Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
In the crystal structure of the title compound, [CoCl2(C7H12N2)2], mol­ecular units are formed by coordination of the unsubstituted N atoms of two tert-butyl-substituted imidazole mol­ecules and two chloride ligands, which distinguishes the complex from structures of imidazolium-based dications with tetra­chlorido­cobaltate dianions. There are two crystallographically independent mol­ecules in the asymmetric unit, related by a noncrystallographic inversion centre.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270112020884/eg3092sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270112020884/eg3092Isup2.hkl
Contains datablock I

CCDC reference: 889372

Comment top

We have previously reported the syntheses of hexakis(1-isopropylimidazole)calcium(II) dichloride, [Ca(iPrIm)6]Cl2, and di-µ-chlorido-bis[tris(1-tert-butylimidazole)chloridocalcium(II)], [(tBuIm)3CaCl(µ2-Cl)2ClCa(tBuIm)3], as well as the complex triaquatris(1-isopropylimidazole)magnesium(II) dichloride, [Mg(iPrIm)6(H2O)3]Cl2 (Unger et al., 2007). In these cases, we synthesized the complexes from the respective imidazoles and alkaline earth metal salts. We report here the synthesis of bis(1-tert-butyl-1H-imidazole-κN3)dichloridocobalt(II), (I), starting from the bis-imidazolium salt.

The CoII cation of (I) is coordinated in a distorted tetrahedral geometry by two chloride ligands [Co—Cl = 2.2588 (6) and 2.2603 (5) Å] and two 1-tert-butyl-1H-imidazole ligands, which coordinate via N atoms [Co—N = 2.013 (2) and 2.019 (2) Å]. These bond lengths are not significantly longer than in the analogous methyl-substituted complex bis(methylimidazole)CoCl2 (Mukerjee et al., 2000). Even the N—Co—N angle is comparable [tBu = 109.65 (7)° versus Me = 110.6 (1)°], which shows that the steric demand of the larger tert-butyl group has no influence on the coordination geometry. The most obvious difference is that in the methyl-substituted case, the H atoms on C2 of the imidazole ligand point in different directions, while in the tert-butyl case, both H atoms are oriented on the same side of the complex. By quenching the reaction with elemental sulfur we could show that the free carbene is formed under the reaction conditions but decomposes relatively quickly. The H atoms in the methylene bridge are acidic and not stable towards the base potassium bis(trimethylsilyl)amide (KHMDS), as we found large amounts of tert-butylimidazole in the solution. These form the observed product, which crystallized from the tetrahydrofuran solution.

In the asymmetric unit of (I) there are two crystallographically independent molecules, A (including atom Co1) and B (atom Co2) (Fig. 1). They are related by a noncrystallographic inversion centre. As can be seen from the Cl—Co—N—C torsion angles (Table 1), the core geometry of molecules A and B differs only slightly. As a consequence of their acidity, imidazole atoms H11, H31, H81, H211, H231 and H281 take part in C—H···Cl contacts (Table 2 and Figs. 2 and 3). Six contacts are shorter than the sum of the relevant van der Waals radii (2.95 Å; Bondi, 1964).

The most striking feature of (I) in the solid state is a head-to-tail arrangement of molecules A and B. Atoms Cl1 and Cl3 of both molecules take part in bifurcated hydrogen-bond bridges (Fig. 2). These dimers connect to form an infinite double layer parallel to the ab plane via Cl2···H231 and Cl4···H31 contacts (Fig. 3).

Related literature top

For related literature, see: Bondi (1964); Caballero et al. (2001); Cotton et al. (1961); Douthwaite et al. (1999, 2001, 2002); Herrmann et al. (1996); Mukerjee et al. (2000); Sheldrick (2008); Unger et al. (2007).

Experimental top

The bisimidazolium salt was previously deprotonated by sodium hexamethyldisilazan in tetrahydrofuran and the formation of the free carbene could be independently confirmed (Douthwaite et al., 1999). The corresponding nickel and palladium NHC complexes have been described in the literature (Douthwaite et al., 2001, 2002) and the addition of sulfur leads to the dithiones (Caballero et al., 2001; Herrmann et al., 1996). However, in this instance, the addition of bis(triphenylphosphane)cobalt(II) chloride (Cotton et al., 1961) did not lead to the expected formation of the biscarbene complex, and instead we isolated the N-coordinated complex, (I). [Recrystallisation from which solvent?] The crystal selected was fixed in a capillary with perfluorinated ether and transferred to the diffractometer.

Refinement top

H atoms were constrained to an ideal geometry using the standard riding model implemented in SHELXL97 (Sheldrick, 2008). H atoms were fixed with C—H = 0.98 Å and Uiso(H) = 1.5Ueq(C) for methyl H atoms, or C—H = 0.95 Å and Uiso(H) = 1.2Ueq(C) for aromatic H atoms.

Computing details top

Data collection: COLLECT (Nonius, 2001); cell refinement: DENZO (Otwinowski & Minor, 1997); data reduction: DENZO (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR92 (Altomare et al., 1994; program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2010) and PLATON (Spek, 2009); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. A perspective view of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. The head-to-tail arrangement of molecules A and B. Dashed lines indicate hydrogen bonds.
[Figure 3] Fig. 3. A stereoview of (I), showing the hydrogen-bonding network. Dashed lines indicate hydrogen bonds.
Bis(1-tert-butyl-1H-imidazole-κN3)dichloridocobalt(II) top
Crystal data top
[CoCl2(C7H12N2)2]F(000) = 1576
Mr = 378.20Dx = 1.368 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 7031 reflections
a = 14.1054 (1) Åθ = 1.5–25.4°
b = 14.5470 (1) ŵ = 1.23 mm1
c = 18.7059 (2) ÅT = 173 K
β = 106.9542 (3)°Fragment, blue
V = 3671.47 (5) Å30.33 × 0.33 × 0.05 mm
Z = 8
Data collection top
Nonius KappaCCD area-detector
diffractometer
6741 independent reflections
Radiation source: Nonius FR 591 rotating-anode5547 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.056
Detector resolution: 18 pixels mm-1θmax = 25.4°, θmin = 1.5°
ϕ and ω rotation scansh = 1717
Absorption correction: multi-scan
[applied during the scaling procedure (DENZO; Otwinowski & Minor, 1997)]
k = 1717
Tmin = 0.857, Tmax = 1.000l = 2221
74460 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.076H-atom parameters constrained
S = 1.03Weighting scheme based on measured s.u.'s w = 1/[σ2(Fo2) + (0.0321P)2 + 2.5029P]
where P = (Fo2 + 2Fc2)/3
6741 reflections(Δ/σ)max = 0.001
391 parametersΔρmax = 0.28 e Å3
0 restraintsΔρmin = 0.30 e Å3
0 constraints
Crystal data top
[CoCl2(C7H12N2)2]V = 3671.47 (5) Å3
Mr = 378.20Z = 8
Monoclinic, P21/cMo Kα radiation
a = 14.1054 (1) ŵ = 1.23 mm1
b = 14.5470 (1) ÅT = 173 K
c = 18.7059 (2) Å0.33 × 0.33 × 0.05 mm
β = 106.9542 (3)°
Data collection top
Nonius KappaCCD area-detector
diffractometer
6741 independent reflections
Absorption correction: multi-scan
[applied during the scaling procedure (DENZO; Otwinowski & Minor, 1997)]
5547 reflections with I > 2σ(I)
Tmin = 0.857, Tmax = 1.000Rint = 0.056
74460 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0320 restraints
wR(F2) = 0.076H-atom parameters constrained
S = 1.03Δρmax = 0.28 e Å3
6741 reflectionsΔρmin = 0.30 e Å3
391 parameters
Special details top

Experimental. Diffractometer operator E. Herdtweck scan speed 2 × 30 s per film repetition 1 dx 40 933 films measured in 8 data sets set 1: phi-scan with delta_phi = 1.0 set 2 to 9: omega-scans with delta_omega = 1.0

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement on F2 for ALL reflections except for 0 with very negative F2 or flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > 2sigma(F2) is used only for calculating R_factor_obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co10.30046 (2)0.148881 (19)0.296068 (16)0.02443 (8)
Cl10.22349 (4)0.16251 (4)0.17244 (3)0.03311 (14)
Cl20.33651 (4)0.00521 (3)0.34197 (3)0.03122 (13)
N10.43252 (13)0.21302 (11)0.32086 (9)0.0244 (4)
N20.55196 (13)0.31650 (11)0.34675 (10)0.0246 (4)
N30.21723 (13)0.20424 (12)0.35646 (10)0.0276 (4)
N40.12648 (13)0.29509 (12)0.40414 (10)0.0283 (4)
C10.45390 (16)0.30200 (14)0.32959 (12)0.0258 (5)
H110.40590.34930.32440.031*
C20.52234 (16)0.16891 (14)0.33325 (12)0.0266 (5)
H210.53100.10430.33090.032*
C30.59633 (16)0.23173 (14)0.34928 (12)0.0273 (5)
H310.66530.21970.36010.033*
C40.60243 (17)0.40801 (14)0.36558 (13)0.0296 (5)
C50.6005 (2)0.43318 (17)0.44427 (14)0.0441 (7)
H510.53170.43790.44530.066*
H520.63400.49230.45870.066*
H530.63480.38550.47940.066*
C60.54547 (18)0.47873 (15)0.30912 (15)0.0380 (6)
H610.54120.45800.25840.057*
H620.58000.53790.31870.057*
H630.47850.48570.31400.057*
C70.70808 (18)0.40011 (17)0.36149 (16)0.0433 (6)
H710.74500.35670.39960.065*
H720.74010.46060.37040.065*
H730.70740.37800.31190.065*
C80.17982 (16)0.28800 (15)0.35556 (12)0.0283 (5)
H810.18950.33670.32460.034*
C90.18704 (17)0.15609 (15)0.40924 (14)0.0338 (5)
H910.20300.09380.42280.041*
C100.13101 (18)0.21144 (15)0.43887 (14)0.0364 (6)
H1010.10080.19550.47640.044*
C110.07807 (17)0.38122 (15)0.42007 (14)0.0332 (5)
C120.0119 (2)0.35709 (18)0.46857 (18)0.0528 (8)
H1120.05270.33370.51690.079*
H1210.03580.30990.44360.079*
H1230.02370.41220.47650.079*
C130.0174 (2)0.42239 (19)0.34635 (16)0.0549 (8)
H1310.06140.43890.31640.082*
H1320.01680.47760.35600.082*
H1330.03150.37730.31910.082*
C140.15973 (19)0.44627 (16)0.46138 (15)0.0421 (6)
H1410.19900.41730.50790.063*
H1420.13030.50330.47300.063*
H1430.20270.46020.43000.063*
Co20.19130 (2)0.49803 (2)0.164679 (19)0.03167 (9)
Cl30.26847 (5)0.49558 (4)0.28981 (4)0.03938 (15)
Cl40.14925 (5)0.63903 (4)0.11322 (4)0.04224 (16)
N210.06229 (14)0.42985 (13)0.14949 (12)0.0372 (5)
N220.05722 (14)0.33495 (12)0.15524 (12)0.0338 (5)
N230.28478 (14)0.44774 (12)0.11119 (11)0.0311 (4)
N240.39698 (13)0.36514 (12)0.07875 (10)0.0263 (4)
C210.03877 (17)0.34402 (15)0.15985 (13)0.0304 (5)
H2110.08470.29450.16950.036*
C220.0240 (2)0.47894 (18)0.13973 (19)0.0544 (8)
H2210.03050.54350.13220.065*
C230.09782 (19)0.42161 (17)0.14242 (17)0.0512 (7)
H2310.16490.43780.13660.061*
C240.11329 (18)0.24870 (16)0.15900 (14)0.0367 (6)
C250.1646 (3)0.2181 (2)0.07967 (19)0.0751 (10)
H2510.20710.26780.05270.113*
H2520.20500.16360.08060.113*
H2530.11470.20310.05440.113*
C260.0416 (2)0.17655 (19)0.2015 (2)0.0747 (11)
H2610.07830.12100.20670.112*
H2620.00620.20020.25120.112*
H2630.00610.16180.17420.112*
C270.1904 (2)0.26807 (18)0.19910 (17)0.0511 (7)
H2710.15750.29010.24980.077*
H2720.22710.21150.20170.077*
H2730.23660.31510.17170.077*
C280.33406 (17)0.36882 (15)0.12037 (13)0.0327 (5)
H2810.32580.32080.15250.039*
C290.31812 (19)0.49622 (15)0.06028 (14)0.0358 (6)
H2910.29630.55590.04210.043*
C300.38653 (19)0.44621 (15)0.04013 (13)0.0362 (6)
H3010.42100.46390.00560.043*
C310.46122 (17)0.28457 (15)0.07408 (12)0.0277 (5)
C320.5314 (2)0.31228 (17)0.02940 (14)0.0399 (6)
H3210.49280.32970.02140.060*
H3220.57470.26040.02710.060*
H3230.57180.36460.05370.060*
C330.52081 (19)0.25800 (18)0.15311 (13)0.0415 (6)
H3310.56050.31070.17760.062*
H3320.56480.20660.15110.062*
H3330.47550.23960.18150.062*
C340.39420 (19)0.20611 (16)0.03560 (15)0.0406 (6)
H3410.35660.22500.01500.061*
H3420.34820.19060.06420.061*
H3430.43470.15220.03290.061*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.02411 (17)0.02136 (15)0.02917 (17)0.00051 (12)0.00988 (13)0.00353 (12)
Cl10.0332 (3)0.0353 (3)0.0291 (3)0.0058 (2)0.0064 (2)0.0001 (2)
Cl20.0380 (3)0.0206 (3)0.0396 (3)0.0014 (2)0.0185 (3)0.0011 (2)
N10.0258 (10)0.0212 (9)0.0270 (10)0.0003 (7)0.0088 (8)0.0001 (7)
N20.0256 (10)0.0204 (9)0.0283 (10)0.0007 (7)0.0087 (8)0.0007 (7)
N30.0262 (10)0.0251 (9)0.0332 (11)0.0016 (8)0.0117 (8)0.0063 (8)
N40.0273 (10)0.0234 (9)0.0372 (11)0.0000 (8)0.0144 (9)0.0065 (8)
C10.0255 (12)0.0234 (11)0.0293 (12)0.0018 (9)0.0092 (9)0.0002 (9)
C20.0293 (13)0.0219 (11)0.0287 (12)0.0033 (9)0.0086 (10)0.0002 (9)
C30.0249 (12)0.0281 (12)0.0290 (12)0.0043 (9)0.0082 (10)0.0020 (9)
C40.0314 (13)0.0222 (11)0.0359 (13)0.0069 (9)0.0110 (10)0.0008 (9)
C50.0572 (18)0.0350 (14)0.0399 (15)0.0149 (12)0.0139 (13)0.0064 (11)
C60.0354 (14)0.0269 (12)0.0515 (16)0.0029 (10)0.0123 (12)0.0099 (11)
C70.0283 (14)0.0367 (14)0.0641 (18)0.0053 (11)0.0123 (13)0.0037 (12)
C80.0300 (13)0.0259 (11)0.0308 (12)0.0000 (9)0.0116 (10)0.0029 (9)
C90.0336 (14)0.0237 (11)0.0493 (15)0.0008 (10)0.0203 (12)0.0011 (10)
C100.0404 (15)0.0277 (12)0.0502 (15)0.0034 (10)0.0276 (12)0.0005 (11)
C110.0314 (13)0.0267 (12)0.0441 (14)0.0034 (10)0.0152 (11)0.0086 (10)
C120.0538 (18)0.0392 (15)0.082 (2)0.0004 (13)0.0449 (17)0.0150 (14)
C130.0525 (18)0.0488 (17)0.0564 (18)0.0212 (14)0.0049 (14)0.0115 (14)
C140.0408 (15)0.0309 (13)0.0563 (17)0.0018 (11)0.0167 (13)0.0149 (12)
Co20.02576 (18)0.02496 (17)0.0472 (2)0.00152 (12)0.01513 (15)0.00222 (13)
Cl30.0365 (3)0.0385 (3)0.0454 (4)0.0056 (3)0.0156 (3)0.0042 (3)
Cl40.0346 (3)0.0261 (3)0.0686 (4)0.0032 (2)0.0191 (3)0.0102 (3)
N210.0264 (11)0.0289 (11)0.0567 (13)0.0027 (8)0.0130 (10)0.0066 (9)
N220.0253 (11)0.0257 (10)0.0503 (13)0.0010 (8)0.0110 (9)0.0029 (9)
N230.0292 (11)0.0274 (10)0.0382 (11)0.0012 (8)0.0121 (9)0.0013 (8)
N240.0291 (10)0.0254 (9)0.0265 (10)0.0013 (8)0.0116 (8)0.0009 (8)
C210.0244 (13)0.0262 (12)0.0415 (14)0.0020 (9)0.0110 (10)0.0009 (10)
C220.0331 (16)0.0328 (14)0.097 (2)0.0060 (12)0.0189 (15)0.0150 (15)
C230.0282 (15)0.0353 (14)0.091 (2)0.0063 (11)0.0188 (15)0.0119 (14)
C240.0322 (14)0.0260 (12)0.0536 (16)0.0055 (10)0.0151 (12)0.0036 (11)
C250.082 (3)0.079 (2)0.069 (2)0.038 (2)0.0299 (19)0.0321 (19)
C260.0395 (18)0.0327 (16)0.152 (4)0.0001 (13)0.028 (2)0.0272 (18)
C270.0489 (18)0.0402 (15)0.074 (2)0.0062 (13)0.0342 (16)0.0022 (14)
C280.0353 (14)0.0309 (13)0.0357 (13)0.0032 (10)0.0164 (11)0.0053 (10)
C290.0441 (15)0.0232 (12)0.0419 (14)0.0016 (10)0.0152 (12)0.0024 (10)
C300.0473 (16)0.0285 (12)0.0380 (14)0.0029 (11)0.0209 (12)0.0028 (10)
C310.0294 (12)0.0276 (11)0.0281 (12)0.0010 (9)0.0114 (10)0.0023 (9)
C320.0471 (16)0.0393 (14)0.0424 (15)0.0004 (12)0.0273 (13)0.0052 (11)
C330.0433 (16)0.0479 (15)0.0335 (14)0.0150 (12)0.0115 (12)0.0032 (12)
C340.0424 (15)0.0300 (13)0.0503 (16)0.0010 (11)0.0148 (13)0.0076 (11)
Geometric parameters (Å, º) top
Co1—N12.0128 (17)Co2—N232.0110 (19)
Co1—N32.0191 (17)Co2—N212.0185 (19)
Co1—Cl12.2587 (6)Co2—Cl42.2699 (6)
Co1—Cl22.2604 (6)Co2—Cl32.2757 (7)
N1—C11.328 (3)N21—C211.321 (3)
N1—C21.378 (3)N21—C221.377 (3)
N2—C11.342 (3)N22—C211.338 (3)
N2—C31.377 (3)N22—C231.376 (3)
N2—C41.502 (3)N22—C241.496 (3)
N3—C81.326 (3)N23—C281.327 (3)
N3—C91.375 (3)N23—C291.374 (3)
N4—C81.342 (3)N24—C281.342 (3)
N4—C101.372 (3)N24—C301.368 (3)
N4—C111.498 (3)N24—C311.499 (3)
C1—H110.9500C21—H2110.9500
C2—C31.353 (3)C22—C231.346 (4)
C2—H210.9500C22—H2210.9500
C3—H310.9500C23—H2310.9500
C4—C71.519 (3)C24—C261.513 (4)
C4—C61.525 (3)C24—C251.516 (4)
C4—C51.525 (3)C24—C271.517 (3)
C5—H510.9800C25—H2510.9800
C5—H520.9800C25—H2520.9800
C5—H530.9800C25—H2530.9800
C6—H610.9800C26—H2610.9800
C6—H620.9800C26—H2620.9800
C6—H630.9800C26—H2630.9800
C7—H710.9800C27—H2710.9800
C7—H720.9800C27—H2720.9800
C7—H730.9800C27—H2730.9800
C8—H810.9500C28—H2810.9500
C9—C101.355 (3)C29—C301.347 (3)
C9—H910.9500C29—H2910.9500
C10—H1010.9500C30—H3010.9500
C11—C141.517 (3)C31—C331.522 (3)
C11—C131.518 (4)C31—C341.522 (3)
C11—C121.520 (3)C31—C321.524 (3)
C12—H1120.9800C32—H3210.9800
C12—H1210.9800C32—H3220.9800
C12—H1230.9800C32—H3230.9800
C13—H1310.9800C33—H3310.9800
C13—H1320.9800C33—H3320.9800
C13—H1330.9800C33—H3330.9800
C14—H1410.9800C34—H3410.9800
C14—H1420.9800C34—H3420.9800
C14—H1430.9800C34—H3430.9800
N1—Co1—N3109.65 (7)N23—Co2—N21116.50 (8)
N1—Co1—Cl1109.36 (5)N23—Co2—Cl4104.23 (6)
N3—Co1—Cl1110.70 (6)N21—Co2—Cl4105.72 (6)
N1—Co1—Cl2104.51 (5)N23—Co2—Cl3108.64 (6)
N3—Co1—Cl2105.03 (5)N21—Co2—Cl3106.16 (6)
Cl1—Co1—Cl2117.25 (2)Cl4—Co2—Cl3115.96 (3)
C1—N1—C2105.57 (17)C21—N21—C22105.0 (2)
C1—N1—Co1129.92 (15)C21—N21—Co2134.32 (16)
C2—N1—Co1124.51 (14)C22—N21—Co2119.33 (16)
C1—N2—C3107.08 (17)C21—N22—C23106.42 (19)
C1—N2—C4125.46 (17)C21—N22—C24128.23 (19)
C3—N2—C4127.28 (18)C23—N22—C24125.3 (2)
C8—N3—C9105.77 (18)C28—N23—C29105.16 (19)
C8—N3—Co1130.82 (15)C28—N23—Co2130.16 (16)
C9—N3—Co1123.42 (14)C29—N23—Co2124.40 (15)
C8—N4—C10107.13 (18)C28—N24—C30106.52 (18)
C8—N4—C11125.24 (19)C28—N24—C31125.32 (18)
C10—N4—C11127.49 (18)C30—N24—C31128.09 (18)
N1—C1—N2111.32 (18)N21—C21—N22112.13 (19)
N1—C1—H11124.3N21—C21—H211123.9
N2—C1—H11124.3N22—C21—H211123.9
C3—C2—N1109.55 (18)C23—C22—N21109.7 (2)
C3—C2—H21125.2C23—C22—H221125.1
N1—C2—H21125.2N21—C22—H221125.1
C2—C3—N2106.48 (19)C22—C23—N22106.7 (2)
C2—C3—H31126.8C22—C23—H231126.7
N2—C3—H31126.8N22—C23—H231126.7
N2—C4—C7109.03 (18)N22—C24—C26109.0 (2)
N2—C4—C6108.52 (18)N22—C24—C25108.0 (2)
C7—C4—C6110.05 (19)C26—C24—C25111.5 (3)
N2—C4—C5107.37 (17)N22—C24—C27109.43 (19)
C7—C4—C5111.1 (2)C26—C24—C27109.5 (2)
C6—C4—C5110.6 (2)C25—C24—C27109.4 (2)
C4—C5—H51109.5C24—C25—H251109.5
C4—C5—H52109.5C24—C25—H252109.5
H51—C5—H52109.5H251—C25—H252109.5
C4—C5—H53109.5C24—C25—H253109.5
H51—C5—H53109.5H251—C25—H253109.5
H52—C5—H53109.5H252—C25—H253109.5
C4—C6—H61109.5C24—C26—H261109.5
C4—C6—H62109.5C24—C26—H262109.5
H61—C6—H62109.5H261—C26—H262109.5
C4—C6—H63109.5C24—C26—H263109.5
H61—C6—H63109.5H261—C26—H263109.5
H62—C6—H63109.5H262—C26—H263109.5
C4—C7—H71109.5C24—C27—H271109.5
C4—C7—H72109.5C24—C27—H272109.5
H71—C7—H72109.5H271—C27—H272109.5
C4—C7—H73109.5C24—C27—H273109.5
H71—C7—H73109.5H271—C27—H273109.5
H72—C7—H73109.5H272—C27—H273109.5
N3—C8—N4111.20 (19)N23—C28—N24111.7 (2)
N3—C8—H81124.4N23—C28—H281124.2
N4—C8—H81124.4N24—C28—H281124.2
C10—C9—N3109.3 (2)C30—C29—N23109.6 (2)
C10—C9—H91125.3C30—C29—H291125.2
N3—C9—H91125.3N23—C29—H291125.2
C9—C10—N4106.6 (2)C29—C30—N24107.1 (2)
C9—C10—H101126.7C29—C30—H301126.5
N4—C10—H101126.7N24—C30—H301126.5
N4—C11—C14107.50 (18)N24—C31—C33108.29 (17)
N4—C11—C13108.55 (19)N24—C31—C34108.13 (18)
C14—C11—C13111.1 (2)C33—C31—C34111.1 (2)
N4—C11—C12108.68 (19)N24—C31—C32108.98 (18)
C14—C11—C12110.3 (2)C33—C31—C32109.7 (2)
C13—C11—C12110.6 (2)C34—C31—C32110.61 (19)
C11—C12—H112109.5C31—C32—H321109.5
C11—C12—H121109.5C31—C32—H322109.5
H112—C12—H121109.5H321—C32—H322109.5
C11—C12—H123109.5C31—C32—H323109.5
H112—C12—H123109.5H321—C32—H323109.5
H121—C12—H123109.5H322—C32—H323109.5
C11—C13—H131109.5C31—C33—H331109.5
C11—C13—H132109.5C31—C33—H332109.5
H131—C13—H132109.5H331—C33—H332109.5
C11—C13—H133109.5C31—C33—H333109.5
H131—C13—H133109.5H331—C33—H333109.5
H132—C13—H133109.5H332—C33—H333109.5
C11—C14—H141109.5C31—C34—H341109.5
C11—C14—H142109.5C31—C34—H342109.5
H141—C14—H142109.5H341—C34—H342109.5
C11—C14—H143109.5C31—C34—H343109.5
H141—C14—H143109.5H341—C34—H343109.5
H142—C14—H143109.5H342—C34—H343109.5
Cl1—Co1—N1—C178.18 (18)C10—N4—C11—C14105.8 (3)
Cl1—Co1—N1—C2102.57 (16)C8—N4—C10—C90.4 (3)
Cl2—Co1—N1—C1155.51 (17)C11—N4—C10—C9176.3 (2)
Cl2—Co1—N1—C223.74 (17)C10—N4—C8—N30.8 (3)
N3—Co1—N1—C143.4 (2)C11—N4—C8—N3176.9 (2)
N3—Co1—N1—C2135.88 (16)C8—N4—C11—C1350.8 (3)
Cl1—Co1—N3—C856.1 (2)C8—N4—C11—C1469.5 (3)
Cl1—Co1—N3—C9123.24 (17)C8—N4—C11—C12171.1 (2)
Cl2—Co1—N3—C8176.49 (19)C10—N4—C11—C13134.0 (2)
Cl2—Co1—N3—C94.23 (19)C10—N4—C11—C1213.7 (3)
N1—Co1—N3—C864.7 (2)Co2—N21—C22—C23170.4 (2)
N1—Co1—N3—C9116.03 (18)C22—N21—C21—N221.8 (3)
Cl3—Co2—N21—C2164.6 (2)Co2—N21—C21—N22167.99 (18)
Cl3—Co2—N21—C22100.1 (2)C21—N21—C22—C231.6 (3)
Cl4—Co2—N21—C21171.7 (2)C21—N22—C24—C2596.7 (3)
Cl4—Co2—N21—C2223.6 (2)C21—N22—C24—C2624.6 (3)
N23—Co2—N21—C2156.5 (3)C23—N22—C21—N211.2 (3)
N23—Co2—N21—C22138.8 (2)C24—N22—C21—N21175.9 (2)
Cl3—Co2—N23—C2853.7 (2)C21—N22—C23—C220.2 (3)
Cl3—Co2—N23—C29119.31 (19)C24—N22—C23—C22177.1 (2)
Cl4—Co2—N23—C28178.0 (2)C23—N22—C24—C2580.0 (3)
Cl4—Co2—N23—C294.9 (2)C23—N22—C24—C26158.8 (3)
N21—Co2—N23—C2866.0 (2)C21—N22—C24—C27144.4 (3)
N21—Co2—N23—C29120.93 (19)C23—N22—C24—C2739.0 (3)
Co1—N1—C2—C3179.36 (14)C28—N23—C29—C300.2 (3)
Co1—N1—C1—N2179.37 (14)Co2—N23—C29—C30174.27 (17)
C2—N1—C1—N20.0 (2)Co2—N23—C28—N24173.54 (15)
C1—N1—C2—C30.1 (2)C29—N23—C28—N240.5 (3)
C3—N2—C4—C720.1 (3)C30—N24—C28—N230.6 (3)
C4—N2—C1—N1175.54 (19)C28—N24—C31—C3467.2 (3)
C3—N2—C4—C5100.4 (3)C30—N24—C31—C3210.9 (3)
C3—N2—C4—C6140.0 (2)C31—N24—C28—N23177.82 (19)
C3—N2—C1—N10.1 (2)C28—N24—C30—C290.4 (3)
C1—N2—C4—C574.2 (3)C31—N24—C30—C29177.5 (2)
C1—N2—C3—C20.1 (2)C28—N24—C31—C32172.5 (2)
C4—N2—C3—C2175.5 (2)C28—N24—C31—C3353.2 (3)
C1—N2—C4—C645.4 (3)C30—N24—C31—C34109.4 (3)
C1—N2—C4—C7165.3 (2)C30—N24—C31—C33130.2 (2)
Co1—N3—C8—N4178.52 (15)N1—C2—C3—N20.1 (2)
C9—N3—C8—N40.9 (3)N3—C9—C10—N40.1 (3)
Co1—N3—C9—C10178.85 (16)N21—C22—C23—N220.9 (4)
C8—N3—C9—C100.6 (3)N23—C29—C30—N240.1 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H11···Cl30.952.823.767 (2)172
C3—H31···Cl4i0.952.783.704 (2)166
C8—H81···Cl30.952.733.618 (2)157
C21—H211···Cl10.952.733.669 (2)169
C23—H231···Cl2ii0.952.753.671 (3)164
C28—H281···Cl10.952.803.643 (2)148
Symmetry codes: (i) x+1, y1/2, z+1/2; (ii) x, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[CoCl2(C7H12N2)2]
Mr378.20
Crystal system, space groupMonoclinic, P21/c
Temperature (K)173
a, b, c (Å)14.1054 (1), 14.5470 (1), 18.7059 (2)
β (°) 106.9542 (3)
V3)3671.47 (5)
Z8
Radiation typeMo Kα
µ (mm1)1.23
Crystal size (mm)0.33 × 0.33 × 0.05
Data collection
DiffractometerNonius KappaCCD area-detector
diffractometer
Absorption correctionMulti-scan
[applied during the scaling procedure (DENZO; Otwinowski & Minor, 1997)]
Tmin, Tmax0.857, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
74460, 6741, 5547
Rint0.056
(sin θ/λ)max1)0.603
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.076, 1.03
No. of reflections6741
No. of parameters391
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.28, 0.30

Computer programs: COLLECT (Nonius, 2001), DENZO (Otwinowski & Minor, 1997), SIR92 (Altomare et al., 1994, SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2010) and PLATON (Spek, 2009), PLATON (Spek, 2009).

Selected geometric parameters (Å, º) top
Co1—N12.0128 (17)Co2—N232.0110 (19)
Co1—N32.0191 (17)Co2—N212.0185 (19)
Co1—Cl12.2587 (6)Co2—Cl42.2699 (6)
Co1—Cl22.2604 (6)Co2—Cl32.2757 (7)
N1—Co1—N3109.65 (7)N23—Co2—N21116.50 (8)
N1—Co1—Cl1109.36 (5)N23—Co2—Cl4104.23 (6)
N3—Co1—Cl1110.70 (6)N21—Co2—Cl4105.72 (6)
N1—Co1—Cl2104.51 (5)N23—Co2—Cl3108.64 (6)
N3—Co1—Cl2105.03 (5)N21—Co2—Cl3106.16 (6)
Cl1—Co1—Cl2117.25 (2)Cl4—Co2—Cl3115.96 (3)
Cl1—Co1—N1—C178.18 (18)Cl3—Co2—N21—C2164.6 (2)
Cl1—Co1—N1—C2102.57 (16)Cl3—Co2—N21—C22100.1 (2)
Cl2—Co1—N1—C1155.51 (17)Cl4—Co2—N21—C21171.7 (2)
Cl2—Co1—N1—C223.74 (17)Cl4—Co2—N21—C2223.6 (2)
Cl1—Co1—N3—C856.1 (2)Cl3—Co2—N23—C2853.7 (2)
Cl1—Co1—N3—C9123.24 (17)Cl3—Co2—N23—C29119.31 (19)
Cl2—Co1—N3—C8176.49 (19)Cl4—Co2—N23—C28178.0 (2)
Cl2—Co1—N3—C94.23 (19)Cl4—Co2—N23—C294.9 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H11···Cl30.95002.82003.767 (2)172.00
C3—H31···Cl4i0.95002.78003.704 (2)166.00
C8—H81···Cl30.95002.73003.618 (2)157.00
C21—H211···Cl10.95002.73003.669 (2)169.00
C23—H231···Cl2ii0.95002.75003.671 (3)164.00
C28—H281···Cl10.95002.80003.643 (2)148.00
Symmetry codes: (i) x+1, y1/2, z+1/2; (ii) x, y+1/2, z+1/2.
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds