Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The structures of six ben­zene and three naph­tha­lene derivatives involving bromo, bromo­methyl and di­bromo­methyl substituents, namely, 1,3-di­bromo-5-(di­bromo­meth­yl)ben­zene, C7H4Br4, 1,4-di­bromo-2,5-bis­(bromo­meth­yl)ben­zene, C8H4Br6, 1,4-di­bromo-2-(di­bromo­meth­yl)ben­zene, C7H4Br4, 1,2-bis­(di­bromo­meth­yl)ben­zene, C8H6Br4, 1-(bromo­meth­yl)-2-(di­bromo­meth­yl)ben­zene, C8H7Br3, 2-(bromo­meth­yl)-3-(di­bromo­meth­yl)naph­tha­lene, C12H9Br3, 2,3-bis­(di­bromo­meth­yl)naph­tha­lene, C12H8Br4, 1-(bromo­meth­yl)-2-(di­bromo­meth­yl)naph­tha­lene, C12H9Br3, and 1,3-bis­(di­bromo­meth­yl)ben­zene, C8H6Br4, are presented. The packing patterns of these com­pounds are dominated by Br...Br contacts and C—H...Br hydrogen bonds. The Br...Br contacts, shorter than twice the van der Waals radius of bromine (3.7 Å), seem to play a crucial role in the crystal packing of all these com­pounds. The occurrence of Type I and Type II inter­actions is also discussed briefly, considering the effective atomic radius of bromine, as is their impact on the packing of mol­ecules in the individual structures.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S2053229623000906/eq3008sup1.cif
Contains datablocks 1, 2, 3, 4, 5, 6, 7, 8, 9, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229623000906/eq30081sup2.hkl
Contains datablock 1

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229623000906/eq30082sup3.hkl
Contains datablock 2

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229623000906/eq30083sup4.hkl
Contains datablock 3

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229623000906/eq30084sup5.hkl
Contains datablock 4

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229623000906/eq30085sup6.hkl
Contains datablock 5

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229623000906/eq30086sup7.hkl
Contains datablock 6

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229623000906/eq30087sup8.hkl
Contains datablock 7

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229623000906/eq30088sup9.hkl
Contains datablock 8

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229623000906/eq30089sup10.hkl
Contains datablock 9

cml

Chemical Markup Language (CML) file https://doi.org/10.1107/S2053229623000906/eq30081sup11.cml
Supplementary material

cml

Chemical Markup Language (CML) file https://doi.org/10.1107/S2053229623000906/eq30082sup12.cml
Supplementary material

cml

Chemical Markup Language (CML) file https://doi.org/10.1107/S2053229623000906/eq30083sup13.cml
Supplementary material

cml

Chemical Markup Language (CML) file https://doi.org/10.1107/S2053229623000906/eq30084sup14.cml
Supplementary material

cml

Chemical Markup Language (CML) file https://doi.org/10.1107/S2053229623000906/eq30085sup15.cml
Supplementary material

cml

Chemical Markup Language (CML) file https://doi.org/10.1107/S2053229623000906/eq30086sup16.cml
Supplementary material

cml

Chemical Markup Language (CML) file https://doi.org/10.1107/S2053229623000906/eq30087sup17.cml
Supplementary material

cml

Chemical Markup Language (CML) file https://doi.org/10.1107/S2053229623000906/eq30088sup18.cml
Supplementary material

cml

Chemical Markup Language (CML) file https://doi.org/10.1107/S2053229623000906/eq30089sup19.cml
Supplementary material

pdf

Portable Document Format (PDF) file https://doi.org/10.1107/S2053229623000906/eq3008sup20.pdf
NMR data and spectra for compounds 1-9, additional packing diagrams and Hirshfeld contributions

CCDC references: 2043250; 1997567; 1997566; 1997565; 1997563; 1997564; 2014594; 2072986; 2072985

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2007) for (1); APEX2 (Bruker, 2012) for (2); CrysAlis PRO (Rigaku OD, 2015) for (3), (4), (5), (6), (8), (9); CrysAlis PRO (Agilent, 2012) for (7). Cell refinement: CrysAlis RED (Oxford Diffraction, 2007) for (1); SAINT (Bruker, 2012) for (2); CrysAlis PRO (Rigaku OD, 2015) for (3), (4), (5), (6), (8), (9); CrysAlis PRO (Agilent, 2012) for (7). Data reduction: CrysAlis RED (Oxford Diffraction, 2007) for (1); SAINT (Bruker, 2012) for (2); CrysAlis PRO (Rigaku OD, 2015) for (3), (4), (5), (6), (8), (9); CrysAlis PRO (Agilent, 2012) for (7). For all structures, program(s) used to solve structure: SHELXT (Sheldrick, 2015a). Program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015b) for (1), (2); SHELXL2019 (Sheldrick, 2015b) for (3), (4), (5), (6), (7), (8), (9).

1,3-Dibromo-5-(dibromomethyl)benzene (1) top
Crystal data top
C7H4Br4F(000) = 1488
Mr = 407.74Dx = 2.800 Mg m3
Monoclinic, I2/aMo Kα radiation, λ = 0.71073 Å
a = 13.8720 (4) ÅCell parameters from 13619 reflections
b = 8.8259 (2) Åθ = 2.6–32.5°
c = 17.2229 (4) ŵ = 16.58 mm1
β = 113.472 (3)°T = 100 K
V = 1934.17 (9) Å3Prism, colourless
Z = 80.23 × 0.13 × 0.07 mm
Data collection top
Oxford Diffraction Xcalibur S
diffractometer
3279 independent reflections
Radiation source: Enhance (Mo) X-ray Source2626 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.037
Detector resolution: 16.1057 pixels mm-1θmax = 32.0°, θmin = 2.6°
ω–scanh = 2020
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2007)
k = 1313
Tmin = 0.223, Tmax = 1.000l = 2525
25302 measured reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.019H-atom parameters constrained
wR(F2) = 0.040 w = 1/[σ2(Fo2) + (0.0214P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.99(Δ/σ)max = 0.001
3279 reflectionsΔρmax = 0.62 e Å3
100 parametersΔρmin = 0.79 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.61652 (14)0.3411 (2)0.49141 (12)0.0114 (4)
C20.64411 (14)0.4555 (2)0.55174 (12)0.0118 (4)
H20.6680760.4324290.6103110.014*
C30.63578 (14)0.6030 (2)0.52437 (12)0.0116 (4)
C40.60150 (14)0.6399 (2)0.43927 (12)0.0118 (4)
H40.5960190.7427450.4217230.014*
C50.57543 (14)0.5235 (2)0.38041 (12)0.0111 (4)
C60.58299 (14)0.3733 (2)0.40601 (11)0.0116 (4)
H60.5654100.2938180.3655280.014*
C70.53853 (15)0.5644 (2)0.28877 (12)0.0142 (4)
H70.5492620.6756000.2844090.017*
Br10.62533 (2)0.13759 (2)0.52660 (2)0.01603 (5)
Br20.67295 (2)0.75894 (2)0.60630 (2)0.01647 (5)
Br30.61440 (2)0.45650 (2)0.23244 (2)0.01944 (5)
Br40.38913 (2)0.51950 (3)0.22849 (2)0.02066 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0114 (8)0.0106 (9)0.0136 (9)0.0003 (7)0.0065 (7)0.0019 (7)
C20.0101 (8)0.0159 (10)0.0091 (8)0.0016 (7)0.0036 (7)0.0006 (7)
C30.0096 (8)0.0131 (9)0.0123 (8)0.0038 (7)0.0046 (7)0.0043 (7)
C40.0097 (8)0.0089 (8)0.0157 (9)0.0002 (7)0.0039 (7)0.0013 (7)
C50.0092 (8)0.0143 (10)0.0100 (9)0.0010 (7)0.0040 (7)0.0009 (7)
C60.0128 (8)0.0116 (9)0.0106 (8)0.0028 (7)0.0048 (7)0.0018 (7)
C70.0162 (9)0.0129 (10)0.0125 (9)0.0029 (8)0.0046 (7)0.0008 (7)
Br10.02336 (10)0.01063 (9)0.01469 (9)0.00022 (8)0.00819 (8)0.00314 (7)
Br20.02092 (10)0.01303 (10)0.01409 (9)0.00382 (8)0.00553 (8)0.00524 (7)
Br30.02662 (11)0.02131 (11)0.01474 (10)0.00250 (8)0.01284 (8)0.00021 (8)
Br40.01584 (10)0.02573 (12)0.01490 (10)0.00453 (8)0.00031 (8)0.00240 (8)
Geometric parameters (Å, º) top
C1—C61.384 (2)C4—H40.9500
C1—C21.389 (3)C5—C61.388 (3)
C1—Br11.8841 (19)C5—C71.497 (3)
C2—C31.373 (3)C6—H60.9500
C2—H20.9500C7—Br31.941 (2)
C3—C41.388 (3)C7—Br41.9535 (19)
C3—Br21.8899 (19)C7—H71.0000
C4—C51.386 (3)
C6—C1—C2121.43 (18)C4—C5—C6120.72 (17)
C6—C1—Br1119.27 (15)C4—C5—C7118.20 (17)
C2—C1—Br1119.29 (14)C6—C5—C7121.08 (17)
C3—C2—C1118.15 (17)C1—C6—C5118.99 (18)
C3—C2—H2120.9C1—C6—H6120.5
C1—C2—H2120.9C5—C6—H6120.5
C2—C3—C4122.13 (18)C5—C7—Br3112.52 (13)
C2—C3—Br2118.25 (14)C5—C7—Br4110.88 (13)
C4—C3—Br2119.63 (15)Br3—C7—Br4107.85 (9)
C5—C4—C3118.57 (18)C5—C7—H7108.5
C5—C4—H4120.7Br3—C7—H7108.5
C3—C4—H4120.7Br4—C7—H7108.5
C6—C1—C2—C31.0 (3)C2—C1—C6—C51.0 (3)
Br1—C1—C2—C3179.22 (13)Br1—C1—C6—C5179.21 (14)
C1—C2—C3—C40.3 (3)C4—C5—C6—C10.3 (3)
C1—C2—C3—Br2179.86 (13)C7—C5—C6—C1179.37 (17)
C2—C3—C4—C50.3 (3)C4—C5—C7—Br3129.01 (16)
Br2—C3—C4—C5179.53 (13)C6—C5—C7—Br351.3 (2)
C3—C4—C5—C60.3 (3)C4—C5—C7—Br4110.11 (17)
C3—C4—C5—C7180.00 (16)C6—C5—C7—Br469.6 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···Br3i0.953.163.8884 (18)135
C6—H6···Br4ii0.953.113.9976 (19)156
Symmetry codes: (i) x+3/2, y, z+1; (ii) x+1, y1/2, z+1/2.
1,4-Dibromo-2,5-bis(bromomethyl)benzene (2) top
Crystal data top
C8H4Br6Z = 1
Mr = 579.57F(000) = 262
Triclinic, P1Dx = 3.077 Mg m3
a = 4.7187 (7) ÅMo Kα radiation, λ = 0.71073 Å
b = 8.0758 (10) ÅCell parameters from 9991 reflections
c = 8.3527 (12) Åθ = 2.5–33.3°
α = 99.836 (6)°µ = 19.21 mm1
β = 92.165 (8)°T = 100 K
γ = 93.137 (6)°Plate, colourless
V = 312.79 (8) Å30.23 × 0.16 × 0.02 mm
Data collection top
Bruker APEXII CCD area detector
diffractometer
2411 independent reflections
Radiation source: fine-focus sealed tube2240 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.041
phi and ω scansθmax = 33.3°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 77
Tmin = 0.270, Tmax = 0.700k = 1212
18782 measured reflectionsl = 1212
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.020H-atom parameters constrained
wR(F2) = 0.054 w = 1/[σ2(Fo2) + (0.0303P)2 + 0.2141P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.001
2411 reflectionsΔρmax = 1.02 e Å3
64 parametersΔρmin = 0.83 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.97547 (4)0.75420 (2)0.37834 (2)0.01197 (5)
Br20.46236 (4)0.03458 (2)0.24296 (2)0.01510 (5)
Br30.14505 (4)0.28654 (2)0.05232 (2)0.01760 (5)
C10.7037 (4)0.6075 (2)0.4519 (2)0.0111 (3)
C20.5727 (4)0.4786 (2)0.3386 (2)0.0115 (3)
H20.6245600.4647480.2285190.014*
C30.3649 (4)0.3690 (2)0.3846 (2)0.0105 (3)
C40.2257 (4)0.2274 (2)0.2637 (2)0.0120 (3)
H40.0409820.1931840.3072480.014*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.01301 (8)0.01178 (8)0.01133 (9)0.00074 (6)0.00105 (6)0.00296 (6)
Br20.01625 (9)0.00975 (8)0.01826 (10)0.00050 (6)0.00076 (7)0.00042 (6)
Br30.02167 (10)0.01983 (10)0.01046 (9)0.00086 (7)0.00383 (7)0.00141 (7)
C10.0112 (6)0.0101 (6)0.0119 (7)0.0007 (5)0.0015 (6)0.0020 (6)
C20.0120 (7)0.0121 (7)0.0099 (7)0.0007 (5)0.0000 (6)0.0010 (6)
C30.0106 (6)0.0107 (6)0.0098 (7)0.0016 (5)0.0004 (5)0.0007 (5)
C40.0128 (7)0.0128 (7)0.0098 (7)0.0006 (5)0.0001 (6)0.0000 (6)
Geometric parameters (Å, º) top
Br1—C11.8891 (18)C2—C31.394 (2)
Br2—C41.9530 (18)C2—H20.9500
Br3—C41.9360 (18)C3—C41.494 (2)
C1—C21.382 (3)C4—H41.0000
C1—C3i1.399 (2)
C2—C1—C3i121.45 (16)C1i—C3—C4120.97 (16)
C2—C1—Br1117.79 (13)C3—C4—Br3113.61 (12)
C3i—C1—Br1120.76 (13)C3—C4—Br2109.46 (12)
C1—C2—C3120.49 (16)Br3—C4—Br2110.24 (9)
C1—C2—H2119.8C3—C4—H4107.8
C3—C2—H2119.8Br3—C4—H4107.8
C2—C3—C1i118.06 (16)Br2—C4—H4107.8
C2—C3—C4120.95 (16)
C3i—C1—C2—C30.6 (3)C2—C3—C4—Br339.6 (2)
Br1—C1—C2—C3178.30 (13)C1i—C3—C4—Br3142.25 (14)
C1—C2—C3—C1i0.6 (3)C2—C3—C4—Br284.14 (18)
C1—C2—C3—C4178.86 (16)C1i—C3—C4—Br294.06 (16)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4···Br1i1.002.593.1527 (19)115
C4—H4···Br2ii1.002.943.8308 (18)149
Symmetry codes: (i) x+1, y+1, z+1; (ii) x1, y, z.
1,4-Dibromo-2-(dibromomethyl)benzene (3) top
Crystal data top
C7H4Br4F(000) = 1488
Mr = 407.74Dx = 2.798 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 19.1587 (5) ÅCell parameters from 9209 reflections
b = 7.7779 (1) Åθ = 3.4–35.5°
c = 13.7815 (4) ŵ = 16.57 mm1
β = 109.503 (3)°T = 100 K
V = 1935.81 (9) Å3Parallelepiped, colourless
Z = 80.11 × 0.07 × 0.02 mm
Data collection top
SuperNova
diffractometer (Agilent Technologies) with Atlas detector
8767 independent reflections
Radiation source: micro-focus sealed X-ray tube6490 reflections with I > 2σ(I)
Detector resolution: 10.4498 pixels mm-1Rint = 0.047
ω scansθmax = 36.2°, θmin = 3.1°
Absorption correction: multi-scan
(CrysAlis PRO; Rigaku OD, 2015)
h = 3031
Tmin = 0.313, Tmax = 1.000k = 1212
28098 measured reflectionsl = 2216
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.038H-atom parameters constrained
wR(F2) = 0.069 w = 1/[σ2(Fo2) + (0.0173P)2 + 1.6927P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.003
8767 reflectionsΔρmax = 1.09 e Å3
199 parametersΔρmin = 1.27 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br110.39052 (2)0.22999 (4)0.31582 (3)0.01599 (7)
Br120.59409 (2)0.46578 (4)0.43579 (3)0.01591 (7)
Br130.29234 (2)0.18261 (4)0.39993 (3)0.01996 (7)
Br140.29610 (2)0.33656 (4)0.18859 (3)0.02193 (8)
C110.44837 (18)0.0257 (4)0.3442 (2)0.0118 (5)
C120.41361 (17)0.1356 (4)0.3277 (2)0.0118 (5)
C130.45878 (18)0.2822 (4)0.3555 (2)0.0139 (6)
H130.4369390.3932790.3462220.017*
C140.53413 (17)0.2655 (4)0.3959 (2)0.0125 (6)
C150.56862 (18)0.1050 (4)0.4105 (2)0.0142 (6)
H150.6210310.0956630.4376530.017*
C160.52439 (18)0.0410 (4)0.3844 (2)0.0141 (6)
H160.5466030.1516980.3942250.017*
C170.33157 (18)0.1498 (4)0.2864 (2)0.0147 (6)
H170.3112750.0395020.2508670.018*
Br210.89440 (2)0.70008 (4)0.08853 (2)0.01416 (6)
Br221.10018 (2)0.01106 (4)0.14636 (3)0.01586 (7)
Br230.78713 (2)0.30088 (4)0.06853 (2)0.01756 (7)
Br240.80709 (2)0.12548 (4)0.14679 (3)0.02074 (7)
C210.95233 (17)0.4964 (4)0.1115 (2)0.0115 (5)
C220.91904 (17)0.3342 (4)0.1046 (2)0.0103 (5)
C230.96460 (17)0.1895 (4)0.1165 (2)0.0119 (5)
H230.9437560.0776710.1115760.014*
C241.03977 (18)0.2083 (4)0.1353 (2)0.0123 (5)
C251.07282 (17)0.3698 (4)0.1441 (2)0.0126 (6)
H251.1246370.3809130.1579930.015*
C261.02779 (18)0.5145 (4)0.1318 (2)0.0138 (6)
H261.0489500.6260600.1373390.017*
C270.83737 (17)0.3191 (4)0.0811 (2)0.0132 (6)
H270.8197520.4266930.1052640.016*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br110.01949 (16)0.00967 (12)0.01860 (16)0.00150 (11)0.00610 (13)0.00100 (11)
Br120.01612 (15)0.01273 (13)0.01785 (16)0.00257 (11)0.00431 (12)0.00018 (11)
Br130.01508 (15)0.01897 (15)0.02953 (19)0.00153 (12)0.01240 (14)0.00433 (13)
Br140.01486 (16)0.02258 (16)0.02493 (18)0.00347 (12)0.00209 (13)0.01123 (13)
C110.0166 (15)0.0094 (12)0.0103 (14)0.0005 (10)0.0059 (12)0.0021 (10)
C120.0113 (13)0.0105 (12)0.0133 (14)0.0005 (10)0.0039 (11)0.0010 (10)
C130.0147 (14)0.0089 (12)0.0167 (15)0.0011 (10)0.0035 (12)0.0004 (10)
C140.0123 (14)0.0100 (12)0.0157 (15)0.0001 (10)0.0054 (12)0.0000 (10)
C150.0151 (15)0.0140 (13)0.0142 (15)0.0031 (11)0.0060 (12)0.0012 (11)
C160.0153 (15)0.0103 (12)0.0180 (16)0.0035 (10)0.0076 (12)0.0015 (11)
C170.0149 (15)0.0117 (13)0.0171 (15)0.0023 (11)0.0048 (12)0.0040 (11)
Br210.01618 (15)0.00934 (12)0.01850 (15)0.00178 (10)0.00783 (12)0.00137 (10)
Br220.01553 (15)0.01243 (13)0.01967 (16)0.00378 (11)0.00596 (12)0.00006 (11)
Br230.01471 (15)0.01882 (15)0.01580 (15)0.00300 (11)0.00065 (12)0.00241 (11)
Br240.01398 (15)0.02173 (16)0.02546 (18)0.00254 (12)0.00517 (13)0.01050 (13)
C210.0126 (14)0.0105 (12)0.0109 (14)0.0009 (10)0.0033 (11)0.0004 (10)
C220.0110 (13)0.0092 (12)0.0110 (13)0.0000 (9)0.0040 (11)0.0005 (10)
C230.0133 (14)0.0101 (12)0.0114 (13)0.0011 (10)0.0028 (11)0.0003 (10)
C240.0150 (14)0.0114 (12)0.0105 (13)0.0023 (10)0.0042 (11)0.0006 (10)
C250.0114 (14)0.0141 (13)0.0129 (14)0.0002 (10)0.0047 (11)0.0010 (11)
C260.0140 (15)0.0096 (12)0.0170 (15)0.0021 (10)0.0041 (12)0.0002 (10)
C270.0121 (14)0.0131 (13)0.0147 (15)0.0000 (10)0.0049 (12)0.0018 (11)
Geometric parameters (Å, º) top
Br11—C111.902 (3)Br21—C211.899 (3)
Br12—C141.904 (3)Br22—C241.897 (3)
Br13—C171.965 (3)Br23—C271.969 (3)
Br14—C171.944 (3)Br24—C271.943 (3)
C11—C161.380 (4)C21—C261.385 (4)
C11—C121.403 (4)C21—C221.402 (4)
C12—C131.405 (4)C22—C231.400 (4)
C12—C171.486 (4)C22—C271.493 (4)
C13—C141.369 (4)C23—C241.383 (4)
C13—H130.9500C23—H230.9500
C14—C151.396 (4)C24—C251.393 (4)
C15—C161.390 (4)C25—C261.394 (4)
C15—H150.9500C25—H250.9500
C16—H160.9500C26—H260.9500
C17—H171.0000C27—H271.0000
C16—C11—C12121.5 (3)C26—C21—C22121.7 (3)
C16—C11—Br11118.4 (2)C26—C21—Br21117.5 (2)
C12—C11—Br11120.1 (2)C22—C21—Br21120.8 (2)
C11—C12—C13117.7 (3)C23—C22—C21117.6 (3)
C11—C12—C17120.8 (3)C23—C22—C27121.9 (3)
C13—C12—C17121.4 (3)C21—C22—C27120.4 (3)
C14—C13—C12120.3 (3)C24—C23—C22120.4 (3)
C14—C13—H13119.9C24—C23—H23119.8
C12—C13—H13119.9C22—C23—H23119.8
C13—C14—C15121.8 (3)C23—C24—C25121.8 (3)
C13—C14—Br12119.5 (2)C23—C24—Br22119.9 (2)
C15—C14—Br12118.6 (2)C25—C24—Br22118.3 (2)
C16—C15—C14118.4 (3)C24—C25—C26118.2 (3)
C16—C15—H15120.8C24—C25—H25120.9
C14—C15—H15120.8C26—C25—H25120.9
C11—C16—C15120.3 (3)C21—C26—C25120.3 (3)
C11—C16—H16119.9C21—C26—H26119.8
C15—C16—H16119.9C25—C26—H26119.8
C12—C17—Br14113.6 (2)C22—C27—Br24114.5 (2)
C12—C17—Br13110.0 (2)C22—C27—Br23110.1 (2)
Br14—C17—Br13108.49 (15)Br24—C27—Br23108.34 (15)
C12—C17—H17108.2C22—C27—H27107.9
Br14—C17—H17108.2Br24—C27—H27107.9
Br13—C17—H17108.2Br23—C27—H27107.9
C16—C11—C12—C131.3 (5)C26—C21—C22—C231.6 (5)
Br11—C11—C12—C13176.4 (2)Br21—C21—C22—C23176.3 (2)
C16—C11—C12—C17178.7 (3)C26—C21—C22—C27179.1 (3)
Br11—C11—C12—C171.0 (4)Br21—C21—C22—C271.2 (4)
C11—C12—C13—C140.8 (5)C21—C22—C23—C240.7 (4)
C17—C12—C13—C14178.3 (3)C27—C22—C23—C24178.1 (3)
C12—C13—C14—C150.3 (5)C22—C23—C24—C250.6 (5)
C12—C13—C14—Br12178.7 (2)C22—C23—C24—Br22177.8 (2)
C13—C14—C15—C161.0 (5)C23—C24—C25—C260.9 (4)
Br12—C14—C15—C16177.9 (2)Br22—C24—C25—C26177.4 (2)
C12—C11—C16—C150.6 (5)C22—C21—C26—C251.2 (5)
Br11—C11—C16—C15177.1 (2)Br21—C21—C26—C25176.7 (2)
C14—C15—C16—C110.6 (5)C24—C25—C26—C210.0 (5)
C11—C12—C17—Br14141.1 (3)C23—C22—C27—Br2435.9 (4)
C13—C12—C17—Br1441.6 (4)C21—C22—C27—Br24146.7 (2)
C11—C12—C17—Br1397.1 (3)C23—C22—C27—Br2386.4 (3)
C13—C12—C17—Br1380.3 (3)C21—C22—C27—Br2391.0 (3)
1,2-Bis(dibromomethyl)benzene (4) top
Crystal data top
C8H6Br4Z = 2
Mr = 421.77F(000) = 388
Triclinic, P1Dx = 2.687 Mg m3
a = 6.9650 (4) ÅMo Kα radiation, λ = 0.71073 Å
b = 7.6186 (10) ÅCell parameters from 2078 reflections
c = 10.4619 (12) Åθ = 3.8–32.7°
α = 108.632 (11)°µ = 15.38 mm1
β = 97.171 (7)°T = 200 K
γ = 90.297 (7)°Plate, colourless
V = 521.34 (10) Å30.60 × 0.16 × 0.04 mm
Data collection top
SuperNova
diffractometer (Agilent Technologies) with Atlas detector
7277 independent reflections
Radiation source: micro-focus sealed X-ray tube3697 reflections with I > 2σ(I)
Detector resolution: 10.4498 pixels mm-1Rint = 0.109
ω scansθmax = 36.1°, θmin = 3.0°
Absorption correction: multi-scan
(CrysAlis PRO; Rigaku OD, 2015)
h = 1010
Tmin = 0.889, Tmax = 1.000k = 1212
7277 measured reflectionsl = 1717
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.108H-atom parameters constrained
wR(F2) = 0.342 w = 1/[σ2(Fo2) + (0.2P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max < 0.001
7277 reflectionsΔρmax = 2.21 e Å3
110 parametersΔρmin = 1.81 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refined as a 2-component twin.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.41134 (17)0.8208 (2)0.09302 (12)0.0315 (3)
Br20.86441 (19)0.8203 (2)0.07588 (13)0.0348 (4)
Br30.46903 (19)0.42010 (19)0.27237 (14)0.0341 (4)
Br40.91405 (19)0.41249 (19)0.23450 (14)0.0347 (4)
C10.7036 (15)0.9045 (16)0.3256 (11)0.022 (2)
C20.7288 (17)1.0710 (17)0.4348 (13)0.028 (2)
H20.7155681.1850430.4165310.034*
C30.7720 (17)1.0744 (18)0.5676 (12)0.029 (3)
H30.7885501.1886090.6402880.035*
C40.7907 (18)0.9089 (18)0.5923 (13)0.030 (3)
H40.8220750.9080070.6830770.036*
C50.7643 (18)0.7436 (16)0.4865 (11)0.024 (2)
H50.7784670.6302400.5057060.029*
C60.7180 (15)0.7394 (15)0.3546 (11)0.020 (2)
C70.6622 (17)0.9234 (18)0.1888 (12)0.027 (2)
H70.6636281.0593050.2018440.032*
C80.6859 (16)0.5625 (17)0.2445 (11)0.026 (2)
H80.6533090.5872540.1562140.031*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0229 (6)0.0471 (8)0.0242 (6)0.0055 (5)0.0001 (4)0.0120 (5)
Br20.0259 (6)0.0558 (9)0.0270 (6)0.0016 (6)0.0093 (5)0.0173 (6)
Br30.0280 (7)0.0321 (7)0.0403 (7)0.0065 (5)0.0070 (5)0.0085 (6)
Br40.0268 (7)0.0357 (7)0.0390 (7)0.0099 (5)0.0055 (5)0.0079 (6)
C10.017 (5)0.026 (5)0.021 (5)0.000 (4)0.001 (4)0.005 (4)
C20.023 (6)0.027 (6)0.037 (6)0.002 (4)0.005 (5)0.012 (5)
C30.028 (6)0.031 (6)0.025 (6)0.004 (5)0.007 (5)0.002 (5)
C40.028 (6)0.038 (7)0.025 (6)0.003 (5)0.003 (5)0.012 (5)
C50.031 (6)0.019 (5)0.024 (5)0.000 (4)0.003 (4)0.008 (4)
C60.014 (5)0.023 (5)0.023 (5)0.003 (4)0.006 (4)0.006 (4)
C70.029 (6)0.032 (6)0.023 (5)0.010 (5)0.002 (5)0.014 (5)
C80.016 (5)0.039 (7)0.018 (5)0.002 (5)0.003 (4)0.004 (5)
Geometric parameters (Å, º) top
Br1—C71.928 (12)C3—C41.369 (18)
Br2—C71.957 (12)C3—H30.9500
Br3—C81.959 (12)C4—C51.379 (17)
Br4—C81.956 (12)C4—H40.9500
C1—C61.387 (15)C5—C61.367 (15)
C1—C21.403 (16)C5—H50.9500
C1—C71.476 (16)C6—C81.461 (15)
C2—C31.377 (17)C7—H71.0000
C2—H20.9500C8—H81.0000
C6—C1—C2118.1 (10)C5—C6—C1119.6 (10)
C6—C1—C7126.1 (11)C5—C6—C8120.4 (10)
C2—C1—C7115.8 (11)C1—C6—C8120.0 (10)
C3—C2—C1122.1 (11)C1—C7—Br1114.2 (8)
C3—C2—H2119.0C1—C7—Br2111.8 (8)
C1—C2—H2119.0Br1—C7—Br2110.0 (6)
C4—C3—C2118.3 (11)C1—C7—H7106.8
C4—C3—H3120.9Br1—C7—H7106.8
C2—C3—H3120.9Br2—C7—H7106.8
C3—C4—C5120.6 (11)C6—C8—Br4112.1 (8)
C3—C4—H4119.7C6—C8—Br3109.8 (7)
C5—C4—H4119.7Br4—C8—Br3108.2 (6)
C6—C5—C4121.4 (11)C6—C8—H8108.9
C6—C5—H5119.3Br4—C8—H8108.9
C4—C5—H5119.3Br3—C8—H8108.9
C6—C1—C2—C31.8 (17)C7—C1—C6—C81.8 (17)
C7—C1—C2—C3178.6 (11)C6—C1—C7—Br163.2 (14)
C1—C2—C3—C40.0 (18)C2—C1—C7—Br1116.4 (10)
C2—C3—C4—C50.8 (18)C6—C1—C7—Br262.5 (14)
C3—C4—C5—C60.3 (19)C2—C1—C7—Br2117.9 (10)
C4—C5—C6—C12.2 (18)C5—C6—C8—Br459.7 (12)
C4—C5—C6—C8178.4 (11)C1—C6—C8—Br4119.6 (10)
C2—C1—C6—C52.8 (16)C5—C6—C8—Br360.6 (12)
C7—C1—C6—C5177.6 (11)C1—C6—C8—Br3120.0 (10)
C2—C1—C6—C8177.8 (10)
1-(Bromomethyl)-2-(dibromomethyl)benzene (5) top
Crystal data top
C8H7Br3F(000) = 640
Mr = 342.87Dx = 2.373 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 7.7746 (3) ÅCell parameters from 3492 reflections
b = 10.0967 (4) Åθ = 3.2–29.9°
c = 12.2376 (5) ŵ = 12.55 mm1
β = 92.552 (4)°T = 250 K
V = 959.67 (7) Å3Plate, colourless
Z = 40.60 × 0.14 × 0.10 mm
Data collection top
SuperNova
diffractometer (Agilent Technologies) with Atlas detector
4311 independent reflections
Radiation source: micro-focus sealed X-ray tube2128 reflections with I > 2σ(I)
Detector resolution: 10.4498 pixels mm-1Rint = 0.051
ω scansθmax = 36.1°, θmin = 3.0°
Absorption correction: multi-scan
(CrysAlis PRO; Rigaku OD, 2015)
h = 1211
Tmin = 0.023, Tmax = 1.000k = 1615
13265 measured reflectionsl = 1919
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.049H-atom parameters constrained
wR(F2) = 0.133 w = 1/[σ2(Fo2) + (0.0423P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.99(Δ/σ)max < 0.001
4311 reflectionsΔρmax = 1.23 e Å3
100 parametersΔρmin = 1.27 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.57702 (7)0.32409 (5)0.12948 (4)0.05619 (17)
Br20.54674 (7)0.53573 (5)0.31575 (5)0.05977 (17)
Br31.09020 (6)0.43848 (5)0.38621 (4)0.04887 (15)
C10.8154 (5)0.5343 (4)0.1644 (3)0.0335 (8)
C20.7416 (6)0.6354 (4)0.1025 (3)0.0395 (9)
H20.6212690.6456850.0991410.047*
C30.8416 (6)0.7208 (5)0.0458 (4)0.0448 (10)
H30.7900660.7883100.0028300.054*
C41.0173 (6)0.7071 (5)0.0522 (3)0.0453 (11)
H41.0866580.7673480.0155180.054*
C51.0906 (5)0.6074 (5)0.1110 (3)0.0415 (10)
H51.2109670.5980640.1130260.050*
C60.9934 (5)0.5182 (4)0.1684 (3)0.0334 (8)
C70.7055 (5)0.4440 (4)0.2254 (3)0.0356 (9)
H70.7819960.3898090.2743230.043*
C81.0808 (6)0.4074 (5)0.2279 (3)0.0430 (10)
H8A1.1980210.3978180.2027180.052*
H8B1.0186260.3247750.2117270.052*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0570 (3)0.0548 (3)0.0566 (3)0.0201 (2)0.0002 (2)0.0109 (2)
Br20.0669 (3)0.0501 (3)0.0650 (3)0.0030 (2)0.0326 (3)0.0062 (2)
Br30.0432 (3)0.0659 (4)0.0373 (2)0.0049 (2)0.00168 (18)0.00501 (19)
C10.0338 (19)0.039 (2)0.0278 (17)0.0015 (16)0.0025 (14)0.0032 (15)
C20.042 (2)0.042 (2)0.035 (2)0.0031 (18)0.0001 (17)0.0022 (17)
C30.055 (3)0.038 (2)0.040 (2)0.003 (2)0.0054 (19)0.0030 (18)
C40.056 (3)0.047 (3)0.033 (2)0.016 (2)0.0071 (19)0.0020 (18)
C50.034 (2)0.056 (3)0.035 (2)0.0076 (19)0.0037 (16)0.0004 (19)
C60.036 (2)0.038 (2)0.0267 (17)0.0036 (16)0.0001 (14)0.0066 (15)
C70.033 (2)0.037 (2)0.036 (2)0.0002 (16)0.0011 (15)0.0051 (16)
C80.043 (2)0.047 (3)0.039 (2)0.008 (2)0.0063 (17)0.0055 (19)
Geometric parameters (Å, º) top
Br1—C71.933 (4)C3—H30.9400
Br2—C71.930 (4)C4—C51.349 (6)
Br3—C81.961 (4)C4—H40.9400
C1—C21.381 (6)C5—C61.387 (6)
C1—C61.392 (5)C5—H50.9400
C1—C71.475 (6)C6—C81.483 (6)
C2—C31.370 (6)C7—H70.9900
C2—H20.9400C8—H8A0.9800
C3—C41.372 (6)C8—H8B0.9800
C2—C1—C6119.6 (4)C5—C6—C1118.0 (4)
C2—C1—C7119.9 (4)C5—C6—C8119.4 (4)
C6—C1—C7120.5 (4)C1—C6—C8122.6 (4)
C3—C2—C1120.8 (4)C1—C7—Br2113.1 (3)
C3—C2—H2119.6C1—C7—Br1112.0 (3)
C1—C2—H2119.6Br2—C7—Br1108.80 (19)
C2—C3—C4119.6 (4)C1—C7—H7107.5
C2—C3—H3120.2Br2—C7—H7107.5
C4—C3—H3120.2Br1—C7—H7107.5
C5—C4—C3120.1 (4)C6—C8—Br3111.1 (3)
C5—C4—H4120.0C6—C8—H8A109.4
C3—C4—H4120.0Br3—C8—H8A109.4
C4—C5—C6121.9 (4)C6—C8—H8B109.4
C4—C5—H5119.1Br3—C8—H8B109.4
C6—C5—H5119.1H8A—C8—H8B108.0
C6—C1—C2—C30.7 (6)C2—C1—C6—C8176.3 (4)
C7—C1—C2—C3179.6 (4)C7—C1—C6—C83.4 (6)
C1—C2—C3—C41.1 (7)C2—C1—C7—Br251.5 (4)
C2—C3—C4—C52.2 (7)C6—C1—C7—Br2128.8 (3)
C3—C4—C5—C61.6 (7)C2—C1—C7—Br172.0 (4)
C4—C5—C6—C10.2 (6)C6—C1—C7—Br1107.8 (4)
C4—C5—C6—C8177.5 (4)C5—C6—C8—Br3105.9 (4)
C2—C1—C6—C51.3 (6)C1—C6—C8—Br376.4 (4)
C7—C1—C6—C5179.0 (4)
2-(Bromomethyl)-3-(dibromomethyl)naphthalene (6) top
Crystal data top
C12H9Br3F(000) = 744
Mr = 392.92Dx = 2.203 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 4.8140 (2) ÅCell parameters from 5091 reflections
b = 10.1694 (3) Åθ = 3.9–32.5°
c = 24.2052 (9) ŵ = 10.18 mm1
β = 90.711 (3)°T = 200 K
V = 1184.89 (7) Å3Plate, colourless
Z = 40.21 × 0.04 × 0.04 mm
Data collection top
SuperNova
diffractometer (Agilent Technologies) with Atlas detector
5379 independent reflections
Radiation source: micro-focus sealed X-ray tube3335 reflections with I > 2σ(I)
Detector resolution: 10.4498 pixels mm-1Rint = 0.044
ω scansθmax = 36.2°, θmin = 3.2°
Absorption correction: multi-scan
(CrysAlis PRO; Rigaku OD, 2015)
h = 77
Tmin = 0.472, Tmax = 1.000k = 1613
17302 measured reflectionsl = 3939
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.047H-atom parameters constrained
wR(F2) = 0.114 w = 1/[σ2(Fo2) + (0.0338P)2 + 1.9947P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max = 0.001
5379 reflectionsΔρmax = 0.93 e Å3
136 parametersΔρmin = 0.99 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.78256 (9)0.80688 (4)0.17241 (2)0.03945 (11)
Br21.14468 (9)0.83875 (4)0.06533 (2)0.04077 (11)
Br31.14003 (9)1.05749 (4)0.27073 (2)0.03982 (11)
C10.7412 (7)1.0819 (3)0.09060 (14)0.0258 (6)
H10.6689571.0124180.0684800.031*
C20.9457 (7)1.0550 (3)0.12852 (14)0.0255 (6)
C31.0536 (7)1.1578 (4)0.16220 (14)0.0275 (7)
C40.9491 (8)1.2813 (4)0.15526 (15)0.0309 (7)
H41.0211661.3502910.1776640.037*
C4A0.7407 (8)1.3106 (3)0.11667 (15)0.0292 (7)
C50.6353 (10)1.4392 (4)0.10847 (18)0.0397 (9)
H50.7088681.5099730.1296520.048*
C60.4323 (10)1.4623 (4)0.07110 (19)0.0462 (11)
H60.3622211.5489790.0665560.055*
C70.3233 (9)1.3601 (4)0.03885 (18)0.0414 (10)
H70.1787851.3778280.0128160.050*
C80.4218 (8)1.2366 (4)0.04443 (16)0.0344 (8)
H80.3476471.1679120.0220950.041*
C8A0.6348 (7)1.2091 (3)0.08336 (14)0.0267 (7)
C91.0491 (7)0.9181 (4)0.13535 (16)0.0303 (7)
H91.2214560.9213290.1588000.036*
C101.2808 (8)1.1373 (4)0.20320 (15)0.0345 (8)
H10A1.3686471.2228020.2121770.041*
H10B1.4242781.0794830.1871390.041*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0374 (2)0.03034 (19)0.0506 (3)0.00059 (15)0.00073 (17)0.01124 (16)
Br20.0430 (2)0.0360 (2)0.0433 (2)0.00720 (17)0.00150 (17)0.01260 (17)
Br30.0461 (2)0.0454 (2)0.02807 (18)0.00442 (18)0.00168 (15)0.00543 (16)
C10.0275 (16)0.0251 (15)0.0250 (15)0.0008 (12)0.0010 (12)0.0040 (12)
C20.0268 (16)0.0243 (15)0.0257 (15)0.0009 (12)0.0029 (12)0.0014 (12)
C30.0279 (16)0.0324 (17)0.0223 (15)0.0054 (13)0.0050 (12)0.0026 (13)
C40.040 (2)0.0273 (17)0.0256 (16)0.0080 (14)0.0079 (14)0.0049 (13)
C4A0.0361 (18)0.0248 (16)0.0270 (16)0.0002 (14)0.0096 (14)0.0007 (13)
C50.056 (3)0.0255 (18)0.038 (2)0.0042 (17)0.0169 (18)0.0008 (15)
C60.059 (3)0.035 (2)0.044 (2)0.018 (2)0.018 (2)0.0132 (18)
C70.043 (2)0.047 (2)0.035 (2)0.0139 (19)0.0063 (17)0.0121 (18)
C80.0360 (19)0.039 (2)0.0278 (18)0.0046 (16)0.0054 (14)0.0045 (15)
C8A0.0282 (16)0.0275 (16)0.0247 (15)0.0026 (13)0.0071 (12)0.0034 (12)
C90.0264 (16)0.0302 (17)0.0341 (18)0.0003 (13)0.0011 (14)0.0034 (14)
C100.0324 (18)0.046 (2)0.0255 (17)0.0059 (16)0.0040 (14)0.0051 (15)
Geometric parameters (Å, º) top
Br1—C91.939 (4)C4A—C51.415 (5)
Br2—C91.938 (4)C5—C61.344 (7)
Br3—C101.954 (4)C5—H50.9500
C1—C21.366 (5)C6—C71.398 (7)
C1—C8A1.401 (5)C6—H60.9500
C1—H10.9500C7—C81.349 (6)
C2—C31.420 (5)C7—H70.9500
C2—C91.487 (5)C8—C8A1.412 (5)
C3—C41.363 (5)C8—H80.9500
C3—C101.483 (5)C9—H91.0000
C4—C4A1.395 (5)C10—H10A0.9900
C4—H40.9500C10—H10B0.9900
C4A—C8A1.402 (5)
C2—C1—C8A121.9 (3)C8—C7—C6120.5 (4)
C2—C1—H1119.0C8—C7—H7119.8
C8A—C1—H1119.0C6—C7—H7119.8
C1—C2—C3119.6 (3)C7—C8—C8A120.2 (4)
C1—C2—C9120.0 (3)C7—C8—H8119.9
C3—C2—C9120.4 (3)C8A—C8—H8119.9
C4—C3—C2118.4 (3)C1—C8A—C4A118.6 (3)
C4—C3—C10118.7 (3)C1—C8A—C8121.8 (3)
C2—C3—C10122.8 (3)C4A—C8A—C8119.6 (3)
C3—C4—C4A122.8 (3)C2—C9—Br2112.0 (3)
C3—C4—H4118.6C2—C9—Br1112.0 (2)
C4A—C4—H4118.6Br2—C9—Br1109.13 (18)
C4—C4A—C8A118.8 (3)C2—C9—H9107.8
C4—C4A—C5123.0 (4)Br2—C9—H9107.8
C8A—C4A—C5118.2 (4)Br1—C9—H9107.8
C6—C5—C4A120.8 (4)C3—C10—Br3111.0 (2)
C6—C5—H5119.6C3—C10—H10A109.4
C4A—C5—H5119.6Br3—C10—H10A109.4
C5—C6—C7120.7 (4)C3—C10—H10B109.4
C5—C6—H6119.6Br3—C10—H10B109.4
C7—C6—H6119.6H10A—C10—H10B108.0
C8A—C1—C2—C30.6 (5)C2—C1—C8A—C4A0.7 (5)
C8A—C1—C2—C9179.0 (3)C2—C1—C8A—C8179.5 (3)
C1—C2—C3—C40.3 (5)C4—C4A—C8A—C10.6 (5)
C9—C2—C3—C4178.7 (3)C5—C4A—C8A—C1179.0 (3)
C1—C2—C3—C10178.3 (3)C4—C4A—C8A—C8179.4 (3)
C9—C2—C3—C103.3 (5)C5—C4A—C8A—C82.2 (5)
C2—C3—C4—C4A0.2 (5)C7—C8—C8A—C1179.6 (4)
C10—C3—C4—C4A178.2 (3)C7—C8—C8A—C4A0.8 (5)
C3—C4—C4A—C8A0.3 (5)C1—C2—C9—Br250.1 (4)
C3—C4—C4A—C5178.7 (4)C3—C2—C9—Br2131.5 (3)
C4—C4A—C5—C6179.4 (4)C1—C2—C9—Br172.9 (4)
C8A—C4A—C5—C62.3 (6)C3—C2—C9—Br1105.5 (3)
C4A—C5—C6—C70.9 (6)C4—C3—C10—Br3102.9 (3)
C5—C6—C7—C80.5 (6)C2—C3—C10—Br379.2 (4)
C6—C7—C8—C8A0.6 (6)
2,3-Bis(dibromomethyl)naphthalene (7) top
Crystal data top
C12H8Br4F(000) = 880
Mr = 471.82Dx = 2.338 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 10.5581 (2) ÅCell parameters from 5724 reflections
b = 12.4074 (3) Åθ = 3.3–34.7°
c = 10.2943 (2) ŵ = 11.98 mm1
β = 96.363 (2)°T = 298 K
V = 1340.23 (5) Å3Polyhedron, colourless
Z = 40.38 × 0.29 × 0.24 mm
Data collection top
Xcalibur
diffractometer (Oxford Diffraction) with Sapphire3 detector
5310 independent reflections
Radiation source: Enhance (Mo) X-ray Source3179 reflections with I > 2σ(I)
Detector resolution: 16.0328 pixels mm-1Rint = 0.057
ω scansθmax = 34.8°, θmin = 3.3°
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2012)
h = 1616
Tmin = 0.432, Tmax = 1.000k = 1916
31095 measured reflectionsl = 1513
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.061H-atom parameters constrained
wR(F2) = 0.104 w = 1/[σ2(Fo2) + (0.0205P)2 + 3.2815P]
where P = (Fo2 + 2Fc2)/3
S = 1.13(Δ/σ)max = 0.001
5310 reflectionsΔρmax = 0.70 e Å3
145 parametersΔρmin = 1.03 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.15396 (5)0.13904 (4)0.62716 (5)0.05199 (14)
Br20.23360 (5)0.04114 (5)0.43146 (5)0.05596 (16)
Br30.00797 (5)0.07618 (5)0.84843 (5)0.05205 (15)
Br40.08087 (5)0.26658 (4)0.66327 (6)0.05615 (16)
C10.4601 (4)0.0221 (4)0.7514 (4)0.0358 (9)
H10.5114810.0258230.7116310.043*
C20.3338 (4)0.0301 (3)0.7033 (4)0.0307 (8)
C30.2548 (4)0.1036 (3)0.7639 (4)0.0295 (8)
C40.3063 (4)0.1626 (3)0.8680 (4)0.0360 (9)
H40.2539220.2097080.9077080.043*
C4A0.4358 (4)0.1555 (3)0.9180 (4)0.0357 (9)
C50.4887 (5)0.2176 (4)1.0268 (5)0.0451 (11)
H50.4375680.2652891.0673440.054*
C60.6142 (5)0.2072 (4)1.0714 (5)0.0517 (13)
H60.6486110.2486071.1420160.062*
C70.6925 (5)0.1352 (5)1.0126 (5)0.0518 (13)
H70.7779370.1288001.0449430.062*
C80.6446 (4)0.0745 (4)0.9086 (5)0.0466 (11)
H80.6976700.0269270.8704920.056*
C8A0.5150 (4)0.0830 (4)0.8580 (4)0.0342 (9)
C90.2897 (4)0.0410 (4)0.5905 (4)0.0387 (10)
H90.3624880.0852020.5720050.046*
C100.1168 (4)0.1177 (3)0.7156 (4)0.0329 (9)
H100.0965130.0713000.6390840.040*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0446 (3)0.0430 (3)0.0683 (3)0.0108 (2)0.0061 (2)0.0094 (2)
Br20.0595 (3)0.0758 (4)0.0332 (2)0.0016 (3)0.0079 (2)0.0041 (2)
Br30.0356 (2)0.0746 (4)0.0480 (3)0.0080 (2)0.0141 (2)0.0100 (2)
Br40.0514 (3)0.0511 (3)0.0632 (3)0.0172 (2)0.0061 (2)0.0070 (2)
C10.026 (2)0.040 (2)0.042 (2)0.0031 (18)0.0116 (17)0.0013 (19)
C20.0259 (19)0.031 (2)0.036 (2)0.0010 (16)0.0088 (16)0.0017 (17)
C30.0267 (19)0.030 (2)0.0321 (19)0.0024 (16)0.0052 (16)0.0020 (16)
C40.033 (2)0.034 (2)0.040 (2)0.0085 (18)0.0011 (18)0.0028 (18)
C4A0.036 (2)0.031 (2)0.039 (2)0.0015 (18)0.0017 (18)0.0040 (17)
C50.043 (3)0.041 (3)0.048 (3)0.000 (2)0.007 (2)0.005 (2)
C60.050 (3)0.050 (3)0.051 (3)0.013 (2)0.014 (2)0.004 (2)
C70.031 (2)0.065 (3)0.057 (3)0.006 (2)0.007 (2)0.013 (3)
C80.031 (2)0.057 (3)0.053 (3)0.003 (2)0.008 (2)0.009 (2)
C8A0.0258 (19)0.041 (2)0.036 (2)0.0018 (18)0.0045 (16)0.0073 (18)
C90.031 (2)0.044 (3)0.042 (2)0.0008 (19)0.0081 (18)0.0094 (19)
C100.028 (2)0.040 (2)0.031 (2)0.0021 (17)0.0037 (16)0.0027 (17)
Geometric parameters (Å, º) top
Br1—C91.948 (4)C4A—C8A1.415 (6)
Br2—C91.964 (5)C4A—C51.422 (6)
Br3—C101.950 (4)C5—C61.360 (7)
Br4—C101.950 (4)C5—H50.9300
C1—C21.374 (6)C6—C71.399 (8)
C1—C8A1.403 (6)C6—H60.9300
C1—H10.9300C7—C81.360 (7)
C2—C31.425 (5)C7—H70.9300
C2—C91.492 (6)C8—C8A1.413 (6)
C3—C41.361 (6)C8—H80.9300
C3—C101.497 (6)C9—H90.9800
C4—C4A1.409 (6)C10—H100.9800
C4—H40.9300
C2—C1—C8A122.9 (4)C8—C7—C6120.6 (4)
C2—C1—H1118.6C8—C7—H7119.7
C8A—C1—H1118.6C6—C7—H7119.7
C1—C2—C3118.7 (4)C7—C8—C8A120.6 (5)
C1—C2—C9116.4 (4)C7—C8—H8119.7
C3—C2—C9124.9 (4)C8A—C8—H8119.7
C4—C3—C2119.1 (4)C1—C8A—C8123.2 (4)
C4—C3—C10119.2 (4)C1—C8A—C4A118.1 (4)
C2—C3—C10121.7 (4)C8—C8A—C4A118.8 (4)
C3—C4—C4A122.7 (4)C2—C9—Br1113.1 (3)
C3—C4—H4118.6C2—C9—Br2112.4 (3)
C4A—C4—H4118.6Br1—C9—Br2109.0 (2)
C4—C4A—C8A118.5 (4)C2—C9—H9107.4
C4—C4A—C5122.3 (4)Br1—C9—H9107.4
C8A—C4A—C5119.3 (4)Br2—C9—H9107.4
C6—C5—C4A119.8 (5)C3—C10—Br3111.3 (3)
C6—C5—H5120.1C3—C10—Br4110.8 (3)
C4A—C5—H5120.1Br3—C10—Br4109.42 (19)
C5—C6—C7121.0 (5)C3—C10—H10108.4
C5—C6—H6119.5Br3—C10—H10108.4
C7—C6—H6119.5Br4—C10—H10108.4
C8A—C1—C2—C30.1 (6)C2—C1—C8A—C4A0.2 (6)
C8A—C1—C2—C9179.3 (4)C7—C8—C8A—C1179.6 (4)
C1—C2—C3—C40.6 (6)C7—C8—C8A—C4A0.4 (7)
C9—C2—C3—C4178.8 (4)C4—C4A—C8A—C10.1 (6)
C1—C2—C3—C10179.2 (4)C5—C4A—C8A—C1179.5 (4)
C9—C2—C3—C101.5 (6)C4—C4A—C8A—C8179.3 (4)
C2—C3—C4—C4A0.8 (6)C5—C4A—C8A—C80.2 (6)
C10—C3—C4—C4A178.9 (4)C1—C2—C9—Br1120.3 (4)
C3—C4—C4A—C8A0.6 (6)C3—C2—C9—Br159.0 (5)
C3—C4—C4A—C5180.0 (4)C1—C2—C9—Br2115.7 (4)
C4—C4A—C5—C6179.8 (5)C3—C2—C9—Br264.9 (5)
C8A—C4A—C5—C60.3 (7)C4—C3—C10—Br362.8 (5)
C4A—C5—C6—C70.7 (8)C2—C3—C10—Br3117.5 (4)
C5—C6—C7—C80.5 (8)C4—C3—C10—Br459.2 (4)
C6—C7—C8—C8A0.0 (8)C2—C3—C10—Br4120.5 (4)
C2—C1—C8A—C8179.5 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C10—H10···Br10.982.693.348 (4)125
C10—H10···Br20.982.743.432 (4)128
1-(Bromomethyl)-2-(dibromomethyl)naphthalene (8) top
Crystal data top
C12H9Br3Z = 2
Mr = 392.92F(000) = 372
Triclinic, P1Dx = 2.182 Mg m3
a = 7.2881 (3) ÅMo Kα radiation, λ = 0.71073 Å
b = 8.4508 (4) ÅCell parameters from 3204 reflections
c = 9.9371 (4) Åθ = 3.6–36.0°
α = 78.382 (4)°µ = 10.08 mm1
β = 87.102 (3)°T = 100 K
γ = 86.663 (4)°Polyhedron, colourless
V = 598.00 (5) Å30.60 × 0.31 × 0.09 mm
Data collection top
SuperNova
diffractometer (Agilent Technologies) with Atlas detector
5194 independent reflections
Radiation source: micro-focus sealed X-ray tube2876 reflections with I > 2σ(I)
Detector resolution: 10.4498 pixels mm-1Rint = 0.060
ω scansθmax = 36.2°, θmin = 3.4°
Absorption correction: multi-scan
CrysAlis PRO (Rigaku OD, 2015)
h = 1211
Tmin = 0.074, Tmax = 1.000k = 1313
8918 measured reflectionsl = 1514
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.075H-atom parameters constrained
wR(F2) = 0.207 w = 1/[σ2(Fo2) + (0.0715P)2 + 1.8986P]
where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max < 0.001
5194 reflectionsΔρmax = 1.34 e Å3
136 parametersΔρmin = 1.24 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.28015 (8)0.92558 (9)0.45289 (6)0.03841 (18)
Br20.40506 (10)0.39139 (10)0.37129 (8)0.0510 (2)
Br30.02179 (10)0.42173 (9)0.31504 (8)0.0465 (2)
C10.1841 (7)0.8316 (7)0.2022 (6)0.0265 (10)
C20.2250 (7)0.6707 (7)0.2028 (6)0.0303 (11)
C30.2955 (8)0.6199 (8)0.0818 (7)0.0358 (12)
H30.3214020.5080180.0835000.043*
C40.3263 (8)0.7295 (8)0.0364 (6)0.0337 (12)
H40.3714400.6935020.1170390.040*
C4A0.2915 (7)0.8969 (8)0.0403 (6)0.0304 (11)
C50.3296 (8)1.0124 (9)0.1630 (6)0.0373 (14)
H50.3789800.9772190.2429210.045*
C60.2950 (9)1.1739 (9)0.1655 (7)0.0425 (16)
H60.3201981.2506400.2473210.051*
C70.2230 (8)1.2260 (8)0.0486 (7)0.0409 (15)
H70.1979321.3383310.0524340.049*
C80.1873 (8)1.1187 (8)0.0721 (7)0.0348 (12)
H80.1402191.1576210.1509240.042*
C8A0.2203 (7)0.9497 (7)0.0798 (6)0.0293 (11)
C90.0956 (7)0.8842 (7)0.3263 (6)0.0297 (11)
H9A0.0149430.7991310.3755630.036*
H9B0.0178210.9839580.2966930.036*
C100.1955 (8)0.5447 (8)0.3301 (7)0.0362 (13)
H100.1720940.6007080.4093040.043*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0383 (3)0.0474 (4)0.0316 (3)0.0061 (2)0.0033 (2)0.0113 (3)
Br20.0538 (4)0.0470 (4)0.0492 (4)0.0106 (3)0.0103 (3)0.0045 (3)
Br30.0458 (4)0.0437 (4)0.0475 (4)0.0114 (3)0.0069 (3)0.0023 (3)
C10.021 (2)0.031 (3)0.030 (3)0.0013 (18)0.0011 (18)0.012 (2)
C20.028 (2)0.032 (3)0.030 (3)0.000 (2)0.004 (2)0.007 (2)
C30.037 (3)0.036 (3)0.038 (3)0.002 (2)0.002 (2)0.016 (2)
C40.033 (3)0.039 (3)0.032 (3)0.003 (2)0.001 (2)0.013 (2)
C4A0.020 (2)0.045 (3)0.025 (2)0.005 (2)0.0019 (18)0.003 (2)
C50.029 (3)0.055 (4)0.027 (3)0.007 (2)0.001 (2)0.004 (3)
C60.036 (3)0.048 (4)0.039 (3)0.008 (3)0.011 (3)0.007 (3)
C70.036 (3)0.033 (3)0.052 (4)0.004 (2)0.014 (3)0.000 (3)
C80.029 (2)0.039 (3)0.038 (3)0.002 (2)0.005 (2)0.010 (2)
C8A0.020 (2)0.037 (3)0.031 (3)0.0003 (19)0.0053 (18)0.005 (2)
C90.024 (2)0.038 (3)0.030 (3)0.0033 (19)0.0025 (19)0.014 (2)
C100.041 (3)0.032 (3)0.036 (3)0.003 (2)0.000 (2)0.008 (2)
Geometric parameters (Å, º) top
Br1—C91.979 (5)C4A—C51.426 (8)
Br2—C101.949 (6)C5—C61.369 (11)
Br3—C101.972 (7)C5—H50.9500
C1—C21.374 (8)C6—C71.391 (11)
C1—C8A1.433 (8)C6—H60.9500
C1—C91.497 (8)C7—C81.374 (9)
C2—C31.419 (8)C7—H70.9500
C2—C101.496 (8)C8—C8A1.422 (9)
C3—C41.360 (9)C8—H80.9500
C3—H30.9500C9—H9A0.9900
C4—C4A1.416 (9)C9—H9B0.9900
C4—H40.9500C10—H101.0000
C4A—C8A1.420 (8)
C2—C1—C8A119.6 (5)C8—C7—C6121.5 (7)
C2—C1—C9120.7 (5)C8—C7—H7119.2
C8A—C1—C9119.7 (5)C6—C7—H7119.2
C1—C2—C3120.6 (5)C7—C8—C8A120.3 (6)
C1—C2—C10121.1 (5)C7—C8—H8119.8
C3—C2—C10118.3 (5)C8A—C8—H8119.8
C4—C3—C2120.7 (6)C4A—C8A—C8117.9 (5)
C4—C3—H3119.7C4A—C8A—C1119.1 (5)
C2—C3—H3119.7C8—C8A—C1123.0 (6)
C3—C4—C4A120.5 (6)C1—C9—Br1111.9 (3)
C3—C4—H4119.8C1—C9—H9A109.2
C4A—C4—H4119.8Br1—C9—H9A109.2
C4—C4A—C8A119.5 (5)C1—C9—H9B109.2
C4—C4A—C5120.5 (6)Br1—C9—H9B109.2
C8A—C4A—C5120.0 (6)H9A—C9—H9B107.9
C6—C5—C4A120.0 (6)C2—C10—Br2113.6 (4)
C6—C5—H5120.0C2—C10—Br3110.6 (4)
C4A—C5—H5120.0Br2—C10—Br3108.2 (3)
C5—C6—C7120.2 (6)C2—C10—H10108.1
C5—C6—H6119.9Br2—C10—H10108.1
C7—C6—H6119.9Br3—C10—H10108.1
C8A—C1—C2—C32.7 (8)C5—C4A—C8A—C80.7 (7)
C9—C1—C2—C3175.0 (5)C4—C4A—C8A—C10.4 (7)
C8A—C1—C2—C10177.7 (5)C5—C4A—C8A—C1179.6 (5)
C9—C1—C2—C104.6 (8)C7—C8—C8A—C4A0.3 (8)
C1—C2—C3—C40.9 (9)C7—C8—C8A—C1179.3 (5)
C10—C2—C3—C4179.5 (5)C2—C1—C8A—C4A2.4 (7)
C2—C3—C4—C4A1.1 (9)C9—C1—C8A—C4A175.3 (5)
C3—C4—C4A—C8A1.3 (8)C2—C1—C8A—C8178.0 (5)
C3—C4—C4A—C5177.9 (5)C9—C1—C8A—C84.3 (7)
C4—C4A—C5—C6179.8 (5)C2—C1—C9—Br189.4 (6)
C8A—C4A—C5—C60.9 (8)C8A—C1—C9—Br193.0 (5)
C4A—C5—C6—C70.1 (9)C1—C2—C10—Br2132.4 (5)
C5—C6—C7—C81.0 (9)C3—C2—C10—Br248.0 (7)
C6—C7—C8—C8A1.2 (9)C1—C2—C10—Br3105.8 (6)
C4—C4A—C8A—C8179.9 (5)C3—C2—C10—Br373.8 (6)
1,3-Bis(dibromomethyl)benzene (9) top
Crystal data top
C8H6Br4F(000) = 776
Mr = 421.77Dx = 2.609 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 12.0060 (3) ÅCell parameters from 7961 reflections
b = 6.09685 (11) Åθ = 3.3–35.8°
c = 14.7104 (3) ŵ = 14.94 mm1
β = 94.201 (2)°T = 100 K
V = 1073.90 (4) Å3Parallelepiped, colorless
Z = 40.30 × 0.15 × 0.07 mm
Data collection top
SuperNova
diffractometer (Agilent Technologies) with Atlas detector
4762 independent reflections
Radiation source: micro-focus sealed X-ray tube3800 reflections with I > 2σ(I)
Detector resolution: 10.4498 pixels mm-1Rint = 0.035
ω scansθmax = 35.9°, θmin = 3.4°
Absorption correction: multi-scan
(CrysAlis PRO; Rigaku OD, 2015)
h = 1319
Tmin = 0.181, Tmax = 1.000k = 99
14593 measured reflectionsl = 2324
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.037H-atom parameters constrained
wR(F2) = 0.097 w = 1/[σ2(Fo2) + (0.0422P)2 + 2.5893P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max = 0.001
4762 reflectionsΔρmax = 1.86 e Å3
109 parametersΔρmin = 1.74 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.32963 (3)1.11032 (5)0.45526 (2)0.01661 (8)
Br20.43121 (3)1.55571 (5)0.38181 (2)0.01892 (8)
Br30.61848 (3)0.48600 (6)0.13012 (3)0.02499 (9)
Br40.75290 (3)0.92849 (6)0.10397 (2)0.01652 (7)
C10.5458 (3)1.0063 (5)0.2812 (2)0.0130 (5)
H10.6033490.9840550.3281890.016*
C20.4544 (3)1.1378 (5)0.2971 (2)0.0129 (5)
C30.3701 (3)1.1716 (6)0.2278 (2)0.0193 (6)
H30.3079461.2621820.2383340.023*
C40.3775 (3)1.0724 (7)0.1436 (2)0.0216 (7)
H40.3200371.0946620.0965790.026*
C50.4683 (3)0.9411 (6)0.1277 (2)0.0184 (6)
H50.4728500.8737930.0698580.022*
C60.5530 (3)0.9073 (5)0.1965 (2)0.0133 (5)
C70.4495 (3)1.2396 (5)0.3894 (2)0.0141 (5)
H70.5218971.2087150.4250190.017*
C80.6545 (3)0.7717 (5)0.1822 (2)0.0160 (6)
H80.6960480.7488030.2428540.019*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.01907 (16)0.01562 (14)0.01619 (14)0.00083 (11)0.00843 (11)0.00105 (11)
Br20.02052 (16)0.01306 (14)0.02327 (16)0.00087 (11)0.00210 (12)0.00014 (11)
Br30.0332 (2)0.01435 (15)0.02843 (18)0.00225 (13)0.00873 (15)0.00420 (13)
Br40.01571 (15)0.01850 (15)0.01610 (13)0.00009 (11)0.00622 (11)0.00005 (11)
C10.0170 (14)0.0108 (12)0.0114 (11)0.0014 (10)0.0028 (10)0.0002 (9)
C20.0134 (13)0.0137 (12)0.0122 (11)0.0011 (10)0.0049 (10)0.0003 (10)
C30.0142 (14)0.0277 (17)0.0159 (13)0.0034 (12)0.0016 (11)0.0032 (12)
C40.0162 (15)0.0326 (19)0.0157 (13)0.0009 (13)0.0015 (11)0.0050 (13)
C50.0188 (15)0.0240 (16)0.0127 (12)0.0000 (12)0.0025 (11)0.0040 (11)
C60.0155 (14)0.0112 (12)0.0138 (12)0.0000 (10)0.0046 (10)0.0003 (10)
C70.0141 (13)0.0143 (12)0.0144 (12)0.0016 (10)0.0041 (10)0.0001 (10)
C80.0193 (15)0.0157 (13)0.0136 (12)0.0010 (11)0.0059 (11)0.0005 (10)
Geometric parameters (Å, º) top
Br1—C71.958 (3)C3—C41.387 (5)
Br2—C71.942 (3)C3—H30.9500
Br3—C81.939 (3)C4—C51.386 (5)
Br4—C81.958 (3)C4—H40.9500
C1—C21.393 (4)C5—C61.396 (5)
C1—C61.393 (4)C5—H50.9500
C1—H10.9500C6—C81.500 (5)
C2—C31.399 (4)C7—H71.0000
C2—C71.498 (4)C8—H81.0000
C2—C1—C6120.0 (3)C1—C6—C5119.7 (3)
C2—C1—H1120.0C1—C6—C8117.9 (3)
C6—C1—H1120.0C5—C6—C8122.4 (3)
C1—C2—C3120.0 (3)C2—C7—Br2111.8 (2)
C1—C2—C7118.3 (3)C2—C7—Br1111.2 (2)
C3—C2—C7121.7 (3)Br2—C7—Br1110.10 (15)
C4—C3—C2119.8 (3)C2—C7—H7107.9
C4—C3—H3120.1Br2—C7—H7107.9
C2—C3—H3120.1Br1—C7—H7107.9
C5—C4—C3120.3 (3)C6—C8—Br3113.0 (2)
C5—C4—H4119.8C6—C8—Br4110.2 (2)
C3—C4—H4119.8Br3—C8—Br4109.46 (15)
C4—C5—C6120.2 (3)C6—C8—H8108.0
C4—C5—H5119.9Br3—C8—H8108.0
C6—C5—H5119.9Br4—C8—H8108.0
C6—C1—C2—C30.4 (5)C4—C5—C6—C8178.3 (3)
C6—C1—C2—C7179.5 (3)C1—C2—C7—Br2125.3 (3)
C1—C2—C3—C40.5 (5)C3—C2—C7—Br254.8 (4)
C7—C2—C3—C4179.4 (3)C1—C2—C7—Br1111.2 (3)
C2—C3—C4—C50.3 (6)C3—C2—C7—Br168.7 (4)
C3—C4—C5—C60.1 (6)C1—C6—C8—Br3130.9 (3)
C2—C1—C6—C50.1 (5)C5—C6—C8—Br350.7 (4)
C2—C1—C6—C8178.6 (3)C1—C6—C8—Br4106.3 (3)
C4—C5—C6—C10.0 (5)C5—C6—C8—Br472.1 (4)
The characteristics of the Br···Br interactions in compounds 19 top
CompoundBr···Br (Å)C···Br···Br (°)
1Br2···Br3a3.618 (1)C3···Br2···Br3a153.39 (5)C7···Br3···Br2e104.81 (6)
Br2···Br4b3.699 (1)C3···Br2···Br4b142.73 (5)C7···Br4···Br2f151.23 (6)
Br1···Br2c3.573 (1)C3···Br2···Br1d116.14 (6)C1···Br1···Br2c173.55 (6)
2Br1···Br2a3.679 (1)C1···Br1···Br2a96.09 (5)C4···Br2···Br1d156.31 (5)
Br1···Br3b3.577 (1)C1···Br1···Br3b107.27 (6)C4···Br2···Br1e97.39 (5)
Br1···Br2c3.491 (1)C1···Br1···Br2c178.26 (5)C4···Br3···Br1f160.41 (5)
3Br13···Br21a3.637 (1)C17···Br13···Br21a133.08 (10)C24···Br22···Br23b157.17 (9)
Br23···Br22b3.639 (1)C17···Br14···Br23c163.67 (9)C27···Br23···Br22b103.07 (9)
Br23···Br14c3.387 (1)C21···Br21···Br13d119.35 (9)C27···Br23···Br14c115.96 (9)
4Br2···Br4a3.697 (2)C8···Br4···Br2a126.1 (3)C7···Br2···Br4a158.6 (4)
5Br3···Br3a3.408 (1)C8···Br3···Br3a150.13 (13)
6Br1···Br3b3.540 (1)C10···Br3···Br1b103.57 (13)C9···Br1···Br3a169.90 (11)
7Br1···Br4a3.655 (1)C9···Br1···Br4a151.17 (13)C10···Br4···Br1c105.32 (12)
Br3···Br3b3.668 (1)C10···Br3···Br3b144.96 (12)
8Br1···Br2a3.646 (1)C9···Br1···Br2a122.64 (17)C10···Br2···Br1a162.69 (19)
9No Br···Br contacts
Symmetry codes for compound 1: (a) x, -y+3/2, z+1/2; (b) x+1/2, y+1/2, z+1/2; (c) x, y-1, z; (d) x, y+1, z; (e) x, -y+3/2, z-1/2; (f) x-1/2, y-1/2, z-1/2; compound 2: (a) x, y+1, z; (b) -x+1, -y+1, -z; (c) x+1, y+1, z; (d) x, y-1, z; (e) x-1, y-1, z; (f) -x+1, -y+1, -z; compound 3: (a) -x+1, y-1/2, -z+1/2; (b) -x+2, -y, -z; (c) -x+1, -y+1, -z; (d) -x+1, y+1/2, -z+1/2; compound 4: (a) -x+2, -y+1, -z; compound 5: (a) -x+2, -y+1, -z+1; compound 6: (a) -x+3/2, y-1/2, -z+1/2; (b) -x+3/2, y+1/2, -z+1/2; compound 7: (a) -x, y+1/2, -z+3/2; (b) -x,-y, -z+2; (c) -x, y-1/2, -z+3/2; compound 8: (a) -x+1, -y+1, -z+1.
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds