Buy article online - an online subscription or single-article purchase is required to access this article.
Bifunctional organic ligands are very popular for the design of coordination polymers because they allow the formation of a great diversity of structures. In the title coordination polymer, the new bifunctional inversion-symmetric ligand 2,5-bis(1
H-1,2,4-triazol-1-yl)terephthalic acid (abbreviated as H
2bttpa) links Cd
II cations, giving rise to the three-dimensional Cd
II coordination polymer
catena-poly[diaqua[μ
4-2,5-bis(1
H-1,2,4-triazol-1-yl)terephthalato-κ
4O1:
O4:
N4:
N4′]cadmium(II)], [Cd(C
12H
6N
6O
4)(H
2O)
2]
n or [Cd(bttpa)(H
2O)
2]
n. The asymmetric unit consists of half a Cd
II cation, half a bttpa
2− ligand and one coordinated water molecule. The Cd
II cation is located on a twofold axis and is hexacoordinated in a distorted octahedral environment of four O and two N atoms. Four different bttpa
2− ligands contribute to this coordination, with two carboxylate O atoms in
trans positions and two triazole N atoms in
cis positions. Two aqua ligands in
cis positions complete the coordination sphere. The fully deprotonated bttpa
2− ligand sits about a crystallographic centre of inversion and links two Cd
II cations to form a chain in a μ
2-terephthalato-κ
2O1:
O4 bridge. This chain extends in the other two directions
via the triazole heterocycles, producing a three-dimensional framework. O—H
O hydrogen bonds and weak C—H
N interactions stabilize the three-dimensional crystal structure. The FT–IR spectrum, X-ray powder pattern, thermogravimetric behaviour and solid-state photoluminescence of the title polymer have been investigated. The photoluminescence is enhanced and red-shifted with respect to the uncoordinated ligand.
Supporting information
CCDC reference: 1814183
Data collection: APEX2 (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXLT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 2005); software used to prepare material for publication: publCIF (Westrip, 2010).
catena-Poly[diaqua[µ
4-2,5-bis(1
H-1,2,4-triazol-1-yl)terephthalato-
κ4O1:
O4:
N4:
N4']cadmium(II)]
top
Crystal data top
[Cd(C12H6N6O4)(H2O)2] | F(000) = 880 |
Mr = 446.66 | Dx = 2.000 Mg m−3 |
Monoclinic, C2/c | Mo Kα radiation, λ = 0.71073 Å |
a = 20.0932 (9) Å | Cell parameters from 5786 reflections |
b = 7.1128 (3) Å | θ = 3.0–28.2° |
c = 10.4548 (4) Å | µ = 1.52 mm−1 |
β = 96.857 (1)° | T = 298 K |
V = 1483.50 (11) Å3 | Rhombic, white |
Z = 4 | 0.20 × 0.20 × 0.10 mm |
Data collection top
Bruker APEXII CCD diffractometer | 1734 reflections with I > 2σ(I) |
φ and ω scans | Rint = 0.022 |
Absorption correction: multi-scan (SADABS; Bruker, 2000) | θmax = 28.3°, θmin = 3.0° |
Tmin = 0.683, Tmax = 0.746 | h = −26→26 |
6888 measured reflections | k = −9→9 |
1816 independent reflections | l = −12→13 |
Refinement top
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.016 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.039 | w = 1/[σ2(Fo2) + (0.0178P)2 + 1.1701P] where P = (Fo2 + 2Fc2)/3 |
S = 1.10 | (Δ/σ)max < 0.001 |
1816 reflections | Δρmax = 0.39 e Å−3 |
122 parameters | Δρmin = −0.35 e Å−3 |
Special details top
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes)
are estimated using the full covariance matrix. The cell esds are taken
into account individually in the estimation of esds in distances, angles
and torsion angles; correlations between esds in cell parameters are only
used when they are defined by crystal symmetry. An approximate (isotropic)
treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and
goodness of fit S are based on F2, conventional R-factors R are based
on F, with F set to zero for negative F2. The threshold expression of
F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is
not relevant to the choice of reflections for refinement. R-factors based
on F2 are statistically about twice as large as those based on F, and R-
factors based on ALL data will be even larger. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top | x | y | z | Uiso*/Ueq | |
Cd1 | 0.0000 | 0.14436 (2) | 0.2500 | 0.01513 (5) | |
O1 | 0.08596 (5) | 0.15441 (16) | 0.11747 (11) | 0.0245 (2) | |
O2 | 0.16855 (6) | 0.0854 (3) | 0.27234 (14) | 0.0495 (4) | |
O3 | 0.06470 (6) | −0.09414 (18) | 0.35380 (13) | 0.0290 (3) | |
H3A | 0.0691 (14) | −0.114 (3) | 0.438 (3) | 0.053 (8)* | |
H3B | 0.1051 (15) | −0.048 (4) | 0.333 (3) | 0.071 (9)* | |
N1 | 0.13667 (6) | 0.48158 (18) | −0.01553 (12) | 0.0186 (2) | |
N2 | 0.11585 (8) | 0.5724 (2) | 0.08670 (13) | 0.0295 (3) | |
N3 | 0.05439 (7) | 0.65764 (18) | −0.09719 (13) | 0.0235 (3) | |
C1 | 0.19361 (7) | 0.3595 (2) | −0.00502 (14) | 0.0188 (3) | |
C2 | 0.19957 (7) | 0.2079 (2) | 0.07980 (14) | 0.0193 (3) | |
C3 | 0.25735 (7) | 0.0986 (2) | 0.08314 (15) | 0.0220 (3) | |
H3 | 0.2630 | −0.0039 | 0.1386 | 0.026* | |
C4 | 0.14741 (8) | 0.1455 (2) | 0.16448 (16) | 0.0228 (3) | |
C5 | 0.09981 (7) | 0.5340 (2) | −0.12351 (15) | 0.0224 (3) | |
H5 | 0.1052 | 0.4901 | −0.2054 | 0.027* | |
C6 | 0.06632 (9) | 0.6767 (2) | 0.03246 (17) | 0.0300 (4) | |
H6 | 0.0416 | 0.7566 | 0.0790 | 0.036* | |
Atomic displacement parameters (Å2) top | U11 | U22 | U33 | U12 | U13 | U23 |
Cd1 | 0.01299 (7) | 0.01765 (8) | 0.01486 (8) | 0.000 | 0.00206 (5) | 0.000 |
O1 | 0.0152 (5) | 0.0374 (6) | 0.0222 (6) | 0.0029 (4) | 0.0072 (4) | 0.0039 (5) |
O2 | 0.0217 (6) | 0.0955 (12) | 0.0323 (7) | 0.0056 (7) | 0.0079 (5) | 0.0338 (8) |
O3 | 0.0262 (6) | 0.0321 (6) | 0.0287 (7) | 0.0042 (5) | 0.0036 (5) | 0.0099 (5) |
N1 | 0.0164 (5) | 0.0239 (6) | 0.0165 (6) | 0.0071 (5) | 0.0059 (5) | 0.0034 (5) |
N2 | 0.0330 (7) | 0.0379 (8) | 0.0184 (7) | 0.0151 (6) | 0.0065 (6) | 0.0004 (6) |
N3 | 0.0211 (6) | 0.0271 (7) | 0.0231 (7) | 0.0087 (5) | 0.0050 (5) | 0.0047 (5) |
C1 | 0.0139 (6) | 0.0242 (7) | 0.0190 (7) | 0.0069 (5) | 0.0044 (5) | 0.0037 (5) |
C2 | 0.0139 (6) | 0.0259 (7) | 0.0190 (7) | 0.0040 (5) | 0.0059 (5) | 0.0050 (5) |
C3 | 0.0174 (7) | 0.0268 (7) | 0.0229 (7) | 0.0060 (6) | 0.0070 (6) | 0.0100 (6) |
C4 | 0.0166 (6) | 0.0312 (8) | 0.0221 (7) | 0.0047 (6) | 0.0086 (6) | 0.0075 (6) |
C5 | 0.0218 (7) | 0.0270 (8) | 0.0184 (7) | 0.0079 (6) | 0.0024 (6) | 0.0015 (6) |
C6 | 0.0329 (9) | 0.0348 (9) | 0.0234 (8) | 0.0168 (7) | 0.0081 (7) | 0.0014 (6) |
Geometric parameters (Å, º) top
Cd1—N3i | 2.3051 (13) | N2—C6 | 1.314 (2) |
Cd1—N3ii | 2.3051 (13) | N3—C5 | 1.3200 (19) |
Cd1—O3iii | 2.3256 (12) | N3—C6 | 1.355 (2) |
Cd1—O3 | 2.3256 (12) | N3—Cd1ii | 2.3051 (13) |
Cd1—O1iii | 2.3408 (11) | C1—C3iv | 1.385 (2) |
Cd1—O1 | 2.3408 (11) | C1—C2 | 1.392 (2) |
O1—C4 | 1.2750 (19) | C2—C3 | 1.394 (2) |
O2—C4 | 1.233 (2) | C2—C4 | 1.517 (2) |
O3—H3A | 0.88 (3) | C3—C1iv | 1.385 (2) |
O3—H3B | 0.92 (3) | C3—H3 | 0.9300 |
N1—C5 | 1.3274 (19) | C5—H5 | 0.9300 |
N1—N2 | 1.3570 (18) | C6—H6 | 0.9300 |
N1—C1 | 1.4299 (17) | | |
| | | |
N3i—Cd1—N3ii | 104.68 (7) | C6—N2—N1 | 102.56 (13) |
N3i—Cd1—O3iii | 164.04 (5) | C5—N3—C6 | 103.35 (13) |
N3ii—Cd1—O3iii | 85.98 (5) | C5—N3—Cd1ii | 123.03 (11) |
N3i—Cd1—O3 | 85.98 (5) | C6—N3—Cd1ii | 130.17 (11) |
N3ii—Cd1—O3 | 164.04 (5) | C3iv—C1—C2 | 121.92 (13) |
O3iii—Cd1—O3 | 86.32 (7) | C3iv—C1—N1 | 116.31 (13) |
N3i—Cd1—O1iii | 83.88 (4) | C2—C1—N1 | 121.77 (13) |
N3ii—Cd1—O1iii | 93.98 (4) | C1—C2—C3 | 117.13 (13) |
O3iii—Cd1—O1iii | 83.55 (4) | C1—C2—C4 | 125.82 (13) |
O3—Cd1—O1iii | 99.03 (4) | C3—C2—C4 | 116.98 (13) |
N3i—Cd1—O1 | 93.98 (4) | C1iv—C3—C2 | 120.95 (14) |
N3ii—Cd1—O1 | 83.88 (4) | C1iv—C3—H3 | 119.5 |
O3iii—Cd1—O1 | 99.03 (4) | C2—C3—H3 | 119.5 |
O3—Cd1—O1 | 83.55 (4) | O2—C4—O1 | 125.57 (14) |
O1iii—Cd1—O1 | 176.50 (6) | O2—C4—C2 | 116.66 (14) |
C4—O1—Cd1 | 121.29 (10) | O1—C4—C2 | 117.74 (13) |
Cd1—O3—H3A | 124.3 (17) | N3—C5—N1 | 109.83 (14) |
Cd1—O3—H3B | 95.2 (18) | N3—C5—H5 | 125.1 |
H3A—O3—H3B | 108 (2) | N1—C5—H5 | 125.1 |
C5—N1—N2 | 110.06 (12) | N2—C6—N3 | 114.19 (14) |
C5—N1—C1 | 126.57 (13) | N2—C6—H6 | 122.9 |
N2—N1—C1 | 123.20 (12) | N3—C6—H6 | 122.9 |
| | | |
C5—N1—N2—C6 | 0.07 (19) | Cd1—O1—C4—C2 | −162.87 (10) |
C1—N1—N2—C6 | 175.63 (15) | C1—C2—C4—O2 | −143.50 (18) |
C5—N1—C1—C3iv | 50.1 (2) | C3—C2—C4—O2 | 39.5 (2) |
N2—N1—C1—C3iv | −124.72 (17) | C1—C2—C4—O1 | 38.4 (2) |
C5—N1—C1—C2 | −130.37 (17) | C3—C2—C4—O1 | −138.58 (16) |
N2—N1—C1—C2 | 54.8 (2) | C6—N3—C5—N1 | 0.21 (18) |
C3iv—C1—C2—C3 | 0.0 (3) | Cd1ii—N3—C5—N1 | 161.12 (10) |
N1—C1—C2—C3 | −179.53 (14) | N2—N1—C5—N3 | −0.19 (19) |
C3iv—C1—C2—C4 | −177.03 (16) | C1—N1—C5—N3 | −175.56 (14) |
N1—C1—C2—C4 | 3.4 (2) | N1—N2—C6—N3 | 0.1 (2) |
C1—C2—C3—C1iv | 0.0 (3) | C5—N3—C6—N2 | −0.2 (2) |
C4—C2—C3—C1iv | 177.30 (15) | Cd1ii—N3—C6—N2 | −159.15 (13) |
Cd1—O1—C4—O2 | 19.3 (2) | | |
Symmetry codes: (i) x, −y+1, z+1/2; (ii) −x, −y+1, −z; (iii) −x, y, −z+1/2; (iv) −x+1/2, −y+1/2, −z. |
Hydrogen-bond geometry (Å, º) top
D—H···A | D—H | H···A | D···A | D—H···A |
C6—H6···O3v | 0.93 | 2.56 | 3.428 (2) | 156 |
C5—H5···N2vi | 0.93 | 2.25 | 3.176 (2) | 172 |
O3—H3B···O2 | 0.92 (3) | 1.77 (3) | 2.6711 (19) | 165 (3) |
O3—H3A···O1vii | 0.88 (3) | 1.89 (3) | 2.7720 (18) | 175 (3) |
Symmetry codes: (v) −x, y+1, −z+1/2; (vi) x, −y+1, z−1/2; (vii) x, −y, z+1/2. |
Subscribe to Acta Crystallographica Section C: Structural Chemistry
The full text of this article is available to subscribers to the journal.
If you have already registered and are using a computer listed in your registration details, please email
support@iucr.org for assistance.