Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
Two closely related oximes, namely 1-chloro­acetyl-3-ethyl-2,6-diphenyl­piperidin-4-one oxime, C21H23ClN2O2, (I), and 1-chloro­acetyl-2,6-diphenyl-3-(propan-2-yl)piperidin-4-one oxime, C22H25ClN2O2, (II), despite their identical sets of hydrogen-bond donors and acceptors, display basically different hydrogen-bonding patterns in their crystal structures. While the mol­ecules of (I) are organized into typical centrosymmetric dimers, created by oxime–oxime O—H...N hydrogen bonds, in the structure of (II) there are infinite chains of mol­ecules connected by O—H...O hydrogen bonds, in which the carbonyl O atom from the chloro­acetyl group acts as the hydrogen-bond acceptor. Despite the differences in the hydrogen-bond schemes, the –OH groups are always in typical anti positions (C—N—O—H torsion angles of ca 180°). The oxime group in (I) is disordered, with the hydroxy groups occupying two distinct positions and C—C—N—O torsion angles of approximately 0 and 180° for the two alternatives. This disorder, even though the site-occupancy factor of the less occupied position is as low as ca 0.06, is also observed at lower temperatures, which seems to favour the statistical and not the dynamic nature of this phenomenon.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270110015532/dn3141sup1.cif
Contains datablocks I, I_100K, II, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270110015532/dn3141Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270110015532/dn3141I_100Ksup3.hkl
Contains datablock I_100K

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270110015532/dn3141IIsup4.hkl
Contains datablock II

CCDC references: 762464; 762465; 762466

Comment top

The oxime functional group, R1R2CN—OH, despite its good hydrogen-bonding functionalities, is far less well explored in crystal engineering (i.e. constructing crystals of chosen architecture and properties) than, for instance, carboxyl or amide groups. The hydrogen-bonded structures of oximes were studied by e.g. Bertolasi et al. (1982), and more recently by Bruton et al. (2003). The results of these studies show that in cases when there are no competing hydrogen-bond acceptors, the main structural motifs are created by O—H···N oxime-to-oxime hydrogen bonds, and these can be either the R22(6) ring (Etter et al., 1990; Bernstein et al., 1995) or the C(3) chain motif (Fig. 1). Both these motifs are found in structures deposited in the Cambridge Structural Database (Version of November 2009; Allen, 2002), with ca 4:1 preference for the ring motif (Bruton et al., 2003). The presence of additional substituents capable of donating to or accepting a hydrogen bond can of course change this simple pattern. For instance, it is known that when there are both oxime and carboxyl groups, almost exclusively the mixed `carboxime' motif R22(7) is formed (see, for example, Desiraju, 1995; Maurin et al., 1995; Kubicki et al., 2000).

There are some examples of oxime crystal structures in which the oxime function adopts two alternative configurations with more or less equal probability, for instance in violuric acid [pyrimidine-2,4,5,6(1H,3H)-tetrone-5-oxime; Nichol & Clegg, 2005], 1,2,3-indantrionemonooxime (Ivanova et al., 2002), or in a series of three trans-2,6-diaryl derivatives of oximes of N-hydroxy-4-piperidone (Díaz et al., 1997). In the majority of cases, the disorder affects the whole N—OH fragment and both alternative positions are similarly occupied, but this is not always the case. Ciunik (1996) has shown, by careful study of the low-temperature crystal structures of 1-(3,4-di-O-acetyl-2-deoxy-2-hydroxyimino-α-D-erythro-pentopyranosyl)pyrazole and 2-benzoyloxycyclohexanone oxime, that the distributions of the electron densities in these structures can be accurately described by the assumption that there are only ca 3–5% of molecules with an alternative configuration of the oxime group.

The crystal structures of N-chloroacetyl-3-ethyl-2,6-diphenylpiperidin-4-one oxime, (I), and N-chloroacetyl-3-(propane-2-yl)-2,6-diphenylpiperidin-4-one oxime, (II), provide an example of two very closely related oximes with one additional hydrogen-bond accepting carbonyl group, but different structural motifs are formed.

In (I) the difference Fourier maps show relatively large peaks in the vicinity of the oxime group, and this was the main reason for repeating the data collection for this compound at a lower temperature. These features are also observed at 100 K, and it turns out that the oxime group is slightly disordered over two positions, with site-occupancy factors of 0.943 (3) and 0.057 (3) at 100 K, and 0.937 (3) and 0.063 (3) at room temperature. It might be noted that in this case only the hydroxy group is described as disordered and the position of the N atom is described as unique; no strange features in displacement parameters or geometries are observed. The stability of the occupancies over this temperature range suggests that the disorder is of a statistical rather than a dynamic nature. Fig. 2 compares the difference Fourier maps calculated for (I) at 100 K before (Fig. 2a) and after (Fig. 2b) taking this slight disorder into account.

Figs. 3 and 4 show perspective views of the molecules of (I) and (II), respectively. The bond lengths and angles in both compounds are very similar; when comparing the two room-temperature structures, the vast majority of these data differ by less than 3σ. These geometric parameters even produce quite good results in the normal probability plot test (Abrahams & Keve, 1971; International Tables for X-ray Crystallography, 1974) which, in a sense, describes the deviation from a statistical nature of the differences between the structures under consideration. In the case of (I) and (II), the correlation coefficient R2 between the set of experimental differences between the geometric parameters and the theoretical values for a pure statistical distribution is 0.91 for the bond lengths and is even better - as high as 0.967 - for the angles.

The conformations of the piperidine rings in (I) and (II) are best described as distorted twist-boat. The distortions from the ideal conformation are quite severe, as can be seen from the large values of the asymmetry parameters (Duax & Norton, 1975), which quantitatively describe the distortion from ideal symmetry of a certain conformation. A twisted boat should have the Cs symmetry, and the values of the ΔCs2,3 parameter are 13.9° for (I) and 18.1° for (II) (this is the best approximate symmetry which can be found). Both phenyl substituents are in axial positions (cf. Table 1 for the torsion angles), the chloroacetyl groups occupy (pseudo)-equatorial positions, the ethyl [in (I)] and 2-propyl [in (II)] groups are axial, and the position of the oxime function is closer to equatorial. The phenyl rings are planar to a good approximation. Interestingly, in all three cases the largest deviation from the mean plane of the phenyl ring at C2 is at least twice as large as that for the phenyl ring at C6. These mean planes make dihedral angles of 60.71 (9)° in (I) and 72.09 (6)° in (II). The acetyl groups are also planar to within 3σ, and their planes are almost perpendicular to the phenyl ring planes [dihedral angles in the range 74.53 (10)–87.36 (11)°]. The C—Cl bond from the chloroacetyl group is almost perpendicular to the plane of the rest of the group, and the Cl atom is ca 1.65 Å out of the plane.

These very closely related molecules turn out to show different organization in their crystal structures. In both cases, the main driving force of the packing is provided by the relatively strong hydrogen bonds. Also in both cases, there are - along with the oxime function, which can act as both hydrogen-bond donor and acceptor - additional relatively good hydrogen-bond acceptors, namely the carbonyl CO groups. As discussed above, the geometric features of both molecules are almost identical, so for instance, there are no additional steric hindrances which might influence the hydrogen bonding. And still, despite all these similarities, the hydrogen-bond patterns are essentially different in the two structures. The molecules of (I) are connected into centrosymmetric pairs by means of relatively short O—H···N hydrogen bonds. The graph set connected with this motif is R22(6), typical for oxime functions and mostly preferred in the absence of other hydrogen-bond donors and/or acceptors. Interestingly, the disorder present in the structure does not influence the hydrogen-bond motif. A relatively short and linear C66—H66···O11 interaction connects neighbouring dimers into a kind of `ladder', forming C(7) chains and large R44(32) rings (Fig. 5). Some additional C—H···O, C—H···Cl and even C—H···π contacts might add stability to the packing (cf. Table 3 [Please clarify - none of these bond types occurs in any table given]). In (II), by contrast, there are no oxime-to-oxime bonds. The hydrogen-bonded chains along the [010] direction are created by means of N—H···O(carbonyl) hydrogen bonds. These C(9) chains are connected into layers parallel to (001) by weak C—H···O(carbonyl) hydrogen bonds (Fig. 6), which form C(8) chains on their own, and also a second-order R44(38) ring. In this case there are far fewer weak intermolecular contacts, and not even the N atom of the oxime group is involved in any such contacts.

Related literature top

For related literature, see: Abrahams & Keve (1971); Allen (2002); Bernstein et al. (1995); Bertolasi et al. (1982); Bruton et al. (2003); Ciunik (1996); Díaz et al. (1997); Desiraju (1995); Duax & Norton (1975); Etter et al. (1990); Ivanova et al. (2002); Kubicki et al. (2000); Maurin et al. (1995); Nichol & Clegg (2005).

Experimental top

N-Chloroacetyl-3-ethyl-2,6-diphenylpiperidin-4-one (17.75 g, 50 mmol) for (I) or N-chloroacetyl-3-(propan-2-yl)-2,6-diphenylpiperidin-4-one (18.49 g, 50 mmol) for (II), sodium acetate trihydrate (20.4 g, 150 mmol), hydroxyamine hydrochloride (4.02 g, 60 mmol) and ethanol (50 ml) were placed in a round-bottomed flask. The reaction mixture was refluxed for about half an hour and the progress of the reaction was monitored by thin-layer chromatography. After completion of the reaction, the resulting substance was poured into water, filtered off and dried. The obtained crude products were subjected to column chromatography on silica gel (100–200 mesh) using a benzene–ethyl acetate mixture (9:1 v/v) as eluent. Crystals of (I) and (II) were grown from absolute alcohol [ethanol?] [m.p. 460 K for (I) and 458 K for (II)].

Refinement top

Methyl H atoms in (I) and (II) and disordered hydroxy H atoms in (I) were positioned geometrically in idealized positions, with C—H = 0.96 Å and O—H = 0.82 Å [Please check added data], and refined as rigid groups, with Uiso(H) = 1.2Ueq(hydroxy O) or 1.5Ueq(methyl C). All other H atoms in both (I) and (II) were found in subsequent difference Fourier maps and refined isotropically.

Computing details top

For all compounds, data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell refinement: CrysAlis PRO (Oxford Diffraction, 2009); data reduction: CrysAlis PRO (Oxford Diffraction, 2009); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Stereochemical Workstation Operation Manual (Siemens, 1989); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The two most common hydrogen-bond motifs in the crystal structures of oximes. (a) The ring R22(6) motif and (b) the chain C(3) motif.
[Figure 2] Fig. 2. The residual density maps in the oxime group region in the structure of (I) at 100 K, (a) without and (b) with the minor conformation taken into account. The negative (solid) and positive (dashed) contours are drawn at the 0.1 e Å-3 level (Farrugia, 1999).
[Figure 3] Fig. 3. Anisotropic ellipsoid representation of the molecule of (I), with the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii. The bond to the alternative position of atom O41 is shown as a dashed line. [Not visible - please provide revised plot]
[Figure 4] Fig. 4. Anisotropic ellipsoid representation of the molecule of (II), with the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii.
[Figure 5] Fig. 5. The hydrogen-bonded `ladder' of molecules of (I), as seen approximately along the [010] direction. Hydrogen bonds are shown as dashed lines. [Symmetry codes: (a) x, y, z; (b) -x, 2 - y, -z; (c) x, 2 - y, -1/2 + z; (d) -x, y, -1/2 - z; (e) x, 2 - y, 1/2 + z; (f) -x, y, 1/2 - z.]
[Figure 6] Fig. 6. A fragment of the hydrogen-bonded layer of molecules of (II), seen approximately along the [001] direction. Hydrogen bonds are shown as dashed lines. [Symmetry codes: (a) x, y, z; (b) 3/2 - x, -1/2 + y, 3/2 - z; (c) 3/2 - x, 1/2 + y, 3/2 - z; (d) x, 1 + y, z; (e) 1 + x, y, z; (f) 5/2 - x, - 1/2 + y, 3/2 - z; (g) 5/2 - x, 1/2 + y, 3/2 - z; (h) 1 + x, 1 + y, z.]
(I) 1-chloroacetyl-3-ethyl-2,6-diphenylpiperidin-4-one oxime top
Crystal data top
C21H23ClN2O2F(000) = 1568
Mr = 370.86Dx = 1.304 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 1945 reflections
a = 34.176 (3) Åθ = 2.0–27.0°
b = 9.1227 (9) ŵ = 0.22 mm1
c = 12.1235 (11) ÅT = 293 K
β = 91.962 (8)°Block, colourless
V = 3777.6 (6) Å30.3 × 0.15 × 0.1 mm
Z = 8
Data collection top
Oxford Xcalibur
diffractometer with Sapphire2 (large Be window) detector
3304 independent reflections
Radiation source: Enhance (Mo) X-ray Source1743 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.051
Detector resolution: 8.1929 pixels mm-1θmax = 25.0°, θmin = 2.9°
ω scansh = 3840
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
k = 109
Tmin = 0.993, Tmax = 1.000l = 1411
8775 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.079H atoms treated by a mixture of independent and constrained refinement
S = 1.00 w = 1/[σ2(Fo2) + (0.020P)2]
where P = (Fo2 + 2Fc2)/3
3304 reflections(Δ/σ)max < 0.001
297 parametersΔρmax = 0.21 e Å3
1 restraintΔρmin = 0.29 e Å3
Crystal data top
C21H23ClN2O2V = 3777.6 (6) Å3
Mr = 370.86Z = 8
Monoclinic, C2/cMo Kα radiation
a = 34.176 (3) ŵ = 0.22 mm1
b = 9.1227 (9) ÅT = 293 K
c = 12.1235 (11) Å0.3 × 0.15 × 0.1 mm
β = 91.962 (8)°
Data collection top
Oxford Xcalibur
diffractometer with Sapphire2 (large Be window) detector
3304 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
1743 reflections with I > 2σ(I)
Tmin = 0.993, Tmax = 1.000Rint = 0.051
8775 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0501 restraint
wR(F2) = 0.079H atoms treated by a mixture of independent and constrained refinement
S = 1.00Δρmax = 0.21 e Å3
3304 reflectionsΔρmin = 0.29 e Å3
297 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
N10.14039 (5)0.8808 (2)0.25714 (14)0.0334 (5)
C110.17344 (7)0.9094 (3)0.3196 (2)0.0450 (7)
O110.17310 (5)0.9306 (2)0.41882 (15)0.0661 (6)
C120.21218 (8)0.9178 (3)0.2636 (3)0.0602 (9)
H1210.2150 (7)0.849 (3)0.211 (2)0.072*
H1220.2346 (7)0.910 (3)0.3184 (19)0.072*
Cl120.21874 (2)1.09441 (9)0.20989 (8)0.0972 (3)
C20.10233 (7)0.9071 (3)0.31010 (18)0.0333 (6)
H20.1102 (5)0.961 (2)0.3781 (16)0.040*
C210.08363 (7)0.7656 (3)0.34717 (17)0.0344 (6)
C220.10702 (8)0.6571 (3)0.3953 (2)0.0450 (7)
H220.1358 (6)0.675 (2)0.4017 (17)0.054*
C230.09114 (10)0.5277 (3)0.4301 (2)0.0577 (8)
H230.1087 (7)0.451 (3)0.4588 (19)0.069*
C240.05162 (10)0.5033 (3)0.4204 (2)0.0569 (8)
H240.0410 (7)0.416 (3)0.4414 (19)0.068*
C250.02783 (8)0.6110 (4)0.3763 (2)0.0579 (9)
H250.0004 (7)0.603 (3)0.3698 (18)0.069*
C260.04378 (8)0.7410 (3)0.3398 (2)0.0490 (8)
H260.0274 (6)0.818 (3)0.3097 (18)0.059*
C30.07702 (7)1.0088 (3)0.23571 (19)0.0344 (6)
H30.0523 (6)1.023 (2)0.2723 (15)0.041*
C310.09602 (9)1.1589 (3)0.2216 (2)0.0501 (8)
H3110.1077 (6)1.197 (3)0.2934 (18)0.060*
H3120.1211 (6)1.152 (2)0.1719 (17)0.060*
C320.06809 (8)1.2736 (3)0.1766 (2)0.0722 (9)
H3210.08121.36650.17410.108*
H3220.04611.28100.22350.108*
H3230.05911.24650.10350.108*
C40.06877 (7)0.9335 (3)0.12681 (18)0.0319 (6)
N410.03678 (5)0.9611 (2)0.07310 (15)0.0365 (5)
O410.03337 (4)0.88015 (19)0.02603 (13)0.0448 (7)0.939 (3)
H410.01290.90210.05920.054*0.939 (3)
O41A0.0119 (6)1.065 (2)0.1172 (19)0.053 (11)*0.061 (3)
H41A0.00761.07400.07660.064*0.061 (3)
C50.09830 (7)0.8237 (3)0.09157 (19)0.0360 (7)
H510.0992 (5)0.823 (2)0.0129 (16)0.043*
H520.0894 (6)0.726 (2)0.1166 (16)0.043*
C60.14029 (7)0.8499 (3)0.13637 (19)0.0346 (6)
H60.1511 (6)0.939 (2)0.0995 (15)0.041*
C610.16423 (6)0.7168 (3)0.10500 (19)0.0338 (6)
C620.16198 (8)0.5855 (3)0.1604 (2)0.0473 (7)
H620.1479 (6)0.580 (3)0.2297 (17)0.057*
C630.18101 (9)0.4619 (3)0.1222 (3)0.0606 (9)
H630.1783 (7)0.375 (3)0.162 (2)0.073*
C640.20225 (9)0.4696 (4)0.0284 (3)0.0680 (10)
H640.2144 (7)0.387 (3)0.006 (2)0.082*
C650.20463 (9)0.5997 (5)0.0259 (3)0.0720 (10)
H650.2196 (8)0.608 (3)0.085 (2)0.086*
C660.18590 (8)0.7225 (3)0.0111 (2)0.0572 (8)
H660.1874 (7)0.812 (3)0.024 (2)0.069*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0314 (12)0.0355 (14)0.0333 (12)0.0014 (10)0.0017 (9)0.0028 (10)
C110.0403 (17)0.0390 (17)0.0550 (19)0.0000 (14)0.0082 (14)0.0064 (16)
O110.0608 (13)0.0855 (16)0.0506 (12)0.0054 (11)0.0164 (10)0.0189 (12)
C120.0424 (19)0.052 (2)0.086 (3)0.0055 (17)0.0088 (16)0.0158 (18)
Cl120.0779 (6)0.0686 (6)0.1475 (9)0.0006 (5)0.0366 (5)0.0270 (6)
C20.0353 (15)0.0353 (17)0.0291 (14)0.0050 (14)0.0004 (11)0.0020 (13)
C210.0375 (16)0.0376 (17)0.0281 (14)0.0015 (14)0.0014 (11)0.0000 (13)
C220.0430 (16)0.0470 (19)0.0452 (17)0.0032 (17)0.0039 (13)0.0142 (15)
C230.065 (2)0.051 (2)0.058 (2)0.0069 (18)0.0096 (15)0.0194 (16)
C240.081 (3)0.047 (2)0.0435 (18)0.012 (2)0.0109 (16)0.0103 (16)
C250.0510 (19)0.069 (2)0.0535 (19)0.017 (2)0.0012 (15)0.0117 (18)
C260.0455 (19)0.052 (2)0.0492 (17)0.0023 (16)0.0004 (13)0.0141 (16)
C30.0358 (15)0.0343 (16)0.0332 (15)0.0078 (14)0.0039 (11)0.0012 (13)
C310.068 (2)0.0324 (18)0.0499 (18)0.0030 (17)0.0016 (15)0.0006 (15)
C320.109 (3)0.0394 (18)0.068 (2)0.0161 (19)0.0014 (18)0.0051 (17)
C40.0320 (14)0.0299 (16)0.0340 (15)0.0045 (12)0.0027 (11)0.0060 (13)
N410.0391 (13)0.0400 (14)0.0305 (12)0.0057 (11)0.0020 (10)0.0009 (11)
O410.0431 (12)0.0553 (14)0.0352 (11)0.0114 (10)0.0112 (8)0.0074 (10)
C50.0379 (16)0.0393 (17)0.0308 (15)0.0073 (14)0.0000 (12)0.0006 (14)
C60.0364 (16)0.0311 (16)0.0365 (16)0.0013 (13)0.0048 (11)0.0024 (13)
C610.0275 (14)0.0335 (17)0.0403 (15)0.0022 (13)0.0021 (11)0.0030 (14)
C620.0479 (17)0.0422 (19)0.0523 (18)0.0119 (16)0.0071 (13)0.0004 (16)
C630.059 (2)0.044 (2)0.079 (2)0.0114 (18)0.0082 (18)0.0023 (18)
C640.056 (2)0.062 (3)0.085 (3)0.0289 (19)0.0058 (19)0.025 (2)
C650.057 (2)0.086 (3)0.074 (2)0.021 (2)0.0260 (16)0.011 (2)
C660.0537 (19)0.055 (2)0.064 (2)0.0151 (18)0.0213 (15)0.0025 (18)
Geometric parameters (Å, º) top
N1—C111.364 (3)C31—H3121.07 (2)
N1—C21.490 (3)C32—H3210.9600
N1—C61.491 (3)C32—H3220.9600
C11—O111.218 (3)C32—H3230.9600
C11—C121.510 (4)C4—N411.278 (2)
C12—Cl121.755 (3)C4—C51.495 (3)
C12—H1210.90 (2)N41—O41A1.391 (10)
C12—H1221.00 (2)N41—O411.412 (2)
C2—C211.515 (3)O41—H410.8200
C2—C31.539 (3)O41A—H41A0.8200
C2—H20.988 (19)C5—C61.536 (3)
C21—C261.380 (3)C5—H510.955 (19)
C21—C221.388 (3)C5—H520.99 (2)
C22—C231.371 (3)C6—C611.520 (3)
C22—H221.00 (2)C6—H61.00 (2)
C23—C241.370 (4)C61—C621.377 (3)
C23—H230.98 (2)C61—C661.380 (3)
C24—C251.372 (4)C62—C631.389 (4)
C24—H240.91 (2)C62—H620.98 (2)
C25—C261.384 (4)C63—C641.371 (4)
C25—H250.97 (2)C63—H630.93 (2)
C26—H260.96 (2)C64—C651.361 (4)
C3—C41.506 (3)C64—H640.90 (3)
C3—C311.528 (3)C65—C661.373 (4)
C3—H30.975 (19)C65—H650.90 (2)
C31—C321.506 (3)C66—H660.92 (2)
C31—H3111.01 (2)
C11—N1—C2116.65 (19)C3—C31—H312111.1 (13)
C11—N1—C6123.77 (19)H311—C31—H312102.0 (17)
C2—N1—C6118.76 (17)C31—C32—H321109.5
O11—C11—N1122.9 (2)C31—C32—H322109.5
O11—C11—C12118.3 (2)H321—C32—H322109.5
N1—C11—C12118.8 (2)C31—C32—H323109.5
C11—C12—Cl12109.8 (2)H321—C32—H323109.5
C11—C12—H121113.7 (17)H322—C32—H323109.5
Cl12—C12—H121110.8 (17)N41—C4—C5124.1 (2)
C11—C12—H122111.2 (14)N41—C4—C3119.2 (2)
Cl12—C12—H122102.1 (14)C5—C4—C3116.6 (2)
H121—C12—H122109 (2)C4—N41—O41A117.5 (11)
N1—C2—C21112.0 (2)C4—N41—O41112.01 (19)
N1—C2—C3109.03 (18)O41A—N41—O41130.5 (11)
C21—C2—C3116.93 (19)N41—O41—H41109.5
N1—C2—H2102.9 (11)N41—O41A—H41A109.5
C21—C2—H2106.3 (12)C4—C5—C6115.2 (2)
C3—C2—H2108.7 (11)C4—C5—H51109.7 (13)
C26—C21—C22117.7 (2)C6—C5—H51107.0 (12)
C26—C21—C2123.0 (2)C4—C5—H52107.2 (12)
C22—C21—C2119.3 (2)C6—C5—H52109.0 (12)
C23—C22—C21121.0 (3)H51—C5—H52108.5 (17)
C23—C22—H22121.3 (13)N1—C6—C61114.42 (19)
C21—C22—H22117.7 (13)N1—C6—C5110.33 (18)
C24—C23—C22120.9 (3)C61—C6—C5106.9 (2)
C24—C23—H23120.4 (15)N1—C6—H6107.3 (11)
C22—C23—H23118.7 (15)C61—C6—H6108.9 (11)
C23—C24—C25119.1 (3)C5—C6—H6108.9 (12)
C23—C24—H24121.1 (16)C62—C61—C66118.4 (3)
C25—C24—H24119.8 (16)C62—C61—C6122.3 (2)
C24—C25—C26120.2 (3)C66—C61—C6119.0 (2)
C24—C25—H25123.6 (15)C61—C62—C63120.6 (3)
C26—C25—H25116.2 (15)C61—C62—H62119.7 (14)
C21—C26—C25121.1 (3)C63—C62—H62119.7 (15)
C21—C26—H26118.0 (14)C64—C63—C62120.1 (3)
C25—C26—H26120.9 (14)C64—C63—H63122.5 (16)
C4—C3—C31112.2 (2)C62—C63—H63117.4 (16)
C4—C3—C2108.88 (19)C65—C64—C63119.2 (3)
C31—C3—C2111.9 (2)C65—C64—H64122.8 (18)
C4—C3—H3108.6 (12)C63—C64—H64118.0 (18)
C31—C3—H3108.1 (13)C64—C65—C66121.2 (3)
C2—C3—H3106.9 (12)C64—C65—H65120 (2)
C32—C31—C3113.4 (2)C66—C65—H65119 (2)
C32—C31—H311107.6 (14)C65—C66—C61120.5 (3)
C3—C31—H311111.6 (13)C65—C66—H66122.7 (16)
C32—C31—H312110.5 (12)C61—C66—H66116.8 (16)
C2—N1—C11—O1112.5 (4)C31—C3—C4—N4185.8 (3)
C6—N1—C11—O11178.0 (2)C2—C3—C4—N41149.7 (2)
C2—N1—C11—C12166.4 (2)C31—C3—C4—C597.3 (2)
C6—N1—C11—C123.0 (4)C2—C3—C4—C527.1 (3)
O11—C11—C12—Cl1294.6 (3)C5—C4—N41—O41A179.1 (12)
N1—C11—C12—Cl1284.4 (3)C3—C4—N41—O41A2.6 (12)
C11—N1—C2—C21102.6 (2)C5—C4—N41—O412.5 (3)
C6—N1—C2—C2187.4 (2)C3—C4—N41—O41179.10 (18)
C11—N1—C2—C3126.5 (2)N41—C4—C5—C6155.7 (2)
C6—N1—C2—C343.5 (3)C3—C4—C5—C627.6 (3)
N1—C2—C21—C26142.4 (2)C11—N1—C6—C6159.8 (3)
C3—C2—C21—C2615.6 (3)C2—N1—C6—C61130.9 (2)
N1—C2—C21—C2240.5 (3)C11—N1—C6—C5179.6 (2)
C3—C2—C21—C22167.3 (2)C2—N1—C6—C510.3 (3)
C26—C21—C22—C232.6 (4)C4—C5—C6—N147.2 (3)
C2—C21—C22—C23179.8 (2)C4—C5—C6—C61172.20 (19)
C21—C22—C23—C241.4 (4)N1—C6—C61—C6245.7 (3)
C22—C23—C24—C250.7 (4)C5—C6—C61—C6276.7 (3)
C23—C24—C25—C261.5 (4)N1—C6—C61—C66141.0 (2)
C22—C21—C26—C251.8 (4)C5—C6—C61—C6696.5 (3)
C2—C21—C26—C25178.9 (2)C66—C61—C62—C630.3 (4)
C24—C25—C26—C210.2 (4)C6—C61—C62—C63173.0 (2)
N1—C2—C3—C462.2 (2)C61—C62—C63—C640.1 (4)
C21—C2—C3—C466.0 (2)C62—C63—C64—C650.5 (5)
N1—C2—C3—C3162.4 (3)C63—C64—C65—C660.5 (5)
C21—C2—C3—C31169.4 (2)C64—C65—C66—C610.2 (5)
C4—C3—C31—C3273.0 (3)C62—C61—C66—C650.2 (4)
C2—C3—C31—C32164.2 (2)C6—C61—C66—C65173.3 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O41—H41···N41i0.822.112.842 (2)149
O41A—H41A···N41i0.822.072.81 (3)151
C66—H66···O11ii0.92 (2)2.50 (2)3.380 (4)162 (2)
Symmetry codes: (i) x, y+2, z; (ii) x, y+2, z1/2.
(I_100K) 1-chloroacetyl-3-ethyl-2,6-diphenylpiperidin-4-one oxime top
Crystal data top
C21H23ClN2O2F(000) = 1568
Mr = 370.86Dx = 1.347 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 10444 reflections
a = 33.849 (3) Åθ = 2.9–26.9°
b = 9.025 (1) ŵ = 0.23 mm1
c = 11.980 (1) ÅT = 100 K
β = 92.51 (1)°Block, colourless
V = 3656.2 (6) Å30.3 × 0.15 × 0.1 mm
Z = 8
Data collection top
Oxford Xcalibur
diffractometer with Eos detector
3729 independent reflections
Radiation source: Enhance (Mo) X-ray Source3245 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.013
Detector resolution: 16.1544 pixels mm-1θmax = 27.0°, θmin = 2.9°
ω scansh = 4042
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
k = 1111
Tmin = 0.957, Tmax = 1.000l = 1514
14395 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.030Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.078H atoms treated by a mixture of independent and constrained refinement
S = 1.08 w = 1/[σ2(Fo2) + (0.037P)2 + 2.8415P]
where P = (Fo2 + 2Fc2)/3
3729 reflections(Δ/σ)max = 0.001
312 parametersΔρmax = 0.31 e Å3
1 restraintΔρmin = 0.26 e Å3
Crystal data top
C21H23ClN2O2V = 3656.2 (6) Å3
Mr = 370.86Z = 8
Monoclinic, C2/cMo Kα radiation
a = 33.849 (3) ŵ = 0.23 mm1
b = 9.025 (1) ÅT = 100 K
c = 11.980 (1) Å0.3 × 0.15 × 0.1 mm
β = 92.51 (1)°
Data collection top
Oxford Xcalibur
diffractometer with Eos detector
3729 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
3245 reflections with I > 2σ(I)
Tmin = 0.957, Tmax = 1.000Rint = 0.013
14395 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0301 restraint
wR(F2) = 0.078H atoms treated by a mixture of independent and constrained refinement
S = 1.08Δρmax = 0.31 e Å3
3729 reflectionsΔρmin = 0.26 e Å3
312 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
N10.14160 (3)0.87917 (11)0.26109 (8)0.0131 (2)
C110.17495 (4)0.90281 (13)0.32592 (10)0.0162 (3)
O110.17461 (3)0.92002 (10)0.42733 (7)0.0225 (2)
C120.21427 (4)0.91166 (14)0.27036 (12)0.0194 (3)
H1220.2353 (5)0.9008 (16)0.3286 (13)0.023*
H1210.2169 (5)0.843 (2)0.2114 (14)0.035 (5)*
Cl120.219554 (10)1.09233 (4)0.21218 (3)0.03063 (11)
C20.10346 (3)0.90836 (13)0.31385 (10)0.0134 (2)
H20.1103 (4)0.9614 (16)0.3812 (12)0.016*
C210.08383 (3)0.76504 (13)0.34909 (9)0.0142 (2)
C220.10734 (4)0.65140 (14)0.39432 (10)0.0174 (3)
H220.1357 (5)0.6658 (17)0.4048 (12)0.021*
C230.09088 (4)0.51899 (15)0.42738 (10)0.0202 (3)
H230.1074 (5)0.4434 (18)0.4580 (13)0.024*
C240.05031 (4)0.49812 (15)0.41856 (10)0.0216 (3)
H240.0390 (5)0.4071 (18)0.4419 (13)0.026*
C250.02654 (4)0.61224 (16)0.37743 (11)0.0224 (3)
H250.0020 (5)0.5998 (17)0.3708 (13)0.027*
C260.04310 (4)0.74471 (15)0.34294 (10)0.0182 (3)
H260.0259 (4)0.8215 (18)0.3156 (12)0.022*
C30.07812 (3)1.01219 (13)0.23808 (10)0.0142 (2)
H30.0532 (4)1.0299 (16)0.2756 (12)0.017*
C310.09819 (4)1.16357 (14)0.22331 (11)0.0187 (3)
H3110.1211 (4)1.1522 (17)0.1741 (12)0.022*
H3120.1090 (4)1.1959 (17)0.2960 (13)0.022*
C320.07000 (4)1.28025 (15)0.17442 (12)0.0237 (3)
H3210.0827 (5)1.377 (2)0.1710 (14)0.035*
H3220.0465 (5)1.2894 (19)0.2230 (14)0.035*
H3230.0602 (5)1.2513 (19)0.0987 (15)0.035*
C40.06947 (3)0.93607 (13)0.12786 (10)0.0131 (2)
N410.03702 (3)0.96303 (11)0.07331 (8)0.0143 (2)
O410.03308 (3)0.87978 (10)0.02713 (7)0.0154 (3)0.943 (3)
H410.01190.90300.06180.018*0.943 (3)
O41A0.0111 (5)1.0662 (19)0.1174 (16)0.048 (7)0.057 (3)
H41A0.00911.07440.07440.058*0.057 (3)
C50.09921 (3)0.82528 (13)0.09185 (10)0.0137 (2)
H510.0902 (4)0.7266 (17)0.1155 (11)0.016*
H520.0998 (4)0.8236 (16)0.0111 (12)0.016*
C60.14158 (3)0.85183 (13)0.13869 (9)0.0131 (2)
H60.1522 (4)0.9381 (16)0.1030 (12)0.016*
C610.16548 (3)0.71765 (13)0.10467 (10)0.0141 (2)
C620.16256 (4)0.58173 (14)0.15821 (11)0.0178 (3)
H620.1471 (4)0.5728 (16)0.2242 (13)0.021*
C630.18113 (4)0.45731 (15)0.11712 (12)0.0219 (3)
H630.1785 (5)0.3666 (19)0.1537 (13)0.026*
C640.20287 (4)0.46749 (16)0.02189 (12)0.0236 (3)
H640.2150 (5)0.3827 (18)0.0076 (13)0.028*
C650.20617 (4)0.60243 (16)0.03116 (12)0.0256 (3)
H650.2211 (5)0.6118 (18)0.0981 (14)0.031*
C660.18769 (4)0.72744 (15)0.00977 (11)0.0212 (3)
H660.1901 (4)0.8213 (19)0.0264 (13)0.025*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0126 (5)0.0131 (5)0.0136 (5)0.0003 (4)0.0005 (4)0.0002 (4)
C110.0177 (6)0.0106 (6)0.0201 (6)0.0002 (5)0.0027 (5)0.0002 (5)
O110.0235 (5)0.0252 (5)0.0183 (5)0.0014 (4)0.0051 (4)0.0029 (4)
C120.0162 (6)0.0153 (6)0.0263 (7)0.0009 (5)0.0028 (5)0.0020 (5)
Cl120.02359 (18)0.02278 (19)0.0462 (2)0.00070 (13)0.00939 (15)0.00927 (15)
C20.0148 (6)0.0137 (6)0.0119 (5)0.0011 (4)0.0007 (4)0.0010 (5)
C210.0179 (6)0.0149 (6)0.0098 (5)0.0002 (5)0.0017 (4)0.0002 (4)
C220.0183 (6)0.0188 (6)0.0152 (6)0.0009 (5)0.0013 (5)0.0017 (5)
C230.0285 (7)0.0164 (6)0.0159 (6)0.0029 (5)0.0029 (5)0.0036 (5)
C240.0325 (7)0.0174 (7)0.0151 (6)0.0075 (5)0.0053 (5)0.0004 (5)
C250.0208 (7)0.0282 (7)0.0182 (6)0.0061 (5)0.0022 (5)0.0011 (5)
C260.0181 (6)0.0208 (6)0.0158 (6)0.0014 (5)0.0008 (5)0.0022 (5)
C30.0154 (6)0.0136 (6)0.0138 (5)0.0027 (5)0.0024 (4)0.0007 (5)
C310.0250 (6)0.0128 (6)0.0181 (6)0.0003 (5)0.0002 (5)0.0004 (5)
C320.0352 (8)0.0139 (7)0.0218 (7)0.0047 (6)0.0002 (6)0.0013 (5)
C40.0142 (5)0.0108 (6)0.0144 (5)0.0003 (4)0.0029 (4)0.0024 (4)
N410.0167 (5)0.0129 (5)0.0133 (5)0.0012 (4)0.0017 (4)0.0005 (4)
O410.0144 (5)0.0173 (5)0.0142 (5)0.0038 (3)0.0031 (3)0.0040 (4)
O41A0.027 (11)0.061 (15)0.056 (14)0.005 (10)0.013 (9)0.026 (11)
C50.0147 (6)0.0137 (6)0.0127 (5)0.0018 (5)0.0002 (4)0.0009 (5)
C60.0141 (5)0.0124 (6)0.0130 (5)0.0001 (4)0.0010 (4)0.0008 (4)
C610.0107 (5)0.0155 (6)0.0158 (6)0.0009 (4)0.0018 (4)0.0022 (5)
C620.0153 (6)0.0172 (6)0.0208 (6)0.0007 (5)0.0002 (5)0.0001 (5)
C630.0198 (6)0.0151 (6)0.0302 (7)0.0028 (5)0.0043 (5)0.0003 (5)
C640.0172 (6)0.0223 (7)0.0308 (7)0.0077 (5)0.0032 (5)0.0103 (6)
C650.0209 (7)0.0301 (8)0.0263 (7)0.0054 (6)0.0068 (5)0.0046 (6)
C660.0200 (6)0.0207 (7)0.0231 (6)0.0026 (5)0.0045 (5)0.0012 (5)
Geometric parameters (Å, º) top
N1—C111.3587 (16)C31—H3120.975 (15)
N1—C21.4855 (15)C32—H3210.976 (18)
N1—C61.4869 (14)C32—H3221.008 (17)
C11—O111.2254 (15)C32—H3230.988 (17)
C11—C121.5163 (18)C4—N411.2766 (15)
C12—Cl121.7853 (13)C4—C51.4959 (16)
C12—H1220.980 (16)N41—O41A1.399 (10)
C12—H1210.945 (18)N41—O411.4198 (13)
C2—C211.5224 (16)O41—H410.8400
C2—C31.5394 (16)O41A—H41A0.8400
C2—H20.958 (15)C5—C61.5357 (16)
C21—C261.3893 (17)C5—H510.987 (15)
C21—C221.3933 (17)C5—H520.969 (14)
C22—C231.3839 (19)C6—C611.5219 (16)
C22—H220.971 (15)C6—H60.965 (15)
C23—C241.3853 (19)C61—C621.3898 (17)
C23—H230.946 (16)C61—C661.3930 (17)
C24—C251.384 (2)C62—C631.3876 (18)
C24—H240.954 (16)C62—H620.970 (15)
C25—C261.3909 (19)C63—C641.387 (2)
C25—H250.973 (17)C63—H630.935 (17)
C26—H260.954 (16)C64—C651.380 (2)
C3—C41.5058 (16)C64—H640.945 (17)
C3—C311.5394 (17)C65—C661.3898 (19)
C3—H30.987 (14)C65—H650.969 (17)
C31—C321.5211 (18)C66—H660.956 (17)
C31—H3111.001 (15)
C11—N1—C2116.40 (10)C3—C31—H312108.3 (9)
C11—N1—C6123.66 (10)H311—C31—H312106.6 (12)
C2—N1—C6119.09 (9)C31—C32—H321111.5 (10)
O11—C11—N1122.89 (11)C31—C32—H322109.4 (10)
O11—C11—C12118.37 (11)H321—C32—H322108.1 (14)
N1—C11—C12118.73 (11)C31—C32—H323110.5 (10)
C11—C12—Cl12108.93 (9)H321—C32—H323109.2 (14)
C11—C12—H122107.9 (9)H322—C32—H323108.0 (14)
Cl12—C12—H122106.7 (9)N41—C4—C5123.68 (11)
C11—C12—H121114.1 (10)N41—C4—C3119.47 (10)
Cl12—C12—H121106.9 (11)C5—C4—C3116.76 (10)
H122—C12—H121112.1 (13)C4—N41—O41A118.3 (8)
N1—C2—C21111.43 (9)C4—N41—O41112.32 (9)
N1—C2—C3109.23 (9)O41A—N41—O41129.4 (8)
C21—C2—C3116.23 (10)N41—O41—H41109.5
N1—C2—H2105.3 (8)N41—O41A—H41A109.5
C21—C2—H2106.5 (9)C4—C5—C6114.83 (10)
C3—C2—H2107.5 (9)C4—C5—H51107.5 (8)
C26—C21—C22118.17 (11)C6—C5—H51109.3 (8)
C26—C21—C2122.80 (11)C4—C5—H52110.1 (8)
C22—C21—C2118.96 (11)C6—C5—H52107.8 (8)
C23—C22—C21121.10 (12)H51—C5—H52107.0 (11)
C23—C22—H22119.1 (9)N1—C6—C61114.76 (9)
C21—C22—H22119.7 (9)N1—C6—C5110.26 (9)
C22—C23—C24120.39 (12)C61—C6—C5106.08 (9)
C22—C23—H23119.7 (9)N1—C6—H6108.6 (8)
C24—C23—H23119.9 (9)C61—C6—H6108.1 (8)
C25—C24—C23118.99 (12)C5—C6—H6108.8 (8)
C25—C24—H24120.7 (9)C62—C61—C66118.98 (11)
C23—C24—H24120.3 (9)C62—C61—C6121.96 (11)
C24—C25—C26120.65 (12)C66—C61—C6118.70 (11)
C24—C25—H25120.2 (9)C63—C62—C61120.53 (12)
C26—C25—H25119.1 (9)C63—C62—H62119.4 (9)
C21—C26—C25120.63 (12)C61—C62—H62120.1 (9)
C21—C26—H26120.8 (9)C64—C63—C62120.20 (13)
C25—C26—H26118.6 (9)C64—C63—H63120.6 (10)
C4—C3—C31111.96 (10)C62—C63—H63119.2 (10)
C4—C3—C2108.74 (10)C65—C64—C63119.57 (12)
C31—C3—C2111.76 (10)C65—C64—H64119.8 (10)
C4—C3—H3109.6 (8)C63—C64—H64120.6 (10)
C31—C3—H3107.4 (9)C64—C65—C66120.46 (13)
C2—C3—H3107.2 (8)C64—C65—H65120.9 (10)
C32—C31—C3112.71 (11)C66—C65—H65118.6 (10)
C32—C31—H311109.5 (9)C65—C66—C61120.25 (13)
C3—C31—H311109.6 (9)C65—C66—H66120.7 (9)
C32—C31—H312110.0 (9)C61—C66—H66119.0 (9)
C2—N1—C11—O1113.36 (17)C31—C3—C4—N4187.31 (13)
C6—N1—C11—O11177.36 (11)C2—C3—C4—N41148.71 (11)
C2—N1—C11—C12165.28 (10)C31—C3—C4—C595.94 (12)
C6—N1—C11—C124.00 (17)C2—C3—C4—C528.04 (14)
O11—C11—C12—Cl1298.47 (12)C5—C4—N41—O41A178.2 (10)
N1—C11—C12—Cl1280.23 (12)C3—C4—N41—O41A1.7 (10)
C11—N1—C2—C21102.07 (12)C5—C4—N41—O412.06 (16)
C6—N1—C2—C2188.14 (12)C3—C4—N41—O41178.57 (10)
C11—N1—C2—C3128.16 (11)N41—C4—C5—C6156.61 (11)
C6—N1—C2—C341.63 (13)C3—C4—C5—C626.80 (15)
N1—C2—C21—C26144.21 (11)C11—N1—C6—C6158.74 (15)
C3—C2—C21—C2618.22 (16)C2—N1—C6—C61132.25 (11)
N1—C2—C21—C2238.84 (14)C11—N1—C6—C5178.43 (10)
C3—C2—C21—C22164.83 (10)C2—N1—C6—C512.56 (14)
C26—C21—C22—C233.03 (18)C4—C5—C6—N148.02 (13)
C2—C21—C22—C23179.88 (11)C4—C5—C6—C61172.84 (10)
C21—C22—C23—C241.56 (19)N1—C6—C61—C6246.18 (15)
C22—C23—C24—C250.73 (19)C5—C6—C61—C6275.81 (13)
C23—C24—C25—C261.50 (19)N1—C6—C61—C66140.69 (11)
C22—C21—C26—C252.25 (18)C5—C6—C61—C6697.32 (12)
C2—C21—C26—C25179.23 (11)C66—C61—C62—C630.67 (18)
C24—C25—C26—C210.02 (19)C6—C61—C62—C63172.44 (11)
N1—C2—C3—C461.95 (12)C61—C62—C63—C640.00 (19)
C21—C2—C3—C465.15 (13)C62—C63—C64—C650.5 (2)
N1—C2—C3—C3162.15 (12)C63—C64—C65—C660.4 (2)
C21—C2—C3—C31170.75 (10)C64—C65—C66—C610.3 (2)
C4—C3—C31—C3272.25 (13)C62—C61—C66—C650.80 (18)
C2—C3—C31—C32165.48 (10)C6—C61—C66—C65172.54 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O41—H41···N41i0.842.052.7991 (13)148
O41A—H41A···N41i0.842.002.76 (2)150
C66—H66···O11ii0.956 (17)2.451 (17)3.3550 (17)157.6 (13)
Symmetry codes: (i) x, y+2, z; (ii) x, y+2, z1/2.
(II) 1-chloroacetyl-2,6-diphenyl-3-(propan-2-yl)piperidin-4-one oxime top
Crystal data top
C22H25ClN2O2F(000) = 816
Mr = 384.89Dx = 1.281 Mg m3
Monoclinic, P21/nCu Kα radiation, λ = 1.54184 Å
Hall symbol: -P 2ynCell parameters from 8550 reflections
a = 9.469 (1) Åθ = 3.5–75.3°
b = 16.658 (2) ŵ = 1.84 mm1
c = 12.653 (2) ÅT = 295 K
β = 90.29 (1)°Block, colourless
V = 1995.8 (4) Å30.4 × 0.2 × 0.2 mm
Z = 4
Data collection top
Oxford SuperNova
diffractometer (single source at offset) with Atlas detector
3877 independent reflections
Radiation source: Nova (Cu) X-ray Source3643 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.016
Detector resolution: 5.2679 pixels mm-1θmax = 76.0°, θmin = 4.4°
ω–scanh = 1111
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
k = 1920
Tmin = 0.448, Tmax = 1.000l = 1415
10226 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.120H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0619P)2 + 0.628P]
where P = (Fo2 + 2Fc2)/3
3877 reflections(Δ/σ)max = 0.001
322 parametersΔρmax = 0.25 e Å3
0 restraintsΔρmin = 0.24 e Å3
Crystal data top
C22H25ClN2O2V = 1995.8 (4) Å3
Mr = 384.89Z = 4
Monoclinic, P21/nCu Kα radiation
a = 9.469 (1) ŵ = 1.84 mm1
b = 16.658 (2) ÅT = 295 K
c = 12.653 (2) Å0.4 × 0.2 × 0.2 mm
β = 90.29 (1)°
Data collection top
Oxford SuperNova
diffractometer (single source at offset) with Atlas detector
3877 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
3643 reflections with I > 2σ(I)
Tmin = 0.448, Tmax = 1.000Rint = 0.016
10226 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.120H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.25 e Å3
3877 reflectionsΔρmin = 0.24 e Å3
322 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.78576 (11)0.92571 (7)0.78049 (9)0.0319 (3)
C110.74589 (14)0.86786 (8)0.84921 (11)0.0340 (3)
O110.62220 (10)0.84585 (6)0.85791 (9)0.0433 (3)
C120.85572 (17)0.82716 (10)0.91839 (13)0.0421 (3)
H12A0.818 (2)0.7767 (13)0.9446 (15)0.052 (5)*
H12B0.941 (2)0.8195 (11)0.8854 (15)0.046 (5)*
Cl120.89127 (6)0.88632 (4)1.03268 (4)0.07258 (19)
C20.67172 (13)0.96699 (8)0.71944 (11)0.0334 (3)
H20.5835 (16)0.9442 (9)0.7493 (12)0.029 (4)*
C210.67635 (14)0.94218 (9)0.60345 (12)0.0369 (3)
C220.6644 (2)0.86071 (11)0.58016 (15)0.0512 (4)
H220.657 (2)0.8251 (13)0.6346 (18)0.062 (6)*
C230.6691 (2)0.83338 (13)0.47693 (16)0.0638 (5)
H230.663 (3)0.7736 (18)0.464 (2)0.089 (8)*
C240.6854 (2)0.88749 (14)0.39500 (16)0.0636 (5)
H240.690 (3)0.8666 (16)0.325 (2)0.089 (8)*
C250.6928 (2)0.96777 (14)0.41612 (15)0.0609 (5)
H250.698 (3)1.0070 (15)0.3601 (19)0.076 (7)*
C260.68789 (18)0.99569 (11)0.52001 (13)0.0482 (4)
H260.694 (2)1.0525 (13)0.5345 (15)0.053 (5)*
C30.67526 (14)1.05722 (8)0.74382 (12)0.0363 (3)
H30.6044 (19)1.0822 (11)0.6987 (14)0.041 (4)*
C310.63681 (18)1.07317 (10)0.86154 (13)0.0450 (4)
H310.694 (2)1.0358 (13)0.9061 (17)0.064 (6)*
C320.6756 (3)1.15714 (13)0.89813 (19)0.0756 (6)
H32A0.64471.16470.96960.113*
H32B0.63061.19590.85310.113*
H32C0.77621.16390.89480.113*
C330.4810 (2)1.05874 (15)0.87974 (17)0.0677 (5)
H33A0.42671.09410.83540.102*
H33B0.45911.06900.95250.102*
H33C0.45841.00400.86280.102*
C40.81671 (15)1.09051 (8)0.71143 (13)0.0393 (3)
N410.81935 (14)1.16369 (8)0.68143 (13)0.0483 (3)
O410.95614 (12)1.18733 (7)0.65091 (12)0.0598 (4)
H410.943 (3)1.2426 (15)0.6404 (19)0.074 (7)*
C50.94019 (15)1.03451 (9)0.70844 (14)0.0415 (3)
H5A0.9493 (19)1.0172 (11)0.6361 (15)0.043 (5)*
H5B1.025 (2)1.0623 (12)0.7258 (16)0.056 (5)*
C60.93036 (14)0.96136 (8)0.78195 (12)0.0338 (3)
H60.9467 (16)0.9799 (9)0.8513 (13)0.030 (4)*
C611.04678 (14)0.90329 (8)0.75142 (12)0.0358 (3)
C621.03821 (18)0.85701 (11)0.66064 (14)0.0501 (4)
H620.955 (2)0.8593 (12)0.6177 (16)0.054 (5)*
C631.1484 (2)0.80675 (13)0.63292 (19)0.0655 (5)
H631.139 (3)0.7738 (16)0.572 (2)0.084 (8)*
C641.2694 (2)0.80332 (13)0.69455 (19)0.0654 (5)
H641.344 (3)0.7673 (15)0.6755 (19)0.077 (7)*
C651.27954 (18)0.85004 (12)0.78348 (17)0.0573 (5)
H651.364 (3)0.8485 (14)0.8276 (18)0.069 (6)*
C661.16901 (16)0.89970 (10)0.81251 (14)0.0448 (4)
H661.173 (2)0.9323 (12)0.8769 (16)0.051 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0265 (5)0.0295 (5)0.0397 (6)0.0000 (4)0.0018 (4)0.0020 (4)
C110.0335 (7)0.0275 (6)0.0411 (7)0.0019 (5)0.0017 (5)0.0012 (5)
O110.0325 (5)0.0338 (5)0.0636 (7)0.0018 (4)0.0034 (5)0.0075 (5)
C120.0393 (8)0.0406 (8)0.0463 (8)0.0018 (6)0.0007 (6)0.0092 (6)
Cl120.0845 (4)0.0805 (4)0.0525 (3)0.0091 (3)0.0199 (2)0.0002 (2)
C20.0259 (6)0.0331 (7)0.0411 (7)0.0012 (5)0.0027 (5)0.0028 (5)
C210.0275 (6)0.0404 (7)0.0426 (8)0.0012 (5)0.0050 (5)0.0003 (6)
C220.0598 (10)0.0452 (9)0.0486 (10)0.0010 (7)0.0142 (8)0.0027 (7)
C230.0767 (13)0.0555 (11)0.0588 (11)0.0099 (9)0.0219 (10)0.0149 (9)
C240.0610 (11)0.0842 (14)0.0454 (10)0.0140 (10)0.0100 (8)0.0127 (9)
C250.0591 (11)0.0802 (14)0.0433 (9)0.0007 (9)0.0020 (8)0.0085 (9)
C260.0477 (9)0.0504 (9)0.0464 (9)0.0019 (7)0.0005 (7)0.0049 (7)
C30.0312 (7)0.0324 (7)0.0451 (8)0.0038 (5)0.0026 (6)0.0020 (6)
C310.0473 (8)0.0406 (8)0.0469 (9)0.0074 (6)0.0015 (7)0.0025 (6)
C320.0954 (17)0.0581 (12)0.0734 (14)0.0068 (11)0.0117 (12)0.0222 (10)
C330.0561 (11)0.0886 (15)0.0586 (11)0.0001 (10)0.0157 (9)0.0093 (10)
C40.0366 (7)0.0303 (7)0.0509 (9)0.0003 (5)0.0035 (6)0.0013 (6)
N410.0398 (7)0.0365 (7)0.0685 (9)0.0022 (5)0.0012 (6)0.0057 (6)
O410.0426 (6)0.0368 (6)0.1001 (10)0.0020 (5)0.0075 (6)0.0126 (6)
C50.0306 (7)0.0365 (7)0.0575 (10)0.0019 (6)0.0019 (6)0.0067 (6)
C60.0269 (6)0.0338 (7)0.0406 (8)0.0016 (5)0.0030 (5)0.0003 (5)
C610.0284 (6)0.0345 (7)0.0447 (8)0.0003 (5)0.0009 (5)0.0047 (6)
C620.0387 (8)0.0556 (10)0.0561 (10)0.0048 (7)0.0024 (7)0.0102 (8)
C630.0532 (10)0.0684 (12)0.0751 (13)0.0095 (9)0.0092 (9)0.0222 (10)
C640.0438 (9)0.0609 (11)0.0917 (15)0.0172 (8)0.0133 (9)0.0013 (10)
C650.0326 (8)0.0637 (11)0.0754 (13)0.0095 (7)0.0036 (8)0.0146 (9)
C660.0324 (7)0.0496 (9)0.0524 (9)0.0023 (6)0.0042 (6)0.0057 (7)
Geometric parameters (Å, º) top
N1—C111.3530 (18)C31—H311.00 (2)
N1—C21.4924 (16)C32—H32A0.9600
N1—C61.4925 (16)C32—H32B0.9600
C11—O111.2327 (17)C32—H32C0.9600
C11—C121.516 (2)C33—H33A0.9600
C12—Cl121.7807 (18)C33—H33B0.9600
C12—H12A0.97 (2)C33—H33C0.9600
C12—H12B0.92 (2)C4—N411.2770 (19)
C2—C211.526 (2)C4—C51.496 (2)
C2—C31.5348 (19)N41—O411.4096 (18)
C2—H20.994 (15)O41—H410.94 (3)
C21—C261.386 (2)C5—C61.536 (2)
C21—C221.393 (2)C5—H5A0.964 (19)
C22—C231.384 (3)C5—H5B0.95 (2)
C22—H220.91 (2)C6—C611.5181 (19)
C23—C241.383 (3)C6—H60.943 (16)
C23—H231.01 (3)C61—C621.385 (2)
C24—C251.365 (3)C61—C661.390 (2)
C24—H240.96 (3)C62—C631.384 (2)
C25—C261.395 (3)C62—H620.96 (2)
C25—H250.97 (2)C63—C641.384 (3)
C26—H260.97 (2)C63—H630.95 (3)
C3—C41.508 (2)C64—C651.371 (3)
C3—C311.558 (2)C64—H640.96 (3)
C3—H30.972 (19)C65—C661.385 (2)
C31—C331.514 (3)C65—H650.97 (2)
C31—C321.518 (3)C66—H660.98 (2)
C11—N1—C2117.21 (11)C31—C32—H32A109.5
C11—N1—C6122.30 (11)C31—C32—H32B109.5
C2—N1—C6118.98 (10)H32A—C32—H32B109.5
O11—C11—N1122.52 (13)C31—C32—H32C109.5
O11—C11—C12117.69 (13)H32A—C32—H32C109.5
N1—C11—C12119.79 (12)H32B—C32—H32C109.5
C11—C12—Cl12110.34 (11)C31—C33—H33A109.5
C11—C12—H12A109.2 (12)C31—C33—H33B109.5
Cl12—C12—H12A105.7 (11)H33A—C33—H33B109.5
C11—C12—H12B113.7 (12)C31—C33—H33C109.5
Cl12—C12—H12B106.3 (12)H33A—C33—H33C109.5
H12A—C12—H12B111.2 (16)H33B—C33—H33C109.5
N1—C2—C21110.42 (11)N41—C4—C5124.83 (14)
N1—C2—C3109.40 (11)N41—C4—C3116.77 (13)
C21—C2—C3117.26 (12)C5—C4—C3118.21 (12)
N1—C2—H2103.6 (9)C4—N41—O41111.56 (13)
C21—C2—H2106.9 (9)N41—O41—H41101.2 (15)
C3—C2—H2108.3 (9)C4—C5—C6115.44 (13)
C26—C21—C22118.15 (15)C4—C5—H5A106.5 (11)
C26—C21—C2124.14 (14)C6—C5—H5A110.1 (11)
C22—C21—C2117.69 (14)C4—C5—H5B110.4 (12)
C23—C22—C21121.13 (18)C6—C5—H5B107.5 (12)
C23—C22—H22120.2 (14)H5A—C5—H5B106.6 (16)
C21—C22—H22118.6 (14)N1—C6—C61114.25 (11)
C24—C23—C22119.82 (19)N1—C6—C5111.50 (11)
C24—C23—H23122.1 (16)C61—C6—C5107.76 (12)
C22—C23—H23118.0 (16)N1—C6—H6106.8 (9)
C25—C24—C23119.84 (19)C61—C6—H6109.3 (9)
C25—C24—H24122.4 (17)C5—C6—H6107.0 (9)
C23—C24—H24117.8 (17)C62—C61—C66118.84 (14)
C24—C25—C26120.59 (19)C62—C61—C6121.73 (13)
C24—C25—H25121.5 (14)C66—C61—C6119.32 (14)
C26—C25—H25117.9 (14)C63—C62—C61120.37 (17)
C21—C26—C25120.41 (17)C63—C62—H62120.1 (12)
C21—C26—H26119.4 (12)C61—C62—H62119.5 (12)
C25—C26—H26120.2 (12)C64—C63—C62120.34 (19)
C4—C3—C2108.90 (11)C64—C63—H63120.7 (16)
C4—C3—C31114.16 (13)C62—C63—H63119.0 (17)
C2—C3—C31110.74 (12)C65—C64—C63119.56 (17)
C4—C3—H3107.1 (10)C65—C64—H64120.9 (15)
C2—C3—H3106.7 (11)C63—C64—H64119.6 (15)
C31—C3—H3108.9 (10)C64—C65—C66120.45 (17)
C33—C31—C32109.55 (17)C64—C65—H65120.6 (14)
C33—C31—C3110.55 (14)C66—C65—H65118.9 (14)
C32—C31—C3113.04 (15)C65—C66—C61120.43 (17)
C33—C31—H31110.1 (13)C65—C66—H66121.5 (12)
C32—C31—H31105.8 (13)C61—C66—H66118.1 (11)
C3—C31—H31107.7 (12)
C2—N1—C11—O114.2 (2)C4—C3—C31—C3241.4 (2)
C6—N1—C11—O11170.04 (13)C2—C3—C31—C32164.71 (15)
C2—N1—C11—C12176.33 (12)C2—C3—C4—N41149.75 (15)
C6—N1—C11—C1210.5 (2)C31—C3—C4—N4185.92 (18)
O11—C11—C12—Cl1297.36 (14)C2—C3—C4—C525.49 (18)
N1—C11—C12—Cl1283.14 (15)C31—C3—C4—C598.83 (16)
C11—N1—C2—C21109.29 (13)C5—C4—N41—O413.7 (2)
C6—N1—C2—C2184.39 (14)C3—C4—N41—O41178.61 (13)
C11—N1—C2—C3120.23 (13)N41—C4—C5—C6159.26 (16)
C6—N1—C2—C346.09 (16)C3—C4—C5—C625.9 (2)
N1—C2—C21—C26124.11 (14)C11—N1—C6—C6166.74 (17)
C3—C2—C21—C262.1 (2)C2—N1—C6—C61127.67 (13)
N1—C2—C21—C2257.69 (17)C11—N1—C6—C5170.78 (13)
C3—C2—C21—C22176.11 (13)C2—N1—C6—C55.19 (17)
C26—C21—C22—C232.4 (3)C4—C5—C6—N141.84 (18)
C2—C21—C22—C23179.31 (16)C4—C5—C6—C61167.98 (13)
C21—C22—C23—C240.3 (3)N1—C6—C61—C6250.09 (19)
C22—C23—C24—C251.7 (3)C5—C6—C61—C6274.41 (17)
C23—C24—C25—C261.7 (3)N1—C6—C61—C66133.78 (14)
C22—C21—C26—C252.5 (2)C5—C6—C61—C66101.72 (16)
C2—C21—C26—C25179.35 (15)C66—C61—C62—C631.5 (3)
C24—C25—C26—C210.5 (3)C6—C61—C62—C63177.65 (17)
N1—C2—C3—C460.54 (15)C61—C62—C63—C641.2 (3)
C21—C2—C3—C466.15 (15)C62—C63—C64—C650.1 (3)
N1—C2—C3—C3165.77 (14)C63—C64—C65—C660.8 (3)
C21—C2—C3—C31167.54 (12)C64—C65—C66—C610.5 (3)
C4—C3—C31—C33164.59 (15)C62—C61—C66—C650.7 (2)
C2—C3—C31—C3372.07 (17)C6—C61—C66—C65176.90 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O41—H41···O11i0.94 (3)1.83 (3)2.7449 (16)165 (2)
C65—H65···O11ii0.97 (2)2.47 (2)3.375 (2)153.9 (18)
Symmetry codes: (i) x+3/2, y+1/2, z+3/2; (ii) x+1, y, z.

Experimental details

(I)(I_100K)(II)
Crystal data
Chemical formulaC21H23ClN2O2C21H23ClN2O2C22H25ClN2O2
Mr370.86370.86384.89
Crystal system, space groupMonoclinic, C2/cMonoclinic, C2/cMonoclinic, P21/n
Temperature (K)293100295
a, b, c (Å)34.176 (3), 9.1227 (9), 12.1235 (11)33.849 (3), 9.025 (1), 11.980 (1)9.469 (1), 16.658 (2), 12.653 (2)
β (°) 91.962 (8) 92.51 (1) 90.29 (1)
V3)3777.6 (6)3656.2 (6)1995.8 (4)
Z884
Radiation typeMo KαMo KαCu Kα
µ (mm1)0.220.231.84
Crystal size (mm)0.3 × 0.15 × 0.10.3 × 0.15 × 0.10.4 × 0.2 × 0.2
Data collection
DiffractometerOxford Xcalibur
diffractometer with Sapphire2 (large Be window) detector
Oxford Xcalibur
diffractometer with Eos detector
Oxford SuperNova
diffractometer (single source at offset) with Atlas detector
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
Multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
Multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
Tmin, Tmax0.993, 1.0000.957, 1.0000.448, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
8775, 3304, 1743 14395, 3729, 3245 10226, 3877, 3643
Rint0.0510.0130.016
(sin θ/λ)max1)0.5950.6390.629
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.079, 1.00 0.030, 0.078, 1.08 0.045, 0.120, 1.05
No. of reflections330437293877
No. of parameters297312322
No. of restraints110
H-atom treatmentH atoms treated by a mixture of independent and constrained refinementH atoms treated by a mixture of independent and constrained refinementH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.21, 0.290.31, 0.260.25, 0.24

Computer programs: CrysAlis PRO (Oxford Diffraction, 2009), SIR92 (Altomare et al., 1993), SHELXL97 (Sheldrick, 2008), Stereochemical Workstation Operation Manual (Siemens, 1989).

Hydrogen-bond geometry (Å, º) for (I) top
D—H···AD—HH···AD···AD—H···A
O41—H41···N41i0.822.112.842 (2)148.8
O41A—H41A···N41i0.822.072.81 (3)150.5
C66—H66···O11ii0.92 (2)2.50 (2)3.380 (4)162 (2)
Symmetry codes: (i) x, y+2, z; (ii) x, y+2, z1/2.
Hydrogen-bond geometry (Å, º) for (I_100K) top
D—H···AD—HH···AD···AD—H···A
O41—H41···N41i0.842.052.7991 (13)148.3
O41A—H41A···N41i0.842.002.76 (2)150.3
C66—H66···O11ii0.956 (17)2.451 (17)3.3550 (17)157.6 (13)
Symmetry codes: (i) x, y+2, z; (ii) x, y+2, z1/2.
Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD—HH···AD···AD—H···A
O41—H41···O11i0.94 (3)1.83 (3)2.7449 (16)165 (2)
C65—H65···O11ii0.97 (2)2.47 (2)3.375 (2)153.9 (18)
Symmetry codes: (i) x+3/2, y+1/2, z+3/2; (ii) x+1, y, z.
Selected torsion angles (°); the second line, where present, refers to the minor-occupancy part top
(I)(II)
C6—N1—C2—C3-43.5 (3)-46.09 (16)
N1—C2—C3—C462.2 (2)60.54 (15)
C2—C3—C4—C5-27.1 (3)-25.49 (18)
C3—C4—C5—C6-27.6 (3)-25.9 (2)
C4—C5—C6—N147.2 (3)41.84 (18)
C5—C6—N1—C2-10.3 (3)-5.19 (17)
C2—N1—C11—O1112.5 (4)4.2 (2)
C2—N1—C11—C12-166.4 (2)-17633 (12)
O11—C11—C12—Cl12-94.6 (3)-97.36 (14)
N1—C11—C12—Cl1284.4 (3)83.14 (15)
C6—N1—C2—C2187.4 (2)84.39 (14)
C11—N1—C2—C3126.5 (2)120.23 (13)
N1—C2—C21—C26-142.4 (2)-124.11 (14)
C3—C2—C21—C26-15.6 (3)2.1 (2)
N1—C2—C21—C2240.5 (3)57.69 (17)
C3—C2—C21—C22167.3 (2)-176.11 (13)
C21—C2—C3—C4-66.0 (2)-66.15 (15)
N1—C2—C3—C31-62.4 (3)-65.77 (14)
C4—C3—C31—C3273.0 (3)41.4 (2)
C2—C3—C4—N41149.7 (2)149.75 (15)
C31—C3—C4—C597.3 (2)98.83 (16)
C5—C4—N41—O41-2.5 (3)-3.7 (2)
179 (1)
C3—C4—N41—O41-179.10 (18)-178.61 (13)
3(1)
N41—C4—C5—C6155.7 (2)159.26 (16)
C2—N1—C6—C61-130.9 (2)-127.67 (13)
C4—C5—C6—C61172.20 (19)167.98 (13)
N1—C6—C61—C6245.7 (3)50.09 (19)
C5—C6—C61—C62-76.7 (3)-74.41 (17)
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds