 (4) |
Se5—P1 | 2.0652 (9) | C1—C2 | 1.495 (5) |
P1—O2 | 1.569 (2) | C3—C4 | 1.442 (5) |
P1—O1 | 1.581 (2) | C5—C6 | 1.462 (5) |
P2—O3 | 1.569 (2) | C7—C8 | 1.477 (5) |
Se3—Se1—Se2 | 105.44 (3) | Se5—P1—Se2 | 107.83 (4) |
P1—Se2—Se1 | 98.43 (3) | O3—P2—O4 | 96.42 (11) |
P2—Se3—Se1 | 101.07 (2) | O3—P2—Se4 | 118.67 (9) |
O2—P1—O1 | 96.40 (12) | O4—P2—Se4 | 118.52 (9) |
O2—P1—Se5 | 118.86 (9) | O3—P2—Se3 | 109.68 (9) |
O1—P1—Se5 | 118.51 (9) | O4—P2—Se3 | 107.83 (9) |
O2—P1—Se2 | 108.76 (10) | Se4—P2—Se3 | 105.24 (4) |
O1—P1—Se2 | 105.30 (8) | ||
P1—Se2—Se1—Se3 | −87.84 (3) | Se2—Se1—Se3—P2 | −87.75 (3) |
P1—O2 | 1.5670 (18) | O2—C4 | 1.484 (3) |
P1—O1 | 1.5673 (19) | C1—C2 | 1.505 (5) |
P1—Se1 | 2.0733 (7) | C1—C3 | 1.516 (4) |
P1—Se2 | 2.2223 (8) | C4—C5 | 1.505 (4) |
Se2—Se2i | 2.3951 (6) | C4—C6 | 1.510 (4) |
O1—C1 | 1.475 (3) | ||
O2—P1—O1 | 96.46 (10) | O1—P1—Se2 | 108.40 (8) |
O2—P1—Se1 | 119.29 (8) | Se1—P1—Se2 | 104.04 (3) |
O1—P1—Se1 | 119.34 (8) | P1—Se2—Se2i | 98.35 (2) |
O2—P1—Se2 | 108.85 (8) | ||
P1—Se2—Se2i—P1i | 180.0 |
Symmetry code: (i) −x+1, −y+1, −z. |
Subscribe to Acta Crystallographica Section C: Structural Chemistry
The full text of this article is available to subscribers to the journal.
- Information on subscribing
- Sample issue
- Purchase subscription
- Reduced-price subscriptions
- If you have already subscribed, you may need to register
As part of our investigation of selenometalate complexes, we have recently reported the preparation, structure and spectroscopy of [Mo3(µ3-S)(µ2-S2)3(Se2P(OEt)2)3]Br (Béreau & Ibers, 1999). Although the H+ salt (Jørgensen, 1962) and K+ salt (Kudchadker et al., 1968) of the Se2P(OEt)2 ligand have been known for some time, metal complexes of the ligand are rare; only three compounds containing [Se2P(OEt)2] have been structurally characterized (Liu et al., 1998, 1999; Béreau & Ibers, 1999). As an extension of these studies we reacted K[Se2P(OEt)2] with VCl3 in ethanol. Compound (I) was obtained as a byproduct. This synthesis is very different from the literature preparation (Kudchadker et al., 1968), which involves refluxing a stoichiometric mixture of P2Se5 and ethanol in cyclohexane for 4 h. Compound (II) was obtained according to this same procedure, from P2Se5, 2-propanol and n-heptane. \scheme
Fig. 1 and Fig. 2 are the displacement ellipsoid diagrams of (I) and (II), respectively. Compound (II) has a crystallographically imposed center of symmetry, but it possesses non-crystallographic symmetry very close to 2/m. The least-squares plane through atoms Se1, Se1A, Se2, Se2A, P1 and P1A has the equation in crystal coordinates of -2.830x + 5.713y + 5.419z = 1.441. The coefficients do not have rational ratios and hence the molecular symmetry does not correspond to undetected crystallographic symmetry. Within the Se3 bridge of (I), the Se—Se bond distances are equivalent with Se1—Se2 = 2.3448 (6) and Se1—Se3 = 2.3439 (6) Å. In the Se2 bridge of (II), the Se—Se bond distance is Se1—Se2 = 2.3951 (6) Å. These distances are normal for Se—Se single bonds (Tattershall et al., 1997). The two P atoms have tetrahedral environments in both (I) and (II), being bonded to two Se atoms and two O atoms. The P—Se bond distances involving Se atoms of the Se3 and Se2 chains are 2.2412 (11) and 2.2378 (10) Å for (I) and 2.2223 (8) Å for (II); these correspond to single bonds. Those P—Se bonds involving terminal Se atoms, at 2.0652 (9) and 2.0721 (9) Å for (I) and 2.0733 (7) Å for (II), correspond to double bonds. The P—O bond distances range from 1.569 (2) to 1.581 (2) Å for (I) and are 1.567 (2) and 1.567 (2) Å for (II).
There appears to be no literature on the metal coordination chemistry of compounds (I) and (II). Yet, given the extensive literature on chalcogen ligands, we believe that (I) and (II) could act as potential ligands, exhibiting an Se,Se-chelation mode through the two terminal Se atoms to form an eight-membered ring for (I) and a seven-membered ring for (II). For (I), the µ2-Se ligand could act as as an additional coordination site and the ligand could exhibit η3– coordination through the two terminal Se atoms and the bridging Se atom.