Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
Chalcones (α,β-unsaturated ketones) are effective antitumour agents. It has been proved that having halogen or methoxy groups substituted in various positions of the phenyl ring enhances the activity of chalcones many times. The title compounds, C21H20O5 and C19H15BrO3, respectively, were chosen for crystallographic study in order to determine their structures and conformations. In both compounds, the keto group is in the s-cis conformation and is almost planar. There are weak intramolecular interactions in both structures.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270101018273/da1204sup1.cif
Contains datablocks global, I, II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270101018273/da1204Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270101018273/da1204IIsup3.hkl
Contains datablock II

CCDC references: 180160; 180161

Comment top

Chalcones possess multiprotecting, biochemical, antifungal, antimalarial and antifertility activities. The carbonyl group is a characteristic functional group in chalcones. In recent years, the synthesis of polymers having a photosensitive functional group has been an active field of research in polymer science. Monomers having structures similar to the title compounds, 4-[3-(3,4-dimethoxyphenyl)prop-2-enoyl]phenyl methacrylate, (I), and 4-[3-(2-bromophenyl)prop-2-enoyl]phenyl methacrylate, (II), have been polymerized in solution using free-radical initiators (Balaji et al., 2000; Subramanian et al., 2001). These polymers, containing an α,β-unsaturated carbonyl group, undergo crosslinking upon irradiation with UV light or an electron beam and are being used as photoresistors (Hyder Ali & Srinivasan, 1997; Rehab & Salahuddin, 1999). These photosensitive polymers find application in the fields of integrated circuit technology, printing technology and photocurable coatings (Nagamatzu & Inui, 1977).

The keto group is in an s-cis conformation in compounds (I) and (II), as can be seen from the torsion-angle values [C7—C8—C9—O1 = 4.7 (3)° for (I) and 7.2 (6)° for (II)]. The two phenyl rings make dihedral angles with the keto group of 8.5 (2) and 11.8 (1)° for (I), and 4.8 (2) and 7.6 (2)° for (II). In general, the bond lengths in these conjugated systems are longer than the double bonds and shorter than the single bonds. In both structures, the bond lengths agree with reported values (Carpy et al., 1997). From the torsion angle values C5—C4—C7—C8 = -176.0 (2)°, C4—C7—C8—C9 = 177.5 (2)°, C7—C8—C9—C10 = -173.2 (2)° and C8—C9—C10—C15 = -167.2 (2)° in (I) and C1—C6—C7—C8 = 170.6 (4)°, C6—C7—C8—C9 = 178.9 (3)°, C7—C8—C9—C10 = -173.8 (4)° and C8—C9—C10—C11 = 8.1 (6)° in (II), it is clear that the unsaturated ketone system is not strictly planar. This deviation from planarity affects the π-electron conjugation. The H atoms at C7 and C8 are trans. The opening of the C4—C7—C8 angle to 129.5 (2)° in (I) and the C6—C7—C8 angle to 127.3 (4)° in (II) can be ascribed to the short interatomic non-bonded interaction between atoms H8 and H3 in (I), which are separated by a distance of 2.309 (2) Å, and the interaction between atoms H5 and H8 in (II), which are at a distance of 2.211 (1) Å (Tokuno et al., 1986). This non-bonded interaction also produces an appreciable twist about the C4—C7 bond at the expense of the conjugation energy of the system. The exocyclic angles about C10 reveal deviations from normal trigonal values, with a larger C9—C10—C11 angle [124.1 (2)° for (I) and 123.5 (3)° for (II)] and a smaller C9—C10—C15 angle [117.6 (2)° for (I) and 118.1 (3)° for (II)]. There are two weak C—H···O intramolecular interactions in (I) and (II), and one weak C—H···Br interaction in (II) (Tables 3 and 4).

Displacement-ellipsoid plots of (I) and (II) are shown in Figs. 1 and 2, respectively. Figs. 3 and 4 show the packing of molecules (I) and (II), viewed down the a axis in each case.

Experimental top

The syntheses of compounds (I) and (II) consist of two steps. 3,4-Dimethoxystyryl 4'-hydroxyphenyl ketone and 1-bromostyryl 4'-hydroxyphenyl ketone were prepared by the Claissen-Schmidt condensation of 3,4,dimethoxybenzaldehyde or 1-bromobenzaldehyde with 4-hydroxyacetophenone in aqueous alcholol. Compounds (I) and (II) were then prepared by reacting 3,4-dimethoxystyryl 4'-hydroxyphenyl ketone or 1-bromostyryl 4'-hydroxyphenyl ketone in methyl ethyl ketone with methacryloyl chloride in the presence of triethylamine.

Refinement top

After checking their presence in the difference map, all H atoms were fixed geometrically and allowed to ride on their attached atoms.

Computing details top

Data collection: CAD-4 Software (Enraf-Nonius, 1989) for (I); SMART (Siemens, 1996) for (II). Cell refinement: CAD-4 Software for (I); SAINT (Siemens, 1996) for (II). Data reduction: SDP (Frenz, 1978) for (I); SAINT for (II). For both compounds, program(s) used to solve structure: SHELXTL (Sheldrick, 1997); program(s) used to refine structure: SHELXTL (Sheldrick, 1997). Molecular graphics: ZORTEP (Zsolnai,1997) for (I); SHELXTL for (II). Software used to prepare material for publication: PARST (Nardelli, 1995) and PLATON (Spek, 1990) for (I); SHELXTL, PARST (Nardelli, 1995) and PLATON (Spek, 1990) for (II).

Figures top
[Figure 1] Fig. 1. The molecular structure of compound (I) drawn with 30% probability displacement ellipsoids.
[Figure 2] Fig. 2. The molecular structure of compound (II) drawn with 30% probability displacement ellipsoids.
[Figure 3] Fig. 3. Packing diagram of (I) viewed down the a axis.
[Figure 4] Fig. 4. Packing diagram of (II) viewed down the a axis.
(I) 4-[3-(3,4-Dimethoxyphenyl)prop-2-enoyl]phenyl methacrylate top
Crystal data top
C21H20O5F(000) = 1488
Mr = 352.37Dx = 1.286 Mg m3
Monoclinic, C2/cCu Kα radiation, λ = 1.54180 Å
a = 13.381 (2) ÅCell parameters from 25 reflections
b = 20.813 (2) Åθ = 4.1–25.0°
c = 13.881 (2) ŵ = 0.75 mm1
β = 109.68 (1)°T = 293 K
V = 3640.0 (8) Å3Needle, colourless
Z = 80.3 × 0.2 × 0.2 mm
Data collection top
Enraf-Nonius CAD-4
diffractometer
Rint = 0.050
Radiation source: fine-focus sealed tubeθmax = 72.0°, θmin = 4.1°
Graphite monochromatorh = 216
ω/2θ scansk = 025
3812 measured reflectionsl = 1716
3549 independent reflections3 standard reflections every 200 reflections
2444 reflections with I > 2σ(I) intensity decay: <0.1%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.054Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.163H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0922P)2 + 0.6924P]
where P = (Fo2 + 2Fc2)/3
3549 reflections(Δ/σ)max < 0.001
238 parametersΔρmax = 0.27 e Å3
0 restraintsΔρmin = 0.22 e Å3
Crystal data top
C21H20O5V = 3640.0 (8) Å3
Mr = 352.37Z = 8
Monoclinic, C2/cCu Kα radiation
a = 13.381 (2) ŵ = 0.75 mm1
b = 20.813 (2) ÅT = 293 K
c = 13.881 (2) Å0.3 × 0.2 × 0.2 mm
β = 109.68 (1)°
Data collection top
Enraf-Nonius CAD-4
diffractometer
Rint = 0.050
3812 measured reflections3 standard reflections every 200 reflections
3549 independent reflections intensity decay: <0.1%
2444 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0540 restraints
wR(F2) = 0.163H-atom parameters constrained
S = 1.04Δρmax = 0.27 e Å3
3549 reflectionsΔρmin = 0.22 e Å3
238 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.48118 (16)0.16042 (10)0.11251 (15)0.0637 (5)
C100.07604 (15)0.06351 (10)0.11849 (14)0.0613 (5)
O50.49370 (12)0.04848 (7)0.11396 (13)0.0766 (4)
C30.32772 (16)0.09852 (9)0.10879 (15)0.0608 (5)
H30.29510.05900.10820.073*
C20.43169 (16)0.10073 (9)0.11195 (15)0.0613 (5)
O40.58327 (12)0.15740 (7)0.11380 (14)0.0803 (5)
C40.27059 (16)0.15542 (9)0.10639 (15)0.0636 (5)
C90.01194 (16)0.11840 (10)0.10340 (16)0.0682 (5)
O20.26290 (13)0.08349 (9)0.17100 (11)0.0855 (5)
C130.19997 (17)0.03308 (12)0.15513 (15)0.0694 (5)
C170.32525 (15)0.14995 (9)0.27588 (17)0.0662 (5)
C80.09742 (16)0.10715 (10)0.10483 (15)0.0651 (5)
H80.12270.06530.10780.078*
C160.25796 (16)0.09516 (10)0.26773 (16)0.0665 (5)
C150.16951 (17)0.07756 (12)0.13748 (17)0.0737 (6)
H150.19040.12020.13770.088*
O10.04908 (14)0.17312 (8)0.09273 (17)0.1000 (6)
C70.16029 (17)0.15598 (10)0.10187 (16)0.0672 (5)
H70.12930.19640.09610.081*
C110.04766 (16)0.00037 (10)0.11653 (15)0.0656 (5)
H110.01410.01070.10330.079*
O30.20585 (16)0.06307 (9)0.33833 (13)0.0983 (6)
C200.44644 (19)0.01285 (10)0.1069 (2)0.0784 (6)
H20A0.49810.04530.10920.118*
H20B0.38830.01610.04360.118*
H20C0.42080.01880.16310.118*
C50.32143 (18)0.21358 (10)0.10825 (18)0.0714 (5)
H50.28480.25160.10770.086*
C190.3193 (2)0.16732 (11)0.3809 (2)0.0808 (6)
H19A0.35310.20810.37990.121*
H19B0.35460.13510.40710.121*
H19C0.24620.17000.42390.121*
C60.42588 (18)0.21615 (10)0.11093 (17)0.0719 (6)
H60.45850.25570.11170.086*
C140.23157 (17)0.02958 (13)0.15588 (17)0.0776 (6)
H140.29380.03950.16860.093*
C180.38625 (19)0.18055 (12)0.1917 (2)0.0881 (7)
H18A0.42820.21500.19740.106*
H18B0.38660.16740.12760.106*
C210.6354 (2)0.21722 (12)0.1145 (2)0.0877 (7)
H21A0.70590.20950.11380.132*
H21B0.63920.24080.17510.132*
H21C0.59630.24170.05520.132*
C120.10995 (18)0.04891 (11)0.13405 (16)0.0705 (5)
H120.09110.09170.13160.085*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0659 (11)0.0603 (11)0.0645 (12)0.0067 (9)0.0217 (9)0.0041 (9)
C100.0554 (10)0.0722 (12)0.0520 (10)0.0076 (9)0.0124 (8)0.0071 (8)
O50.0688 (9)0.0556 (8)0.1095 (12)0.0026 (6)0.0353 (8)0.0002 (7)
C30.0652 (11)0.0557 (10)0.0615 (11)0.0059 (8)0.0214 (9)0.0025 (8)
C20.0665 (11)0.0555 (10)0.0619 (11)0.0016 (8)0.0216 (9)0.0018 (8)
O40.0705 (9)0.0656 (9)0.1086 (12)0.0092 (7)0.0351 (8)0.0071 (8)
C40.0681 (12)0.0617 (11)0.0599 (11)0.0002 (9)0.0200 (9)0.0040 (9)
C90.0654 (11)0.0675 (12)0.0693 (12)0.0137 (10)0.0195 (9)0.0131 (10)
O20.0815 (10)0.1059 (12)0.0691 (9)0.0348 (9)0.0254 (8)0.0158 (8)
C130.0623 (11)0.0908 (15)0.0520 (11)0.0138 (10)0.0152 (9)0.0061 (10)
C170.0547 (10)0.0593 (11)0.0897 (15)0.0040 (8)0.0310 (10)0.0089 (10)
C80.0643 (11)0.0659 (12)0.0646 (12)0.0069 (9)0.0209 (9)0.0086 (9)
C160.0594 (11)0.0746 (13)0.0665 (12)0.0033 (9)0.0226 (9)0.0085 (10)
C150.0591 (11)0.0815 (14)0.0784 (14)0.0144 (10)0.0202 (10)0.0080 (11)
O10.0795 (10)0.0739 (11)0.1498 (18)0.0194 (8)0.0429 (11)0.0263 (10)
C70.0686 (12)0.0651 (12)0.0671 (12)0.0078 (9)0.0219 (10)0.0074 (9)
C110.0607 (11)0.0759 (13)0.0620 (11)0.0039 (9)0.0230 (9)0.0017 (9)
O30.1109 (13)0.1109 (13)0.0701 (10)0.0475 (11)0.0266 (9)0.0144 (9)
C200.0723 (13)0.0567 (12)0.1021 (17)0.0018 (10)0.0238 (12)0.0013 (11)
C50.0789 (14)0.0558 (11)0.0797 (14)0.0039 (10)0.0271 (11)0.0043 (10)
C190.0787 (14)0.0681 (13)0.1035 (18)0.0066 (11)0.0411 (13)0.0042 (12)
C60.0788 (14)0.0579 (11)0.0785 (14)0.0111 (10)0.0259 (11)0.0021 (10)
C140.0559 (11)0.1020 (18)0.0739 (14)0.0020 (11)0.0204 (10)0.0010 (12)
C180.0767 (14)0.0794 (15)0.113 (2)0.0158 (12)0.0383 (14)0.0282 (14)
C210.0797 (15)0.0717 (14)0.116 (2)0.0169 (11)0.0388 (14)0.0087 (13)
C120.0728 (13)0.0740 (13)0.0655 (12)0.0033 (10)0.0243 (10)0.0035 (10)
Geometric parameters (Å, º) top
C1—O41.362 (3)C8—H80.9300
C1—C61.372 (3)C16—O31.197 (2)
C1—C21.407 (3)C15—C141.377 (3)
C10—C111.386 (3)C15—H150.9300
C10—C151.393 (3)C7—H70.9300
C10—C91.485 (3)C11—C121.382 (3)
O5—C21.363 (2)C11—H110.9300
O5—C201.413 (2)C20—H20A0.9600
C3—C21.378 (3)C20—H20B0.9600
C3—C41.404 (3)C20—H20C0.9600
C3—H30.9300C5—C61.387 (3)
O4—C211.426 (3)C5—H50.9300
C4—C51.385 (3)C19—H19A0.9600
C4—C71.456 (3)C19—H19B0.9600
C9—O11.231 (2)C19—H19C0.9600
C9—C81.475 (3)C6—H60.9300
O2—C161.344 (3)C14—H140.9300
O2—C131.408 (3)C18—H18A0.9300
C13—C141.372 (3)C18—H18B0.9300
C13—C121.372 (3)C21—H21A0.9600
C17—C181.340 (3)C21—H21B0.9600
C17—C191.477 (3)C21—H21C0.9600
C17—C161.481 (3)C12—H120.9300
C8—C71.329 (3)
O4—C1—C6124.93 (18)C4—C7—H7115.3
O4—C1—C2115.32 (18)C12—C11—C10120.82 (19)
C6—C1—C2119.75 (19)C12—C11—H11119.6
C11—C10—C15118.3 (2)C10—C11—H11119.6
C11—C10—C9124.07 (18)O5—C20—H20A109.5
C15—C10—C9117.59 (19)O5—C20—H20B109.5
C2—O5—C20117.66 (16)H20A—C20—H20B109.5
C2—C3—C4120.57 (17)O5—C20—H20C109.5
C2—C3—H3119.7H20A—C20—H20C109.5
C4—C3—H3119.7H20B—C20—H20C109.5
O5—C2—C3125.13 (17)C4—C5—C6121.25 (19)
O5—C2—C1114.99 (17)C4—C5—H5119.4
C3—C2—C1119.87 (18)C6—C5—H5119.4
C1—O4—C21116.50 (17)C17—C19—H19A109.5
C5—C4—C3118.48 (19)C17—C19—H19B109.5
C5—C4—C7118.57 (19)H19A—C19—H19B109.5
C3—C4—C7122.95 (18)C17—C19—H19C109.5
O1—C9—C8120.4 (2)H19A—C19—H19C109.5
O1—C9—C10119.96 (19)H19B—C19—H19C109.5
C8—C9—C10119.56 (18)C1—C6—C5120.07 (19)
C16—O2—C13117.39 (16)C1—C6—H6120.0
C14—C13—C12121.7 (2)C5—C6—H6120.0
C14—C13—O2120.3 (2)C13—C14—C15118.8 (2)
C12—C13—O2117.9 (2)C13—C14—H14120.6
C18—C17—C19124.0 (2)C15—C14—H14120.6
C18—C17—C16120.5 (2)C17—C18—H18A120.0
C19—C17—C16115.56 (19)C17—C18—H18B120.0
C7—C8—C9120.91 (19)H18A—C18—H18B120.0
C7—C8—H8119.5O4—C21—H21A109.5
C9—C8—H8119.5O4—C21—H21B109.5
O3—C16—O2122.4 (2)H21A—C21—H21B109.5
O3—C16—C17124.7 (2)O4—C21—H21C109.5
O2—C16—C17112.88 (18)H21A—C21—H21C109.5
C14—C15—C10121.3 (2)H21B—C21—H21C109.5
C14—C15—H15119.4C13—C12—C11119.1 (2)
C10—C15—H15119.4C13—C12—H12120.4
C8—C7—C4129.5 (2)C11—C12—H12120.4
C8—C7—H7115.3
C20—O5—C2—C33.5 (3)C18—C17—C16—O3175.7 (2)
C20—O5—C2—C1176.04 (19)C19—C17—C16—O34.5 (3)
C4—C3—C2—O5179.67 (18)C18—C17—C16—O22.8 (3)
C4—C3—C2—C10.2 (3)C19—C17—C16—O2177.09 (18)
O4—C1—C2—O50.7 (3)C11—C10—C15—C141.2 (3)
C6—C1—C2—O5179.81 (18)C9—C10—C15—C14177.7 (2)
O4—C1—C2—C3178.84 (18)C9—C8—C7—C4177.5 (2)
C6—C1—C2—C30.6 (3)C5—C4—C7—C8176.0 (2)
C6—C1—O4—C210.6 (3)C3—C4—C7—C84.1 (4)
C2—C1—O4—C21179.93 (19)C15—C10—C11—C120.7 (3)
C2—C3—C4—C50.6 (3)C9—C10—C11—C12178.19 (19)
C2—C3—C4—C7179.30 (19)C3—C4—C5—C60.9 (3)
C11—C10—C9—O1170.4 (2)C7—C4—C5—C6179.0 (2)
C15—C10—C9—O110.8 (3)O4—C1—C6—C5179.1 (2)
C11—C10—C9—C811.7 (3)C2—C1—C6—C50.3 (3)
C15—C10—C9—C8167.17 (19)C4—C5—C6—C10.5 (3)
C16—O2—C13—C1478.2 (3)C12—C13—C14—C151.7 (3)
C16—O2—C13—C12105.0 (2)O2—C13—C14—C15178.35 (18)
O1—C9—C8—C74.7 (3)C10—C15—C14—C130.1 (3)
C10—C9—C8—C7173.18 (19)C14—C13—C12—C112.2 (3)
C13—O2—C16—O32.8 (3)O2—C13—C12—C11178.98 (18)
C13—O2—C16—C17178.71 (18)C10—C11—C12—C131.0 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7···O10.932.422.784 (3)103
C18—H18B···O20.932.342.685 (3)101
(II) 4-[3-(2-bromophenyl)prop-2-enoyl]phenyl methacrylate top
Crystal data top
C19H15BrO3Z = 2
Mr = 371.22F(000) = 376
Triclinic, P1Dx = 1.502 Mg m3
a = 7.5272 (3) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.1940 (4) ÅCell parameters from 4174 reflections
c = 11.5780 (4) Åθ = 1.8–29.5°
α = 96.227 (1)°µ = 2.52 mm1
β = 98.428 (1)°T = 293 K
γ = 108.763 (1)°Block, light yellow
V = 820.54 (5) Å30.44 × 0.32 × 0.12 mm
Data collection top
Siemens SMART CCD area-detector
diffractometer
2840 independent reflections
Radiation source: fine-focus sealed tube2355 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.052
Detector resolution: 8.33 pixels mm-1θmax = 25.0°, θmin = 1.8°
ω scansh = 88
Absorption correction: empirical (using intensity measurements)
(SADABS; Sheldrick, 1996)
k = 128
Tmin = 0.404, Tmax = 0.752l = 1313
4721 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.056Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.146H-atom parameters constrained
S = 0.99 w = 1/[σ2(Fo2) + (0.0895P)2]
where P = (Fo2 + 2Fc2)/3
2840 reflections(Δ/σ)max < 0.001
209 parametersΔρmax = 0.58 e Å3
2 restraintsΔρmin = 1.08 e Å3
Crystal data top
C19H15BrO3γ = 108.763 (1)°
Mr = 371.22V = 820.54 (5) Å3
Triclinic, P1Z = 2
a = 7.5272 (3) ÅMo Kα radiation
b = 10.1940 (4) ŵ = 2.52 mm1
c = 11.5780 (4) ÅT = 293 K
α = 96.227 (1)°0.44 × 0.32 × 0.12 mm
β = 98.428 (1)°
Data collection top
Siemens SMART CCD area-detector
diffractometer
2840 independent reflections
Absorption correction: empirical (using intensity measurements)
(SADABS; Sheldrick, 1996)
2355 reflections with I > 2σ(I)
Tmin = 0.404, Tmax = 0.752Rint = 0.052
4721 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0562 restraints
wR(F2) = 0.146H-atom parameters constrained
S = 0.99Δρmax = 0.58 e Å3
2840 reflectionsΔρmin = 1.08 e Å3
209 parameters
Special details top

Experimental. The data collection covered over a hemisphere of reciprocal space by a combination of three sets of exposures; each set had a different ϕ angle (0, 88 and 180°) for the crystal and each exposure of 10 s covered 0.3° in ω. The crystal-to-detector distance was 4 cm and the detector swing angle was -35°. Crystal decay was monitored by repeating fifty initial frames at the end of data collection and analysing the intensity of duplicate reflections, and was found to be negligible.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.40576 (6)0.15977 (4)0.03665 (4)0.0564 (2)
O10.2418 (4)0.0783 (4)0.1754 (3)0.0716 (10)
O20.8047 (4)0.1698 (4)0.5954 (3)0.0610 (8)
O30.8349 (5)0.3662 (4)0.5073 (3)0.0698 (9)
C10.4797 (5)0.2994 (4)0.0605 (3)0.0404 (8)
C20.6723 (6)0.3763 (5)0.0457 (4)0.0533 (10)
H2A0.75990.35970.01120.064*
C30.7355 (6)0.4774 (5)0.1147 (4)0.0575 (11)
H3A0.86480.53000.10380.069*
C40.6045 (6)0.4998 (5)0.2003 (4)0.0559 (11)
H4A0.64570.56740.24760.067*
C50.4135 (6)0.4222 (4)0.2153 (3)0.0458 (9)
H5A0.32760.43780.27400.055*
C60.3438 (5)0.3211 (4)0.1458 (3)0.0378 (8)
C70.1388 (5)0.2422 (4)0.1599 (3)0.0416 (8)
H7A0.10240.18810.10200.050*
C80.0002 (5)0.2395 (4)0.2455 (3)0.0459 (9)
H8A0.03000.29070.30610.055*
C90.2024 (5)0.1559 (4)0.2467 (4)0.0436 (9)
C100.3567 (5)0.1671 (4)0.3382 (3)0.0384 (8)
C110.3250 (6)0.2649 (4)0.4151 (3)0.0472 (9)
H11A0.20200.32710.41120.057*
C120.4750 (6)0.2705 (5)0.4973 (4)0.0548 (10)
H12A0.45390.33720.54720.066*
C130.6548 (5)0.1763 (4)0.5039 (3)0.0455 (9)
C140.6911 (6)0.0798 (5)0.4292 (4)0.0526 (10)
H14A0.81460.01770.43450.063*
C150.5430 (5)0.0756 (4)0.3463 (4)0.0501 (10)
H15A0.56740.01070.29480.060*
C160.8803 (5)0.2743 (4)0.5912 (3)0.0424 (9)
C171.0245 (5)0.2530 (4)0.7005 (3)0.0445 (9)
C181.0487 (7)0.1542 (5)0.7963 (4)0.0649 (13)
H18A1.13600.14660.86460.078*
H18C0.97800.09430.79330.078*
C191.1292 (7)0.3521 (5)0.6967 (4)0.0631 (12)
H19A1.25210.31040.74820.095*
H19B1.14610.37410.61720.095*
H19C1.05810.43670.72220.095*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0533 (3)0.0556 (3)0.0546 (3)0.0156 (2)0.0086 (2)0.0209 (2)
O10.0464 (18)0.086 (2)0.089 (2)0.0188 (17)0.0099 (17)0.057 (2)
O20.0484 (17)0.065 (2)0.0609 (18)0.0271 (15)0.0204 (14)0.0057 (15)
O30.078 (2)0.084 (2)0.0485 (17)0.0455 (19)0.0129 (15)0.0075 (16)
C10.041 (2)0.042 (2)0.0356 (18)0.0154 (16)0.0013 (16)0.0040 (15)
C20.039 (2)0.068 (3)0.046 (2)0.017 (2)0.0062 (17)0.0045 (19)
C30.038 (2)0.070 (3)0.052 (2)0.006 (2)0.0011 (19)0.007 (2)
C40.049 (3)0.061 (3)0.053 (2)0.010 (2)0.011 (2)0.014 (2)
C50.043 (2)0.051 (2)0.044 (2)0.0174 (18)0.0034 (17)0.0136 (17)
C60.0357 (19)0.040 (2)0.0367 (18)0.0158 (16)0.0009 (15)0.0028 (14)
C70.036 (2)0.045 (2)0.046 (2)0.0169 (17)0.0038 (16)0.0141 (16)
C80.0336 (19)0.057 (2)0.048 (2)0.0141 (17)0.0045 (17)0.0190 (17)
C90.038 (2)0.049 (2)0.049 (2)0.0206 (18)0.0060 (17)0.0143 (17)
C100.0318 (18)0.040 (2)0.044 (2)0.0152 (15)0.0027 (16)0.0059 (15)
C110.0347 (19)0.054 (2)0.051 (2)0.0133 (17)0.0001 (17)0.0174 (18)
C120.047 (2)0.064 (3)0.053 (2)0.020 (2)0.0016 (19)0.020 (2)
C130.039 (2)0.051 (2)0.043 (2)0.0211 (18)0.0087 (17)0.0000 (17)
C140.031 (2)0.052 (3)0.066 (3)0.0085 (18)0.0025 (19)0.008 (2)
C150.038 (2)0.050 (2)0.060 (2)0.0118 (18)0.0071 (19)0.0163 (18)
C160.0311 (18)0.049 (2)0.046 (2)0.0106 (16)0.0043 (16)0.0163 (17)
C170.0332 (19)0.052 (2)0.042 (2)0.0053 (17)0.0003 (16)0.0166 (17)
C180.064 (3)0.067 (3)0.054 (3)0.026 (2)0.017 (2)0.001 (2)
C190.059 (3)0.079 (3)0.056 (3)0.036 (2)0.003 (2)0.013 (2)
Geometric parameters (Å, º) top
Br1—C11.903 (4)C9—C101.495 (5)
O1—C91.207 (5)C10—C111.395 (5)
O2—C161.359 (5)C10—C151.395 (5)
O2—C131.410 (5)C11—C121.386 (6)
O3—C161.199 (5)C11—H11A0.9300
C1—C21.383 (6)C12—C131.370 (6)
C1—C61.403 (5)C12—H12A0.9300
C2—C31.379 (7)C13—C141.368 (6)
C2—H2A0.9300C14—C151.376 (6)
C3—C41.383 (6)C14—H14A0.9300
C3—H3A0.9300C15—H15A0.9300
C4—C51.375 (6)C16—C171.487 (5)
C4—H4A0.9300C17—C181.363 (4)
C5—C61.393 (5)C17—C191.469 (4)
C5—H5A0.9300C18—H18A0.9300
C6—C71.468 (5)C18—H18C0.9300
C7—C81.320 (5)C19—H19A0.9600
C7—H7A0.9300C19—H19B0.9600
C8—C91.486 (5)C19—H19C0.9600
C8—H8A0.9300
C16—O2—C13119.2 (3)C12—C11—C10120.7 (4)
C2—C1—C6121.3 (4)C12—C11—H11A119.7
C2—C1—Br1117.6 (3)C10—C11—H11A119.7
C6—C1—Br1121.0 (3)C13—C12—C11119.1 (4)
C3—C2—C1120.5 (4)C13—C12—H12A120.5
C3—C2—H2A119.8C11—C12—H12A120.5
C1—C2—H2A119.8C14—C13—C12121.7 (4)
C2—C3—C4119.3 (4)C14—C13—O2118.2 (4)
C2—C3—H3A120.3C12—C13—O2119.9 (4)
C4—C3—H3A120.3C13—C14—C15119.3 (4)
C5—C4—C3119.9 (4)C13—C14—H14A120.4
C5—C4—H4A120.0C15—C14—H14A120.4
C3—C4—H4A120.0C14—C15—C10121.0 (4)
C4—C5—C6122.4 (4)C14—C15—H15A119.5
C4—C5—H5A118.8C10—C15—H15A119.5
C6—C5—H5A118.8O3—C16—O2122.1 (4)
C5—C6—C1116.6 (3)O3—C16—C17127.4 (4)
C5—C6—C7121.9 (3)O2—C16—C17110.4 (3)
C1—C6—C7121.5 (3)C18—C17—C19124.0 (4)
C8—C7—C6127.3 (4)C18—C17—C16122.2 (3)
C8—C7—H7A116.3C19—C17—C16113.7 (3)
C6—C7—H7A116.3C17—C18—H18A120.0
C7—C8—C9121.1 (4)C17—C18—H18C120.0
C7—C8—H8A119.4H18A—C18—H18C120.0
C9—C8—H8A119.4C17—C19—H19A109.5
O1—C9—C8120.3 (4)C17—C19—H19B109.5
O1—C9—C10120.3 (4)H19A—C19—H19B109.5
C8—C9—C10119.4 (3)C17—C19—H19C109.5
C11—C10—C15118.2 (4)H19A—C19—H19C109.5
C11—C10—C9123.6 (3)H19B—C19—H19C109.5
C15—C10—C9118.2 (4)
C6—C1—C2—C30.3 (6)C8—C9—C10—C15172.5 (3)
Br1—C1—C2—C3178.9 (3)C15—C10—C11—C120.1 (6)
C1—C2—C3—C41.0 (7)C9—C10—C11—C12179.5 (4)
C2—C3—C4—C50.4 (7)C10—C11—C12—C131.5 (6)
C3—C4—C5—C60.9 (6)C11—C12—C13—C142.0 (6)
C4—C5—C6—C11.5 (5)C11—C12—C13—O2172.8 (3)
C4—C5—C6—C7177.9 (4)C16—O2—C13—C14111.7 (4)
C2—C1—C6—C50.9 (5)C16—O2—C13—C1273.3 (5)
Br1—C1—C6—C5177.7 (3)C12—C13—C14—C150.9 (6)
C2—C1—C6—C7178.5 (4)O2—C13—C14—C15174.0 (3)
Br1—C1—C6—C73.0 (5)C13—C14—C15—C100.7 (6)
C5—C6—C7—C810.1 (6)C11—C10—C15—C141.1 (6)
C1—C6—C7—C8170.6 (4)C9—C10—C15—C14179.4 (4)
C6—C7—C8—C9178.9 (3)C13—O2—C16—O36.3 (6)
C7—C8—C9—O17.2 (6)C13—O2—C16—C17175.3 (3)
C7—C8—C9—C10173.8 (4)O3—C16—C17—C18172.2 (5)
O1—C9—C10—C11172.9 (4)O2—C16—C17—C189.6 (6)
C8—C9—C10—C118.1 (6)O3—C16—C17—C195.1 (6)
O1—C9—C10—C156.5 (6)O2—C16—C17—C19173.1 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7A···Br10.932.713.175 (4)112
C7—H7A···O10.932.442.781 (5)101
C18—H18C···O20.932.382.700 (6)100

Experimental details

(I)(II)
Crystal data
Chemical formulaC21H20O5C19H15BrO3
Mr352.37371.22
Crystal system, space groupMonoclinic, C2/cTriclinic, P1
Temperature (K)293293
a, b, c (Å)13.381 (2), 20.813 (2), 13.881 (2)7.5272 (3), 10.1940 (4), 11.5780 (4)
α, β, γ (°)90, 109.68 (1), 9096.227 (1), 98.428 (1), 108.763 (1)
V3)3640.0 (8)820.54 (5)
Z82
Radiation typeCu KαMo Kα
µ (mm1)0.752.52
Crystal size (mm)0.3 × 0.2 × 0.20.44 × 0.32 × 0.12
Data collection
DiffractometerEnraf-Nonius CAD-4
diffractometer
Siemens SMART CCD area-detector
diffractometer
Absorption correctionEmpirical (using intensity measurements)
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.404, 0.752
No. of measured, independent and
observed [I > 2σ(I)] reflections
3812, 3549, 2444 4721, 2840, 2355
Rint0.0500.052
(sin θ/λ)max1)0.6170.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.054, 0.163, 1.04 0.056, 0.146, 0.99
No. of reflections35492840
No. of parameters238209
No. of restraints02
H-atom treatmentH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.27, 0.220.58, 1.08

Computer programs: CAD-4 Software (Enraf-Nonius, 1989), SMART (Siemens, 1996), CAD-4 Software, SAINT (Siemens, 1996), SDP (Frenz, 1978), SAINT, SHELXTL (Sheldrick, 1997), ZORTEP (Zsolnai,1997), SHELXTL, PARST (Nardelli, 1995) and PLATON (Spek, 1990).

Selected geometric parameters (Å, º) for (I) top
C1—O41.362 (3)C9—C81.475 (3)
O5—C21.363 (2)O2—C161.344 (3)
O5—C201.413 (2)O2—C131.408 (3)
O4—C211.426 (3)C16—O31.197 (2)
C9—O11.231 (2)
O4—C1—C6124.93 (18)O5—C2—C3125.13 (17)
O4—C1—C2115.32 (18)O5—C2—C1114.99 (17)
C11—C10—C9124.07 (18)C8—C7—C4129.5 (2)
C15—C10—C9117.59 (19)
C15—C10—C9—C8167.17 (19)C9—C8—C7—C4177.5 (2)
O1—C9—C8—C74.7 (3)C5—C4—C7—C8176.0 (2)
C10—C9—C8—C7173.18 (19)
Hydrogen-bond geometry (Å, º) for (I) top
D—H···AD—HH···AD···AD—H···A
C7—H7···O10.932.422.784 (3)103
C18—H18B···O20.932.342.685 (3)101
Selected geometric parameters (Å, º) for (II) top
Br1—C11.903 (4)O2—C131.410 (5)
O1—C91.207 (5)O3—C161.199 (5)
O2—C161.359 (5)C7—C81.320 (5)
C11—C10—C9123.6 (3)C15—C10—C9118.2 (4)
C1—C6—C7—C8170.6 (4)C7—C8—C9—C10173.8 (4)
C6—C7—C8—C9178.9 (3)C8—C9—C10—C118.1 (6)
C7—C8—C9—O17.2 (6)
Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD—HH···AD···AD—H···A
C7—H7A···Br10.932.70643.175 (4)112
C7—H7A···O10.932.44342.781 (5)101
C18—H18C···O20.932.37472.700 (6)100
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds