Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
Three conformational polymorphs of 3-(azido­meth­yl)benzoic acid, C8H7N3O2, are reported. All three structures maintain similar carb­oxy­lic acid dimers and π–π stacking. Crystal structure analysis and com­putational evaluations highlight the azido­methyl group as a source of conformational polymorphism, thus having potential implications in the design of solid-state reactions.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S2053229623006824/eq3010sup1.cif
Contains datablocks A, B, C, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229623006824/eq3010Asup2.hkl
Contains datablock A

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229623006824/eq3010Bsup3.hkl
Contains datablock B

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229623006824/eq3010Csup4.hkl
Contains datablock C

cml

Chemical Markup Language (CML) file https://doi.org/10.1107/S2053229623006824/eq3010sup5.cml
Supplementary material

pdf

Portable Document Format (PDF) file https://doi.org/10.1107/S2053229623006824/eq3010sup6.pdf
Supplementary material

CCDC references: 2241209; 2241210; 2241211

Computing details top

For all structures, data collection: APEX4 (Bruker, 2021); cell refinement: SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016). Program(s) used to solve structure: SHELXT2018 (Sheldrick, 2015a) for A, C; SHELXT2018 (Sheldrick, 2015a) and SHELXS (Sheldrick, 2008) for B. For all structures, program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

3-(Azidomethyl)benzoic acid (A) top
Crystal data top
C8H7N3O2F(000) = 368
Mr = 177.17Dx = 1.473 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 7.6327 (5) ÅCell parameters from 7334 reflections
b = 9.5561 (6) Åθ = 2.8–28.0°
c = 11.2899 (7) ŵ = 0.11 mm1
β = 104.095 (3)°T = 100 K
V = 798.68 (9) Å3Plate, colourless
Z = 40.16 × 0.12 × 0.04 mm
Data collection top
Bruker D8 VENTURE DUO
diffractometer
1988 independent reflections
Radiation source: sealed tube, fine-focus1496 reflections with I > 2σ(I)
TRIUMPH graphite monochromatorRint = 0.059
Detector resolution: 7.39 pixels mm-1θmax = 28.4°, θmin = 2.8°
ω and φ scansh = 1010
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
k = 1212
Tmin = 0.675, Tmax = 0.746l = 1515
21950 measured reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.041H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.101 w = 1/[σ2(Fo2) + (0.0404P)2 + 0.4603P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
1988 reflectionsΔρmax = 0.32 e Å3
122 parametersΔρmin = 0.23 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Data for all structures were collected at 100 K on a Bruker D8 VENTURE Duo fixed-chi three-circle diffractometer using Mo Kα radiation (λ = 0.71073 Å). All data were integrated with SAINT (Bruker, 2016) and corrected for absorption using SADABS (Krause et al., 2015). The structures of polymorphs A and C were solved by dual methods using SHELXT (Sheldrick, 2015a), while B was solved by direct methods using SHELXS (Sheldrick, 2008). All structures were refined by full-matrix least-squares methods against F2 using SHELXL (Sheldrick, 2015b). All non-H atoms were refined with anisotropic displacement parameters.

Calculations and refinement of the structure was carried out using APEX4 (Bruker, 2021) and OLEX2 (Dolomanov et al., 2009) software. Crystal packing diagrams were generated using OLEX2. Structure overlay diagrams and r.m.s. deviation values were obtained using Mercury (Macrae et al., 2020). For polymorph B, the TWINROTMAT routine within PLATON (Spek, 2020) indicated twinning. The twin law was found to be (100, 010, 101). The BASF value refined to 0.5471 (16).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.93737 (15)0.86449 (11)0.40596 (9)0.0215 (3)
O20.90744 (16)0.88984 (12)0.59702 (9)0.0220 (3)
H20.962 (4)0.979 (3)0.591 (2)0.083 (9)*
N10.56587 (18)0.34979 (13)0.20286 (11)0.0219 (3)
N20.50663 (18)0.46363 (14)0.15900 (11)0.0208 (3)
N30.4361 (2)0.56102 (16)0.11360 (13)0.0306 (3)
C10.82040 (18)0.67382 (14)0.49777 (12)0.0137 (3)
C20.81239 (18)0.58766 (14)0.39627 (12)0.0137 (3)
H2A0.8455070.6239810.3264650.016*
C30.75637 (18)0.44948 (15)0.39698 (12)0.0140 (3)
C40.70877 (19)0.39726 (15)0.50081 (13)0.0159 (3)
H40.6712180.3026520.5024540.019*
C50.71607 (19)0.48268 (15)0.60125 (13)0.0172 (3)
H50.6832400.4462670.6711210.021*
C60.77106 (19)0.62109 (15)0.60026 (12)0.0159 (3)
H60.7750770.6795280.6689450.019*
C70.89182 (19)0.81756 (15)0.49687 (12)0.0152 (3)
C80.74914 (19)0.35650 (15)0.28813 (12)0.0172 (3)
H8A0.8363930.3915270.2430220.021*
H8B0.7868200.2608330.3171650.021*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0348 (6)0.0163 (5)0.0164 (5)0.0041 (5)0.0122 (5)0.0002 (4)
O20.0371 (6)0.0158 (5)0.0147 (5)0.0060 (5)0.0096 (4)0.0044 (4)
N10.0297 (7)0.0152 (6)0.0181 (6)0.0009 (5)0.0005 (5)0.0018 (5)
N20.0271 (7)0.0236 (7)0.0119 (6)0.0010 (6)0.0055 (5)0.0040 (5)
N30.0404 (9)0.0292 (8)0.0226 (7)0.0117 (7)0.0081 (6)0.0035 (6)
C10.0150 (6)0.0132 (6)0.0126 (6)0.0006 (5)0.0028 (5)0.0012 (5)
C20.0143 (6)0.0153 (7)0.0117 (6)0.0005 (5)0.0039 (5)0.0019 (5)
C30.0137 (6)0.0144 (7)0.0138 (6)0.0016 (5)0.0030 (5)0.0005 (5)
C40.0157 (7)0.0136 (7)0.0186 (7)0.0013 (5)0.0046 (5)0.0024 (5)
C50.0190 (7)0.0203 (7)0.0137 (6)0.0000 (6)0.0067 (6)0.0030 (6)
C60.0177 (7)0.0183 (7)0.0119 (6)0.0008 (6)0.0042 (5)0.0010 (5)
C70.0176 (7)0.0153 (7)0.0121 (6)0.0010 (5)0.0028 (5)0.0003 (5)
C80.0217 (7)0.0154 (7)0.0150 (6)0.0002 (6)0.0055 (6)0.0017 (5)
Geometric parameters (Å, º) top
O1—C71.2446 (17)C2—C31.389 (2)
O2—H20.96 (3)C3—C41.4010 (19)
O2—C71.3054 (17)C3—C81.5065 (19)
N1—N21.2345 (18)C4—H40.9500
N1—C81.4939 (19)C4—C51.387 (2)
N2—N31.1333 (19)C5—H50.9500
C1—C21.4002 (19)C5—C61.389 (2)
C1—C61.3953 (19)C6—H60.9500
C1—C71.479 (2)C8—H8A0.9900
C2—H2A0.9500C8—H8B0.9900
C7—O2—H2111.0 (17)C4—C5—H5119.8
N2—N1—C8114.49 (12)C4—C5—C6120.40 (13)
N3—N2—N1172.89 (16)C6—C5—H5119.8
C2—C1—C7118.90 (12)C1—C6—H6120.2
C6—C1—C2119.97 (13)C5—C6—C1119.59 (13)
C6—C1—C7121.03 (12)C5—C6—H6120.2
C1—C2—H2A119.8O1—C7—O2122.59 (13)
C3—C2—C1120.44 (12)O1—C7—C1121.19 (12)
C3—C2—H2A119.8O2—C7—C1116.21 (12)
C2—C3—C4119.11 (12)N1—C8—C3113.18 (12)
C2—C3—C8120.42 (12)N1—C8—H8A108.9
C4—C3—C8120.46 (12)N1—C8—H8B108.9
C3—C4—H4119.8C3—C8—H8A108.9
C5—C4—C3120.49 (13)C3—C8—H8B108.9
C5—C4—H4119.8H8A—C8—H8B107.8
N2—N1—C8—C359.97 (17)C4—C3—C8—N185.04 (16)
C1—C2—C3—C40.3 (2)C4—C5—C6—C10.5 (2)
C1—C2—C3—C8179.53 (12)C6—C1—C2—C30.3 (2)
C2—C1—C6—C50.7 (2)C6—C1—C7—O1179.39 (13)
C2—C1—C7—O13.0 (2)C6—C1—C7—O20.8 (2)
C2—C1—C7—O2175.56 (13)C7—C1—C2—C3176.11 (12)
C2—C3—C4—C50.5 (2)C7—C1—C6—C5175.65 (13)
C2—C3—C8—N195.73 (15)C8—C3—C4—C5179.75 (13)
C3—C4—C5—C60.1 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O1i0.96 (3)1.68 (3)2.6334 (15)175 (3)
Symmetry code: (i) x+2, y+2, z+1.
3-(Azidomethyl)benzoic acid (B) top
Crystal data top
C8H7N3O2F(000) = 368
Mr = 177.17Dx = 1.464 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 3.7712 (3) ÅCell parameters from 5546 reflections
b = 6.1229 (5) Åθ = 3.4–26.2°
c = 34.868 (3) ŵ = 0.11 mm1
β = 93.099 (3)°T = 100 K
V = 803.96 (11) Å3Plate, colourless
Z = 40.28 × 0.06 × 0.02 mm
Data collection top
Bruker D8 VENTURE DUO
diffractometer
1656 independent reflections
Radiation source: sealed tube, fine-focus1411 reflections with I > 2σ(I)
TRIUMPH graphite monochromatorRint = 0.036
Detector resolution: 7.39 pixels mm-1θmax = 26.4°, θmin = 2.9°
ω and φ scansh = 44
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
k = 77
Tmin = 0.682, Tmax = 0.745l = 4343
10613 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.043H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.085 w = 1/[σ2(Fo2) + (0.0299P)2 + 0.3387P]
where P = (Fo2 + 2Fc2)/3
S = 1.13(Δ/σ)max < 0.001
1656 reflectionsΔρmax = 0.25 e Å3
123 parametersΔρmin = 0.23 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refined as a 2-component twin.

Data for all structures were collected at 100 K on a Bruker D8 VENTURE Duo fixed-chi three-circle diffractometer using Mo Kα radiation (λ = 0.71073 Å). All data were integrated with SAINT (Bruker, 2016) and corrected for absorption using SADABS (Krause et al., 2015). The structures of polymorphs A and C were solved by dual methods using SHELXT (Sheldrick, 2015a), while B was solved by direct methods using SHELXS (Sheldrick, 2008). All structures were refined by full-matrix least-squares methods against F2 using SHELXL (Sheldrick, 2015b). All non-H atoms were refined with anisotropic displacement parameters.

Calculations and refinement of the structure was carried out using APEX4 (Bruker, 2021) and OLEX2 (Dolomanov et al., 2009) software. Crystal packing diagrams were generated using OLEX2. Structure overlay diagrams and r.m.s. deviation values were obtained using Mercury (Macrae et al., 2020). For polymorph B, the TWINROTMAT routine within PLATON (Spek, 2020) indicated twinning. The twin law was found to be (100, 010, 101). The BASF value refined to 0.5471 (16).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O11.0623 (4)0.4961 (2)0.04746 (4)0.0214 (4)
O20.7725 (4)0.2518 (3)0.00956 (4)0.0243 (4)
H10.832 (9)0.347 (5)0.0081 (9)0.072 (11)*
N10.7854 (5)0.4340 (3)0.19050 (5)0.0249 (5)
N20.9692 (6)0.5552 (3)0.21177 (5)0.0232 (5)
N31.1081 (7)0.6857 (3)0.22997 (6)0.0362 (6)
C10.8065 (6)0.1853 (3)0.07635 (6)0.0160 (5)
C20.8930 (5)0.2600 (3)0.11338 (5)0.0161 (5)
H21.0024940.3986390.1171230.019*
C30.8194 (6)0.1319 (3)0.14487 (6)0.0156 (5)
C40.6584 (6)0.0703 (3)0.13902 (6)0.0178 (5)
H40.6043390.1574160.1604820.021*
C50.5758 (6)0.1466 (3)0.10202 (6)0.0192 (5)
H50.4690340.2860480.0982690.023*
C60.6495 (6)0.0188 (3)0.07071 (6)0.0173 (5)
H60.5930770.0701550.0454070.021*
C70.8919 (6)0.3249 (3)0.04313 (6)0.0165 (5)
C80.9242 (6)0.2094 (3)0.18508 (6)0.0194 (5)
H8A0.8255730.1094470.2041140.023*
H8B1.1861150.2091880.1890680.023*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0269 (9)0.0196 (8)0.0177 (7)0.0068 (8)0.0005 (7)0.0012 (6)
O20.0336 (10)0.0257 (9)0.0132 (8)0.0101 (9)0.0031 (7)0.0002 (7)
N10.0306 (13)0.0214 (10)0.0217 (9)0.0026 (10)0.0081 (9)0.0047 (8)
N20.0318 (12)0.0240 (10)0.0134 (9)0.0075 (10)0.0018 (9)0.0018 (9)
N30.0509 (15)0.0262 (11)0.0299 (11)0.0041 (12)0.0112 (11)0.0117 (10)
C10.0133 (11)0.0180 (11)0.0167 (10)0.0027 (10)0.0006 (10)0.0005 (8)
C20.0156 (12)0.0134 (11)0.0191 (11)0.0004 (10)0.0011 (9)0.0022 (8)
C30.0123 (12)0.0174 (11)0.0168 (11)0.0034 (10)0.0020 (9)0.0006 (8)
C40.0146 (12)0.0182 (11)0.0208 (11)0.0019 (10)0.0023 (9)0.0043 (9)
C50.0164 (12)0.0138 (11)0.0270 (12)0.0016 (11)0.0031 (10)0.0020 (9)
C60.0148 (12)0.0195 (11)0.0174 (10)0.0019 (10)0.0007 (9)0.0027 (9)
C70.0165 (12)0.0179 (11)0.0151 (10)0.0047 (11)0.0008 (9)0.0033 (8)
C80.0218 (13)0.0171 (11)0.0189 (11)0.0015 (11)0.0015 (9)0.0009 (8)
Geometric parameters (Å, º) top
O1—C71.235 (3)C2—C31.390 (3)
O2—H10.89 (3)C3—C41.389 (3)
O2—C71.310 (2)C3—C81.512 (3)
N1—N21.235 (3)C4—H40.9500
N1—C81.487 (3)C4—C51.391 (3)
N2—N31.131 (3)C5—H50.9500
C1—C21.392 (3)C5—C61.384 (3)
C1—C61.392 (3)C6—H60.9500
C1—C71.489 (3)C8—H8A0.9900
C2—H20.9500C8—H8B0.9900
C7—O2—H1108.0 (19)C4—C5—H5120.1
N2—N1—C8116.23 (18)C6—C5—C4119.8 (2)
N3—N2—N1171.5 (2)C6—C5—H5120.1
C2—C1—C7118.89 (19)C1—C6—H6120.1
C6—C1—C2120.19 (19)C5—C6—C1119.89 (19)
C6—C1—C7120.91 (18)C5—C6—H6120.1
C1—C2—H2120.0O1—C7—O2123.42 (18)
C3—C2—C1120.05 (19)O1—C7—C1121.70 (18)
C3—C2—H2120.0O2—C7—C1114.88 (19)
C2—C3—C8120.15 (18)N1—C8—C3109.37 (17)
C4—C3—C2119.42 (18)N1—C8—H8A109.8
C4—C3—C8120.40 (18)N1—C8—H8B109.8
C3—C4—H4119.7C3—C8—H8A109.8
C3—C4—C5120.64 (19)C3—C8—H8B109.8
C5—C4—H4119.7H8A—C8—H8B108.2
N2—N1—C8—C3146.9 (2)C4—C3—C8—N1129.8 (2)
C1—C2—C3—C40.1 (3)C4—C5—C6—C10.1 (3)
C1—C2—C3—C8177.95 (19)C6—C1—C2—C30.7 (3)
C2—C1—C6—C50.7 (3)C6—C1—C7—O1172.7 (2)
C2—C1—C7—O15.9 (3)C6—C1—C7—O27.4 (3)
C2—C1—C7—O2173.96 (19)C7—C1—C2—C3179.4 (2)
C2—C3—C4—C51.0 (3)C7—C1—C6—C5179.4 (2)
C2—C3—C8—N152.1 (3)C8—C3—C4—C5177.1 (2)
C3—C4—C5—C60.9 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H1···O1i0.89 (3)1.74 (3)2.619 (2)172 (3)
Symmetry code: (i) x+2, y+1, z.
3-(Azidomethyl)benzoic acid (C) top
Crystal data top
C8H7N3O2Z = 2
Mr = 177.17F(000) = 184
Triclinic, P1Dx = 1.486 Mg m3
a = 3.8029 (2) ÅMo Kα radiation, λ = 0.71073 Å
b = 9.9199 (5) ÅCell parameters from 4919 reflections
c = 11.5709 (6) Åθ = 3.5–25.0°
α = 66.828 (2)°µ = 0.11 mm1
β = 82.168 (3)°T = 100 K
γ = 82.245 (2)°Plate, colourless
V = 395.96 (4) Å30.31 × 0.12 × 0.01 mm
Data collection top
Bruker D8 VENTURE DUO
diffractometer
1405 independent reflections
Radiation source: sealed tube, fine-focus1196 reflections with I > 2σ(I)
TRIUMPH graphite monochromatorRint = 0.039
Detector resolution: 7.39 pixels mm-1θmax = 25.1°, θmin = 2.3°
ω and φ scansh = 44
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
k = 1111
Tmin = 0.692, Tmax = 0.745l = 1313
10604 measured reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.036H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.096 w = 1/[σ2(Fo2) + (0.048P)2 + 0.186P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
1405 reflectionsΔρmax = 0.28 e Å3
122 parametersΔρmin = 0.22 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Data for all structures were collected at 100 K on a Bruker D8 VENTURE Duo fixed-chi three-circle diffractometer using Mo Kα radiation (λ = 0.71073 Å). All data were integrated with SAINT (Bruker, 2016) and corrected for absorption using SADABS (Krause et al., 2015). The structures of polymorphs A and C were solved by dual methods using SHELXT (Sheldrick, 2015a), while B was solved by direct methods using SHELXS (Sheldrick, 2008). All structures were refined by full-matrix least-squares methods against F2 using SHELXL (Sheldrick, 2015b). All non-H atoms were refined with anisotropic displacement parameters.

Calculations and refinement of the structure was carried out using APEX4 (Bruker, 2021) and OLEX2 (Dolomanov et al., 2009) software. Crystal packing diagrams were generated using OLEX2. Structure overlay diagrams and r.m.s. deviation values were obtained using Mercury (Macrae et al., 2020). For polymorph B, the TWINROTMAT routine within PLATON (Spek, 2020) indicated twinning. The twin law was found to be (100, 010, 101). The BASF value refined to 0.5471 (16).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.0326 (3)0.83827 (12)0.49082 (10)0.0198 (3)
O20.2904 (3)1.03789 (12)0.35458 (11)0.0227 (3)
H20.186 (6)1.078 (3)0.410 (2)0.054 (7)*
N10.3359 (4)0.40072 (15)0.21257 (14)0.0251 (4)
N20.5625 (4)0.33494 (15)0.16159 (13)0.0221 (3)
N30.7443 (4)0.27491 (18)0.10769 (15)0.0329 (4)
C10.3888 (4)0.82269 (17)0.30991 (14)0.0161 (3)
C20.3511 (4)0.67337 (17)0.34707 (14)0.0164 (3)
H2A0.2238310.6224620.4257840.020*
C30.4970 (4)0.59800 (17)0.27054 (14)0.0169 (3)
C40.6811 (4)0.67547 (18)0.15490 (15)0.0186 (4)
H40.7830490.6253130.1015900.022*
C50.7172 (4)0.82338 (18)0.11701 (15)0.0194 (4)
H50.8415060.8743460.0377000.023*
C60.5730 (4)0.89857 (18)0.19389 (15)0.0184 (4)
H60.5993761.0004940.1678740.022*
C70.2220 (4)0.89969 (17)0.39315 (14)0.0163 (3)
C80.4606 (4)0.43609 (17)0.31271 (15)0.0199 (4)
H8A0.6940160.3804450.3357390.024*
H8B0.2892010.4046830.3888340.024*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0233 (6)0.0168 (6)0.0193 (6)0.0012 (4)0.0030 (5)0.0088 (5)
O20.0299 (6)0.0149 (6)0.0238 (6)0.0030 (5)0.0068 (5)0.0104 (5)
N10.0233 (7)0.0237 (8)0.0357 (8)0.0019 (6)0.0050 (6)0.0198 (7)
N20.0256 (7)0.0207 (7)0.0214 (7)0.0072 (6)0.0005 (6)0.0084 (6)
N30.0339 (9)0.0411 (10)0.0325 (8)0.0096 (7)0.0085 (7)0.0250 (8)
C10.0137 (7)0.0182 (8)0.0184 (8)0.0015 (6)0.0040 (6)0.0092 (6)
C20.0122 (7)0.0207 (8)0.0169 (8)0.0006 (6)0.0011 (6)0.0085 (6)
C30.0123 (7)0.0190 (8)0.0221 (8)0.0019 (6)0.0048 (6)0.0107 (6)
C40.0144 (7)0.0246 (9)0.0204 (8)0.0013 (6)0.0012 (6)0.0136 (7)
C50.0169 (7)0.0233 (9)0.0179 (8)0.0010 (6)0.0012 (6)0.0089 (7)
C60.0170 (7)0.0182 (8)0.0204 (8)0.0002 (6)0.0028 (6)0.0081 (7)
C70.0149 (7)0.0168 (8)0.0178 (8)0.0011 (6)0.0031 (6)0.0074 (6)
C80.0187 (8)0.0209 (9)0.0220 (8)0.0020 (6)0.0011 (6)0.0111 (7)
Geometric parameters (Å, º) top
O1—C71.2337 (18)C2—C31.388 (2)
O2—H20.90 (3)C3—C41.397 (2)
O2—C71.3151 (19)C3—C81.504 (2)
N1—N21.2364 (19)C4—H40.9500
N1—C81.485 (2)C4—C51.377 (2)
N2—N31.1337 (19)C5—H50.9500
C1—C21.392 (2)C5—C61.388 (2)
C1—C61.397 (2)C6—H60.9500
C1—C71.482 (2)C8—H8A0.9900
C2—H2A0.9500C8—H8B0.9900
C7—O2—H2110.5 (15)C4—C5—H5119.8
N2—N1—C8115.34 (13)C4—C5—C6120.46 (14)
N3—N2—N1173.10 (16)C6—C5—H5119.8
C2—C1—C6119.94 (14)C1—C6—H6120.4
C2—C1—C7119.07 (13)C5—C6—C1119.25 (15)
C6—C1—C7120.97 (13)C5—C6—H6120.4
C1—C2—H2A119.6O1—C7—O2122.90 (14)
C3—C2—C1120.81 (14)O1—C7—C1122.22 (13)
C3—C2—H2A119.6O2—C7—C1114.88 (13)
C2—C3—C4118.53 (14)N1—C8—C3111.77 (13)
C2—C3—C8120.37 (14)N1—C8—H8A109.3
C4—C3—C8121.10 (14)N1—C8—H8B109.3
C3—C4—H4119.5C3—C8—H8A109.3
C5—C4—C3121.01 (14)C3—C8—H8B109.3
C5—C4—H4119.5H8A—C8—H8B107.9
N2—N1—C8—C3108.18 (15)C4—C3—C8—N149.36 (18)
C1—C2—C3—C40.4 (2)C4—C5—C6—C10.4 (2)
C1—C2—C3—C8178.84 (13)C6—C1—C2—C30.5 (2)
C2—C1—C6—C50.1 (2)C6—C1—C7—O1173.70 (14)
C2—C1—C7—O14.4 (2)C6—C1—C7—O26.1 (2)
C2—C1—C7—O2175.81 (13)C7—C1—C2—C3178.66 (13)
C2—C3—C4—C50.2 (2)C7—C1—C6—C5178.22 (13)
C2—C3—C8—N1131.44 (14)C8—C3—C4—C5179.37 (14)
C3—C4—C5—C60.6 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O1i0.90 (3)1.73 (3)2.6346 (15)176 (2)
Symmetry code: (i) x, y+2, z+1.
Computational values top
ΔEcrys–crys(X) (kcal mol-1)ΔEcrys–gas(X) (kcal mol-1)ΔEgas–gas(AX) (kcal mol-1)τ1-gas (°)τ1-crys (°)τ1Δθ (°)τ2-gas (°)τ2-crys (°)τ2Δθ (°)
A0.000.020.00-95.81-95.7662.0159.93
B1.660.571.11140.5852.06147.82172.31-146.85153.22
C1.291.250.06-85.58-131.4435.68-62.15-108.21168.14
Notes: τ1-gas and τ2-gas are the torsion angles obtained from Xgas. τ1-crys and τ2-crys are the torsion angles obtained from Xcrys. Δθ is taken as the difference between the dihedral in Acrys and the dihedral in Bcrys or Ccrys.
Table of germane noncovalent parameters top
ParameterABC
O—H···O (Å) hydrogen-bond parameters*
O—H (Å)0.96 (3)0.89 (3)0.90 (3)
H···O (Å)1.68 (3)1.74 (3)1.73 (3)
O···O (Å)2.6334 (15)2.619 (2)2.6346 (15)
D—H···A (°)175 (3)172 (3)176 (2)
ππ stacking parameters
Distance between planes (Å)3.3613.4143.406
3.353
Centroid–centroid distance (Å)3.6568 (12)3.7712 (3)3.8029 (2)
4.0950 (12)
Closest C···C distance (Å)3.3714 (19)3.414 (3)3.419 (2)
3.367 (2)
Note: (*) symmetry transformations used to generate equivalent atoms for carboxylic acid dimer hydrogen bonds. Molecule A: -x+2, -y+2, -z+1; molecule B: -x+2, -y+1, -z; molecule C: -x, -y+2, -z+1.
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds