Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The title compounds, bis(diethoxyselenophosphinoyl) triselenide, [P(OEt)2Se]Se3[P(OEt)2Se], and bis­(diisopropoxy­selenophosphinoyl) diselenide, [P(OiPr)2Se]Se2[P(OiPr)2Se], comprise an Se3 chain or an Se2 chain bridging two (RO)2PSe groups.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270100001608/da1125sup1.cif
Contains datablocks global, I, II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270100001608/da1125Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270100001608/da1125IIsup3.hkl
Contains datablock II

CCDC references: 145543; 145544

Comment top

As part of our investigation of selenometalate complexes, we have recently reported the preparation, structure and spectroscopy of [Mo33-S)(µ2-S2)3(Se2P(OEt)2)3]Br (Béreau & Ibers, 1999). Although the H+ salt (Jørgensen, 1962) and K+ salt (Kudchadker et al., 1968) of the Se2P(OEt)2 ligand have been known for some time, metal complexes of the ligand are rare; only three compounds containing [Se2P(OEt)2] have been structurally characterized (Liu et al., 1998, 1999; Béreau & Ibers, 1999). As an extension of these studies we reacted K[Se2P(OEt)2] with VCl3 in ethanol. Compound (I) was obtained as a byproduct. This synthesis is very different from the literature preparation (Kudchadker et al., 1968), which involves refluxing a stoichiometric mixture of P2Se5 and ethanol in cyclohexane for 4 h. Compound (II) was obtained according to this same procedure, from P2Se5, 2-propanol and n-heptane. \scheme

Fig. 1 and Fig. 2 are the displacement ellipsoid diagrams of (I) and (II), respectively. Compound (II) has a crystallographically imposed center of symmetry, but it possesses non-crystallographic symmetry very close to 2/m. The least-squares plane through atoms Se1, Se1A, Se2, Se2A, P1 and P1A has the equation in crystal coordinates of -2.830x + 5.713y + 5.419z = 1.441. The coefficients do not have rational ratios and hence the molecular symmetry does not correspond to undetected crystallographic symmetry. Within the Se3 bridge of (I), the Se—Se bond distances are equivalent with Se1—Se2 = 2.3448 (6) and Se1—Se3 = 2.3439 (6) Å. In the Se2 bridge of (II), the Se—Se bond distance is Se1—Se2 = 2.3951 (6) Å. These distances are normal for Se—Se single bonds (Tattershall et al., 1997). The two P atoms have tetrahedral environments in both (I) and (II), being bonded to two Se atoms and two O atoms. The P—Se bond distances involving Se atoms of the Se3 and Se2 chains are 2.2412 (11) and 2.2378 (10) Å for (I) and 2.2223 (8) Å for (II); these correspond to single bonds. Those P—Se bonds involving terminal Se atoms, at 2.0652 (9) and 2.0721 (9) Å for (I) and 2.0733 (7) Å for (II), correspond to double bonds. The P—O bond distances range from 1.569 (2) to 1.581 (2) Å for (I) and are 1.567 (2) and 1.567 (2) Å for (II).

There appears to be no literature on the metal coordination chemistry of compounds (I) and (II). Yet, given the extensive literature on chalcogen ligands, we believe that (I) and (II) could act as potential ligands, exhibiting an Se,Se-chelation mode through the two terminal Se atoms to form an eight-membered ring for (I) and a seven-membered ring for (II). For (I), the µ2-Se ligand could act as as an additional coordination site and the ligand could exhibit η3– coordination through the two terminal Se atoms and the bridging Se atom.

Experimental top

Compound (I) was prepared from a mixture of VCl3 (50 mg, 0.3 mmol) and K[Se2P(OEt)2] (280 mg, 0.9 mmol) in previously degassed absolute ethanol (10 ml). The deep purple solution was stirred at room temperature for 2 h. The solvent was removed under vacuum. The residue was disolved in diethyl ether (10 ml) and the resulting solution was stored at 277 K. Yellow crystals grew in 35% yield over two weeks. Spectroscopic analysis: 1H NMR (CD3OD, p.p.m.): 4.16 (m, CH2), 1.80 (t, CH3); 31P NMR (CD3OD, p.p.m., 1JPSe in Hz): 69.5 (901, 570). Some pink crystals of unknown composition were also obtained. Compound (II) was prepared according to the synthesis reported by Kudchadker et al. (1968). Orange crystals were grown directly from the reaction mixture in 55% yield. Spectroscopic analysis: 1H NMR (CD3OD, p.p.m.): 5.11 (m, CH), 1.56 (d, CH3); 31P NMR (CD3OD, p.p.m., 1JPSe in Hz): 63.3 (884, 532).

Refinement top

H atoms were generated in calculated positions and constrained with the use of a riding model·The isotropic displacement parameter for each H atom was set 20% larger than that of the parent atom.

Computing details top

For both compounds, data collection: SMART (Bruker, 1999); cell refinement: SMART (Bruker, 1999); data reduction: SAINT-Plus (Bruker, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997b); molecular graphics: SHELXTL97 (Sheldrick, 1997a); software used to prepare material for publication: SHELXTL97.

Figures top
[Figure 1] Fig. 1. The molecular structure of (I). Displacement ellipsoids are drawn at the 50% probability level and H atoms are drawn as spheres of arbitrary radii.
[Figure 2] Fig. 2. The molecular structure of (II). Displacement ellipsoids are drawn at the 50% probability level and H atoms are drawn as spheres of arbitrary radii.
(I) bis(diethoxyselenophosphinoyl) triselenide top
Crystal data top
[(C2H5O)4P2Se5]Z = 2
Mr = 636.98F(000) = 600
Triclinic, P1Dx = 2.161 Mg m3
a = 8.320 (2) ÅMo Kα radiation, λ = 0.71073 Å
b = 11.222 (3) ÅCell parameters from 8192 reflections
c = 12.409 (3) Åθ = 2.1–25.0°
α = 115.317 (4)°µ = 9.52 mm1
β = 107.351 (4)°T = 153 K
γ = 92.688 (4)°Needle, yellow
V = 979.0 (5) Å30.31 × 0.07 × 0.03 mm
Data collection top
Bruker SMART 1000 CCD
diffractometer
3398 independent reflections
Radiation source: standard-focus sealed tube2893 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.017
ω scansθmax = 25°, θmin = 2.1°
Absorption correction: numerical
face-indexed (SHELXTL; Sheldrick, 1997a)
h = 99
Tmin = 0.434, Tmax = 0.921k = 1313
6938 measured reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.021Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.054H-atom parameters constrained
S = 0.90 w = 1/[σ2(Fo2) + (0.04Fo2)2]
3398 reflections(Δ/σ)max = 0.001
172 parametersΔρmax = 0.54 e Å3
0 restraintsΔρmin = 0.46 e Å3
Crystal data top
[(C2H5O)4P2Se5]γ = 92.688 (4)°
Mr = 636.98V = 979.0 (5) Å3
Triclinic, P1Z = 2
a = 8.320 (2) ÅMo Kα radiation
b = 11.222 (3) ŵ = 9.52 mm1
c = 12.409 (3) ÅT = 153 K
α = 115.317 (4)°0.31 × 0.07 × 0.03 mm
β = 107.351 (4)°
Data collection top
Bruker SMART 1000 CCD
diffractometer
3398 independent reflections
Absorption correction: numerical
face-indexed (SHELXTL; Sheldrick, 1997a)
2893 reflections with I > 2σ(I)
Tmin = 0.434, Tmax = 0.921Rint = 0.017
6938 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0210 restraints
wR(F2) = 0.054H-atom parameters constrained
S = 0.90Δρmax = 0.54 e Å3
3398 reflectionsΔρmin = 0.46 e Å3
172 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Hydrogen atoms were generated in calculated positions and constrained with the use of a riding model·The isotropic displacement parameter for each hydrogen atom was set 20% larger than the atom to which it is attached. The final models were restricted to anisotropic displacement parameters for all non-hydrogen atoms.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Se10.25242 (4)0.05311 (3)0.49913 (3)0.02567 (9)
Se20.05647 (4)0.19214 (3)0.54976 (3)0.02582 (9)
Se30.48764 (4)0.19252 (3)0.51663 (3)0.02733 (9)
Se40.62316 (4)0.26035 (4)0.30999 (4)0.04279 (11)
Se50.01517 (5)0.37428 (4)0.83322 (4)0.04576 (11)
P10.15677 (10)0.26861 (8)0.76130 (8)0.02794 (18)
P20.40586 (10)0.17483 (8)0.32058 (8)0.02652 (17)
O10.3479 (3)0.3455 (2)0.80858 (19)0.0303 (5)
O20.2037 (3)0.1489 (2)0.7901 (2)0.0387 (5)
O30.3155 (2)0.0257 (2)0.21968 (19)0.0298 (5)
O40.2399 (3)0.2371 (2)0.3001 (2)0.0325 (5)
C10.3815 (4)0.4689 (3)0.7984 (3)0.0371 (8)
H1A0.32620.53630.84550.045*
H1B0.33710.45050.70990.045*
C20.5721 (4)0.5181 (4)0.8526 (3)0.0447 (9)
H2A0.59890.59970.84820.067*
H2B0.62520.45100.80460.067*
H2C0.61460.53530.93990.067*
C30.0941 (4)0.0686 (4)0.8169 (4)0.0461 (9)
H3A0.01700.09460.80610.055*
H3B0.07590.02580.75710.055*
C40.1718 (6)0.0878 (6)0.9452 (5)0.0873 (18)
H4A0.09740.03490.96160.131*
H4B0.18920.18121.00420.131*
H4C0.28040.06010.95510.131*
C50.4089 (4)0.0845 (3)0.1960 (3)0.0431 (9)
H5A0.39940.12710.24790.052*
H5B0.52970.04950.21920.052*
C60.3381 (5)0.1834 (4)0.0613 (3)0.0519 (10)
H6A0.40120.25480.04610.078*
H6B0.34710.14080.01020.078*
H6C0.21940.21970.03930.078*
C70.2477 (4)0.3807 (3)0.3734 (4)0.0406 (8)
H7A0.31520.43220.35010.049*
H7B0.30120.40900.46370.049*
C80.0699 (5)0.4035 (4)0.3446 (4)0.0591 (11)
H8A0.07150.49770.39100.089*
H8B0.00480.35330.36910.089*
H8C0.01790.37450.25490.089*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Se10.02814 (16)0.02575 (16)0.02378 (16)0.00686 (12)0.01256 (12)0.00965 (13)
Se20.02637 (16)0.02703 (17)0.02482 (16)0.00786 (12)0.00974 (12)0.01196 (13)
Se30.02533 (16)0.02883 (17)0.02313 (16)0.00381 (12)0.00845 (12)0.00813 (13)
Se40.03507 (19)0.0523 (2)0.0535 (2)0.00681 (15)0.02461 (17)0.02969 (19)
Se50.0414 (2)0.0587 (2)0.0402 (2)0.02487 (17)0.02564 (17)0.01663 (18)
P10.0287 (4)0.0352 (4)0.0243 (4)0.0119 (3)0.0143 (3)0.0138 (4)
P20.0247 (4)0.0308 (4)0.0261 (4)0.0068 (3)0.0117 (3)0.0131 (3)
O10.0298 (11)0.0329 (12)0.0264 (11)0.0082 (9)0.0098 (9)0.0122 (10)
O20.0427 (13)0.0507 (14)0.0471 (14)0.0184 (11)0.0267 (11)0.0361 (12)
O30.0274 (11)0.0305 (12)0.0263 (11)0.0089 (9)0.0096 (9)0.0082 (9)
O40.0304 (11)0.0312 (12)0.0364 (12)0.0099 (9)0.0128 (10)0.0151 (10)
C10.0385 (18)0.0281 (17)0.0378 (19)0.0072 (14)0.0126 (15)0.0096 (15)
C20.039 (2)0.048 (2)0.037 (2)0.0002 (16)0.0075 (16)0.0156 (17)
C30.0378 (19)0.058 (2)0.049 (2)0.0033 (16)0.0107 (17)0.035 (2)
C40.062 (3)0.148 (5)0.073 (3)0.015 (3)0.006 (3)0.085 (4)
C50.045 (2)0.040 (2)0.036 (2)0.0204 (16)0.0101 (16)0.0116 (16)
C60.059 (2)0.041 (2)0.037 (2)0.0197 (18)0.0123 (18)0.0035 (17)
C70.047 (2)0.0330 (19)0.050 (2)0.0161 (15)0.0267 (17)0.0189 (17)
C80.053 (2)0.050 (2)0.084 (3)0.0283 (19)0.027 (2)0.035 (2)
Geometric parameters (Å, º) top
Se1—Se32.3439 (6)P2—O41.578 (2)
Se1—Se22.3448 (6)O1—C11.465 (4)
Se2—P12.2412 (11)O2—C31.454 (4)
Se3—P22.2378 (10)O3—C51.461 (4)
Se4—P22.0721 (9)O4—C71.460 (4)
Se5—P12.0652 (9)C1—C21.495 (5)
P1—O21.569 (2)C3—C41.442 (5)
P1—O11.581 (2)C5—C61.462 (5)
P2—O31.569 (2)C7—C81.477 (5)
Se3—Se1—Se2105.44 (3)O3—P2—Se3109.68 (9)
P1—Se2—Se198.43 (3)O4—P2—Se3107.83 (9)
P2—Se3—Se1101.07 (2)Se4—P2—Se3105.24 (4)
O2—P1—O196.40 (12)C1—O1—P1120.07 (19)
O2—P1—Se5118.86 (9)C3—O2—P1125.3 (2)
O1—P1—Se5118.51 (9)C5—O3—P2122.22 (19)
O2—P1—Se2108.76 (10)C7—O4—P2121.1 (2)
O1—P1—Se2105.30 (8)O1—C1—C2107.2 (3)
Se5—P1—Se2107.83 (4)C4—C3—O2110.5 (3)
O3—P2—O496.42 (11)O3—C5—C6109.8 (3)
O3—P2—Se4118.67 (9)O4—C7—C8107.8 (3)
O4—P2—Se4118.52 (9)
P1—Se2—Se1—Se387.84 (3)Se2—Se1—Se3—P287.75 (3)
(II) bis(diisopropoxyselenophosphinoyl) diselenide top
Crystal data top
[(C3H7O)4P2Se4]Z = 1
Mr = 614.12F(000) = 298
Triclinic, P1Dx = 1.831 Mg m3
a = 8.3796 (10) ÅMo Kα radiation, λ = 0.71073 Å
b = 8.5314 (10) ÅCell parameters from 8192 reflections
c = 8.5577 (10) Åθ = 2.4–25.0°
α = 98.668 (2)°µ = 6.74 mm1
β = 111.851 (2)°T = 153 K
γ = 93.459 (2)°Block, orange
V = 556.81 (11) Å30.13 × 0.09 × 0.04 mm
Data collection top
Bruker SMART 1000 CCD
diffractometer
1933 independent reflections
Radiation source: standard-focus sealed tube1745 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.018
ω scansθmax = 25.0°, θmin = 2.4°
Absorption correction: numerical
face-indexed (SHELXTL; Sheldrick, 1997a)
h = 99
Tmin = 0.425, Tmax = 0.877k = 1010
4701 measured reflectionsl = 1010
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.026Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.071H-atom parameters constrained
S = 1.33 w = 1/[σ2(Fo2) + (0.04Fo2)2]
1933 reflections(Δ/σ)max = 0.001
100 parametersΔρmax = 1.16 e Å3
0 restraintsΔρmin = 0.45 e Å3
Crystal data top
[(C3H7O)4P2Se4]γ = 93.459 (2)°
Mr = 614.12V = 556.81 (11) Å3
Triclinic, P1Z = 1
a = 8.3796 (10) ÅMo Kα radiation
b = 8.5314 (10) ŵ = 6.74 mm1
c = 8.5577 (10) ÅT = 153 K
α = 98.668 (2)°0.13 × 0.09 × 0.04 mm
β = 111.851 (2)°
Data collection top
Bruker SMART 1000 CCD
diffractometer
1933 independent reflections
Absorption correction: numerical
face-indexed (SHELXTL; Sheldrick, 1997a)
1745 reflections with I > 2σ(I)
Tmin = 0.425, Tmax = 0.877Rint = 0.018
4701 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0260 restraints
wR(F2) = 0.071H-atom parameters constrained
S = 1.33Δρmax = 1.16 e Å3
1933 reflectionsΔρmin = 0.45 e Å3
100 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Hydrogen atoms were generated in calculated positions and constrained with the use of a riding model·The isotropic displacement parameter for each hydrogen atom was set 20% larger than the atom to which it is attached. The final models were restricted to anisotropic displacement parameters for all non-hydrogen atoms.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
P10.32173 (9)0.30607 (8)0.11244 (8)0.02269 (17)
Se10.40785 (4)0.16835 (3)0.30048 (3)0.03273 (12)
Se20.56404 (3)0.42694 (4)0.11210 (4)0.03466 (13)
O10.2052 (2)0.2225 (2)0.0758 (2)0.0288 (4)
O20.2007 (2)0.4351 (2)0.1291 (2)0.0272 (4)
C10.2520 (4)0.0823 (3)0.1653 (4)0.0331 (7)
H1A0.37530.06810.10020.040*
C20.1341 (5)0.0624 (4)0.1754 (4)0.0484 (8)
H2A0.15440.08040.05950.073*
H2B0.15800.15620.24080.073*
H2C0.01310.04500.23260.073*
C30.2312 (5)0.1195 (4)0.3391 (4)0.0434 (8)
H3A0.31110.21470.32360.065*
H3B0.11180.13940.39970.065*
H3C0.25750.02860.40620.065*
C40.2473 (4)0.5548 (3)0.2891 (3)0.0284 (6)
H4A0.36710.54640.37020.034*
C50.1185 (5)0.5168 (4)0.3666 (4)0.0455 (8)
H5A0.12950.41040.39660.068*
H5B0.00090.51860.28360.068*
H5C0.14140.59660.47010.068*
C60.2402 (4)0.7174 (4)0.2393 (4)0.0372 (7)
H6A0.32780.73600.19150.056*
H6B0.26330.79980.34080.056*
H6C0.12490.72200.15330.056*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
P10.0222 (3)0.0238 (4)0.0219 (3)0.0017 (3)0.0083 (3)0.0047 (3)
Se10.0383 (2)0.03172 (19)0.02818 (18)0.00304 (13)0.01040 (14)0.01274 (13)
Se20.02215 (18)0.0449 (2)0.0406 (2)0.00306 (13)0.01094 (14)0.02222 (15)
O10.0277 (10)0.0316 (10)0.0220 (9)0.0089 (8)0.0049 (8)0.0001 (8)
O20.0240 (10)0.0304 (10)0.0236 (9)0.0053 (8)0.0066 (8)0.0008 (8)
C10.0362 (16)0.0338 (16)0.0258 (13)0.0146 (13)0.0082 (12)0.0010 (12)
C20.065 (2)0.0345 (18)0.0406 (18)0.0081 (16)0.0157 (17)0.0038 (15)
C30.055 (2)0.0468 (19)0.0273 (15)0.0105 (16)0.0172 (15)0.0019 (14)
C40.0298 (15)0.0270 (15)0.0243 (13)0.0049 (11)0.0078 (12)0.0005 (11)
C50.057 (2)0.046 (2)0.0415 (18)0.0025 (16)0.0308 (17)0.0032 (15)
C60.0375 (17)0.0315 (16)0.0380 (16)0.0046 (13)0.0111 (14)0.0027 (13)
Geometric parameters (Å, º) top
P1—O21.5670 (18)O2—C41.484 (3)
P1—O11.5673 (19)C1—C21.505 (5)
P1—Se12.0733 (7)C1—C31.516 (4)
P1—Se22.2223 (8)C4—C51.505 (4)
Se2—Se2i2.3951 (6)C4—C61.510 (4)
O1—C11.475 (3)
O2—P1—O196.46 (10)C4—O2—P1121.26 (16)
O2—P1—Se1119.29 (8)O1—C1—C2108.0 (2)
O1—P1—Se1119.34 (8)O1—C1—C3105.7 (2)
O2—P1—Se2108.85 (8)C2—C1—C3113.5 (3)
O1—P1—Se2108.40 (8)O2—C4—C5106.9 (2)
Se1—P1—Se2104.04 (3)O2—C4—C6106.9 (2)
P1—Se2—Se2i98.35 (2)C5—C4—C6113.2 (3)
C1—O1—P1122.28 (17)
P1—Se2—Se2i—P1i180.0
Symmetry code: (i) x+1, y+1, z.

Experimental details

(I)(II)
Crystal data
Chemical formula[(C2H5O)4P2Se5][(C3H7O)4P2Se4]
Mr636.98614.12
Crystal system, space groupTriclinic, P1Triclinic, P1
Temperature (K)153153
a, b, c (Å)8.320 (2), 11.222 (3), 12.409 (3)8.3796 (10), 8.5314 (10), 8.5577 (10)
α, β, γ (°)115.317 (4), 107.351 (4), 92.688 (4)98.668 (2), 111.851 (2), 93.459 (2)
V3)979.0 (5)556.81 (11)
Z21
Radiation typeMo KαMo Kα
µ (mm1)9.526.74
Crystal size (mm)0.31 × 0.07 × 0.030.13 × 0.09 × 0.04
Data collection
DiffractometerBruker SMART 1000 CCD
diffractometer
Bruker SMART 1000 CCD
diffractometer
Absorption correctionNumerical
face-indexed (SHELXTL; Sheldrick, 1997a)
Numerical
face-indexed (SHELXTL; Sheldrick, 1997a)
Tmin, Tmax0.434, 0.9210.425, 0.877
No. of measured, independent and
observed [I > 2σ(I)] reflections
6938, 3398, 2893 4701, 1933, 1745
Rint0.0170.018
(sin θ/λ)max1)0.5950.594
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.021, 0.054, 0.90 0.026, 0.071, 1.33
No. of reflections33981933
No. of parameters172100
H-atom treatmentH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.54, 0.461.16, 0.45

Computer programs: SMART (Bruker, 1999), SAINT-Plus (Bruker, 1999), SHELXS97 (Sheldrick, 1990), SHELXL97 (Sheldrick, 1997b), SHELXTL97 (Sheldrick, 1997a), SHELXTL97.

Selected geometric parameters (Å, º) for (I) top
Se1—Se32.3439 (6)P2—O41.578 (2)
Se1—Se22.3448 (6)O1—C11.465 (4)
Se2—P12.2412 (11)O2—C31.454 (4)
Se3—P22.2378 (10)O3—C51.461 (4)
Se4—P22.0721 (9)O4—C71.460 (4)
Se5—P12.0652 (9)C1—C21.495 (5)
P1—O21.569 (2)C3—C41.442 (5)
P1—O11.581 (2)C5—C61.462 (5)
P2—O31.569 (2)C7—C81.477 (5)
Se3—Se1—Se2105.44 (3)Se5—P1—Se2107.83 (4)
P1—Se2—Se198.43 (3)O3—P2—O496.42 (11)
P2—Se3—Se1101.07 (2)O3—P2—Se4118.67 (9)
O2—P1—O196.40 (12)O4—P2—Se4118.52 (9)
O2—P1—Se5118.86 (9)O3—P2—Se3109.68 (9)
O1—P1—Se5118.51 (9)O4—P2—Se3107.83 (9)
O2—P1—Se2108.76 (10)Se4—P2—Se3105.24 (4)
O1—P1—Se2105.30 (8)
P1—Se2—Se1—Se387.84 (3)Se2—Se1—Se3—P287.75 (3)
Selected geometric parameters (Å, º) for (II) top
P1—O21.5670 (18)O2—C41.484 (3)
P1—O11.5673 (19)C1—C21.505 (5)
P1—Se12.0733 (7)C1—C31.516 (4)
P1—Se22.2223 (8)C4—C51.505 (4)
Se2—Se2i2.3951 (6)C4—C61.510 (4)
O1—C11.475 (3)
O2—P1—O196.46 (10)O1—P1—Se2108.40 (8)
O2—P1—Se1119.29 (8)Se1—P1—Se2104.04 (3)
O1—P1—Se1119.34 (8)P1—Se2—Se2i98.35 (2)
O2—P1—Se2108.85 (8)
P1—Se2—Se2i—P1i180.0
Symmetry code: (i) x+1, y+1, z.
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds