Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The X-ray crystal structure of the title complex, [Ba(NCS)2(C24H36N4O3)], indicates that the BaII cation is nine-coordinate in the solid state, being fully encapsulated by the organic receptor ligand. The receptor adopts a syn arrangement, with both pendant arms oriented on the same side of the crown moiety. The distance between the two amine N atoms is 3.911 (12) Å, while the pivotal N atoms are 5.322 (10) Å apart.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270102021571/fa1001sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270102021571/fa1001Isup2.hkl
Contains datablock I

CCDC reference: 204028

Comment top

In a previous paper, we described a synthetic route for preparing a novel family of Schiff base lateral macrobicycles derived from bibracchial lariat ethers incorporating pendant aniline moieties and various dialdehyde functions, which structurally belong to the group defined as lateral macrobicycles (Esteban et al., 1999). We have found that these compounds cannot be prepared by direct reaction between the organic precursors, but Ba can act as a template, thereby allowing access to the desired macrobicycles in high yields. The effectiveness of the BaII ion as a template in this case arises from the conformation that the metal ion induces in the bibracchial lariat ether precursor. Herein, we describe the X-ray crystal structure of one of these Ba intermediates, the title complex, [Ba(L)(NCS)2], [L is the bibracchial lariat ether 7,13-bis(2-aminobenzyl)-1,4,10-trioxa-7,13-diazacyclopentadecane], (I). \sch

In (I) (Fig. 1), the BaII ion is nine-coordinate, bound to the seven heteroatoms of L and the N atoms of the two thiocyanate groups. The barium-donor atom distances fall within the range found for the analogous perchlorate complex, [Ba(L)(ClO4)]+, previously reported by Esteban et al. (1999). As in the perchlorate complex, in (I), the metal ion is almost symmetrically placed with respect to the cavity of the organic receptor, and is situated 1.837 (4) Å above the pseudo-plane defined by the three O atoms and the pivotal atom N4 of the bibracchial lariat ether. The coordination polyhedron (Fig. 2) may be described as a monocapped distorted square antiprism, where the donor atoms O1, O3, N1 and N2S define the upper plane (deviation from planarity 0.034 Å For which atom?) and the BaII ion is 1.172 (5) Å away from the plane. Due to the two-way disorder of atom N1S of one thiocyanate group, with occupancy factors of 0.66 (8) for N1SA and 0.34 (8) for N1SB, the basal plane of the polyhedron may be considered as defined by the donor atoms O2, N2, N3 and N1SA (deviation from planarity 0.099 Å For which atom?), or by atoms O2, N2, N3 and N1SB (deviation from planarity 0.012 Å For which atom?). The pivotal atom N4 is the cap of the polyhedron.

In (I), both pendant aniline arms of the receptor ligand are oriented on the same side of the macrocyclic plane, resulting in a syn conformation, in contrast with the anti conformation found for the free ligand L (Esteban et al., 2000). This conformation was also found in the analogous perchlorate complex, [Ba(L)(ClO4)]+ (Esteban et al., 1999), but the presence of thiocyanate groups in the Ba coordination sphere, instead of perchlorate groups, causes some structural changes. In the present isothiocyanate complex, the distances between the two amine N atoms [N1—N2 3.911 (12) Å] and the two pivotal N atoms [N3—N4 5.322 (10) Å] are longer than those found in the perchlorate compound [N1—N2 3.263 and N3—N4 5.211 Å; Esteban et al., 1999]. The N4—C11—C12 and N3—C18—C19 angles, with values of 113.6 (7) and 114.2 (8)°, respectively, are quite similar, and the planes containing the aromatic rings form a dihedral angle of 53.2 (3)°.

Table 2. Geometry of non-covalent interactions (Å, °).

Experimental top

The title complex was prepared as described previously by Esteban et al. (1999). Slow diffusion of diethyl ether into a solution of the complex in acetonitrile gave single crystals of (I) suitable for X-ray crystallography.

Refinement top

The crystal presents a disorder of the N atom of one isothiocyanate group, and 27 restraints were imposed. These restraints were applied to the bonds N1SA—C1S, N1SB—C1S, Ba1—N1SA and Ba1—N1SB, and the site occupancy factor was 0.66 (8) for N1SA. The absolute configuration was established by refinement of the Flack parameter [0.02 (2); Flack, 1983]. The positions of all H atoms were calculated geometrically (C—H distances in the range 0.93–0.97 Å Is this added text OK?) and a riding model was used in their refinement, except for the H atoms involved in hydrogen bonds to the isothiocyanate moieties (H1C, H1D, H2C and H2D), which were first located in a difference density map. Atoms H1C and H1D were restricted to a distance of 1.01 Å from the corresponding heteroatom. These four H atoms were then refined as riding on their respective heteroatoms.

Computing details top

Data collection: SMART (Siemens, 1995); cell refinement: SAINT (Siemens, 1995); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a); molecular graphics: SHELXTL (Sheldrick, 1997b); software used to prepare material for publication: SHELXTL.

Figures top
[Figure 1] Fig. 1. The X-ray crystal structure of (I), showing 50% probability displacement ellipsoids and the atom-numbering scheme. H atoms have been omitted for clarity.
[Figure 2] Fig. 2. The coordination polyhedron of the BaII ion in (I).
[7,13-bis(2-aminobenzyl)-1,4,10-trioxa- 7,13-diazacyclopentadecane]diisothiocyanatobarium(II) top
Crystal data top
[Ba(C24H36N4O3)(NCS)2]F(000) = 692
Mr = 682.07Dx = 1.477 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.7107 Å
a = 10.4878 (2) ÅCell parameters from 11331 reflections
b = 12.2591 (2) Åθ = 1.4–28.3°
c = 11.9750 (3) ŵ = 1.47 mm1
β = 95.029 (1)°T = 298 K
V = 1533.71 (5) Å3Block, colourless
Z = 20.20 × 0.10 × 0.05 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
5697 independent reflections
Radiation source: fine-focus sealed tube3718 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.075
ϕ/ω scansθmax = 28.3°, θmin = 1.7°
Absorption correction: empirical (using intensity measurements)
SADABS (Sheldrick, 1996)
h = 1313
Tmin = 0.758, Tmax = 0.930k = 1016
11420 measured reflectionsl = 1515
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.054H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.099 w = 1/[σ2(Fo2) + (0.0212P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.001
5697 reflectionsΔρmax = 0.75 e Å3
353 parametersΔρmin = 0.91 e Å3
27 restraintsAbsolute structure: Flack (1983) with 1709 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.02 (2)
Crystal data top
[Ba(C24H36N4O3)(NCS)2]V = 1533.71 (5) Å3
Mr = 682.07Z = 2
Monoclinic, P21Mo Kα radiation
a = 10.4878 (2) ŵ = 1.47 mm1
b = 12.2591 (2) ÅT = 298 K
c = 11.9750 (3) Å0.20 × 0.10 × 0.05 mm
β = 95.029 (1)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
5697 independent reflections
Absorption correction: empirical (using intensity measurements)
SADABS (Sheldrick, 1996)
3718 reflections with I > 2σ(I)
Tmin = 0.758, Tmax = 0.930Rint = 0.075
11420 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.054H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.099Δρmax = 0.75 e Å3
S = 1.05Δρmin = 0.91 e Å3
5697 reflectionsAbsolute structure: Flack (1983) with 1709 Friedel pairs
353 parametersAbsolute structure parameter: 0.02 (2)
27 restraints
Special details top

Experimental. Data were collected using a Bruker SMART CCD-based diffractometer operating at room temperature. Data were measured using ϕ-ω scans of 0.3° per frame for 30 s. A total of 1321 frames were collected. The first 50 frames were recollected at the end of the measurement.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Ba10.30229 (4)0.52484 (4)0.68663 (3)0.03547 (12)
S1S0.6349 (3)0.6227 (3)0.3902 (3)0.0919 (11)
O10.1370 (6)0.6189 (5)0.8216 (5)0.0526 (16)
N1SA0.519 (3)0.530 (3)0.568 (3)0.090 (8)0.66 (8)
N1SB0.477 (5)0.513 (3)0.526 (5)0.073 (10)0.34 (8)
C1S0.5540 (10)0.5660 (7)0.4809 (11)0.071 (3)
N10.2146 (8)0.3717 (6)0.5147 (8)0.044 (2)
H1C0.16310.35340.57010.053*
H1D0.22290.29270.49230.053*
C10.1862 (10)0.6691 (8)0.9246 (8)0.066 (3)
H1A0.11690.68430.97100.079*
H1B0.22820.73740.90950.079*
O20.4271 (10)0.7202 (8)0.7456 (7)0.094 (4)
N20.4378 (8)0.3381 (7)0.7918 (7)0.042 (2)
H2C0.44050.27780.72870.050*
H2D0.38680.30990.85370.050*
S2S0.1675 (3)0.2467 (3)0.9475 (2)0.0767 (9)
C2S0.1387 (8)0.3094 (7)0.8264 (8)0.044 (2)
N2S0.1225 (8)0.3524 (7)0.7429 (7)0.061 (2)
C20.2809 (9)0.5911 (8)0.9845 (7)0.059 (3)
H2A0.30590.61991.05860.070*
H2B0.23810.52200.99410.070*
N30.3981 (8)0.5705 (5)0.9273 (6)0.047 (2)
O30.2743 (8)0.7114 (6)0.5562 (8)0.097 (3)
C30.4817 (10)0.6715 (7)0.9351 (8)0.057 (3)
H3A0.43300.73220.96120.069*
H3B0.55410.65900.98970.069*
N40.0412 (6)0.5855 (5)0.5831 (6)0.0385 (17)
C40.5296 (14)0.7007 (12)0.8252 (13)0.075 (5)
H4A0.58280.76550.83400.090*
H4B0.58160.64170.80000.090*
C50.4316 (12)0.8004 (9)0.6673 (13)0.100 (5)
H5A0.50820.78980.62870.120*
H5B0.44040.86980.70610.120*
C60.3252 (14)0.8078 (8)0.5853 (10)0.091 (4)
H6A0.26000.85310.61440.109*
H6B0.35250.84320.51900.109*
C70.1745 (11)0.7041 (9)0.4733 (11)0.060 (4)
H7A0.19120.64380.42420.072*
H7B0.17250.77040.42890.072*
C80.0465 (9)0.6880 (7)0.5154 (8)0.046 (2)
H8A0.01790.68460.45220.055*
H8B0.02700.74990.56130.055*
C90.0358 (8)0.6026 (8)0.6794 (8)0.053 (3)
H9A0.05320.53200.71140.064*
H9B0.11740.63410.65170.064*
C100.0235 (10)0.6745 (8)0.7714 (8)0.059 (3)
H10A0.04660.74440.74110.071*
H10B0.03650.68690.82720.071*
C110.0242 (8)0.4961 (6)0.5132 (7)0.045 (3)
H11A0.11230.51720.49290.054*
H11B0.02520.43030.55820.054*
C120.0399 (9)0.4709 (7)0.4063 (7)0.046 (2)
C130.0167 (10)0.5113 (14)0.3050 (8)0.073 (3)
H130.09120.55270.30240.087*
C140.0419 (15)0.4879 (10)0.2084 (10)0.097 (5)
H140.00680.51460.13980.116*
C150.1508 (13)0.4257 (11)0.2130 (10)0.087 (4)
H150.18710.40830.14720.104*
C160.2064 (10)0.3892 (8)0.3130 (9)0.067 (3)
H160.28260.35020.31500.080*
C170.1517 (9)0.4092 (7)0.4106 (8)0.045 (2)
C180.4672 (10)0.4792 (7)0.9861 (8)0.051 (3)
H18A0.40770.41960.99330.062*
H18B0.49730.50301.06110.062*
C190.5802 (9)0.4374 (7)0.9282 (7)0.047 (2)
C200.7049 (11)0.4644 (8)0.9691 (9)0.065 (3)
H200.71760.50891.03200.078*
C210.8086 (10)0.4271 (10)0.9193 (10)0.071 (3)
H210.89070.44570.94870.085*
C220.7917 (10)0.3624 (10)0.8262 (10)0.075 (3)
H220.86220.33940.79040.090*
C230.6688 (9)0.3310 (8)0.7849 (8)0.054 (3)
H230.65680.28540.72280.064*
C240.5633 (12)0.3690 (10)0.8381 (11)0.040 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ba10.0388 (2)0.0302 (2)0.0380 (2)0.0017 (5)0.00632 (15)0.0000 (5)
S1S0.081 (2)0.071 (2)0.128 (3)0.0080 (17)0.031 (2)0.045 (2)
O10.057 (4)0.046 (4)0.056 (4)0.011 (3)0.015 (3)0.017 (3)
N1SA0.097 (13)0.063 (12)0.121 (14)0.002 (16)0.065 (12)0.021 (15)
N1SB0.069 (18)0.050 (17)0.106 (19)0.035 (15)0.048 (15)0.043 (16)
C1S0.060 (7)0.033 (6)0.128 (9)0.001 (4)0.047 (6)0.001 (5)
N10.048 (6)0.032 (5)0.054 (6)0.006 (4)0.006 (5)0.009 (4)
C10.073 (8)0.076 (8)0.050 (6)0.008 (6)0.023 (6)0.019 (6)
O20.122 (8)0.093 (7)0.063 (6)0.059 (6)0.023 (6)0.025 (5)
N20.045 (6)0.035 (5)0.045 (6)0.005 (4)0.008 (4)0.003 (4)
S2S0.075 (2)0.098 (2)0.0565 (18)0.0038 (17)0.0001 (15)0.0260 (16)
C2S0.029 (5)0.051 (6)0.052 (6)0.000 (4)0.009 (4)0.006 (5)
N2S0.062 (6)0.065 (6)0.057 (6)0.008 (5)0.003 (5)0.025 (5)
C20.071 (8)0.067 (7)0.040 (6)0.002 (5)0.010 (5)0.012 (5)
N30.062 (6)0.045 (5)0.036 (5)0.007 (4)0.005 (4)0.011 (3)
O30.075 (6)0.056 (6)0.152 (9)0.033 (4)0.043 (6)0.048 (6)
C30.063 (8)0.036 (6)0.072 (7)0.013 (5)0.000 (6)0.009 (5)
N40.036 (4)0.037 (4)0.044 (4)0.004 (3)0.008 (3)0.004 (3)
C40.070 (11)0.071 (10)0.084 (11)0.029 (9)0.005 (9)0.003 (8)
C50.091 (10)0.048 (8)0.163 (14)0.028 (7)0.015 (10)0.021 (8)
C60.154 (14)0.029 (7)0.089 (9)0.015 (7)0.006 (9)0.009 (6)
C70.047 (7)0.038 (7)0.095 (11)0.003 (5)0.010 (7)0.024 (6)
C80.050 (6)0.033 (5)0.054 (6)0.013 (4)0.003 (5)0.005 (4)
C90.031 (6)0.060 (7)0.070 (7)0.011 (5)0.014 (5)0.001 (5)
C100.051 (7)0.060 (7)0.068 (7)0.013 (5)0.013 (6)0.011 (5)
C110.034 (5)0.045 (8)0.056 (6)0.001 (4)0.003 (4)0.002 (4)
C120.050 (6)0.045 (6)0.043 (5)0.007 (4)0.003 (5)0.006 (4)
C130.090 (7)0.069 (9)0.056 (6)0.005 (8)0.010 (5)0.004 (8)
C140.143 (13)0.095 (14)0.050 (7)0.025 (9)0.006 (7)0.001 (6)
C150.115 (12)0.100 (11)0.050 (8)0.030 (9)0.032 (8)0.014 (7)
C160.071 (7)0.082 (8)0.050 (6)0.018 (6)0.020 (5)0.006 (6)
C170.048 (6)0.029 (5)0.059 (7)0.013 (4)0.008 (5)0.012 (5)
C180.072 (8)0.044 (6)0.037 (6)0.003 (5)0.000 (5)0.007 (4)
C190.052 (7)0.043 (6)0.045 (6)0.012 (5)0.006 (5)0.002 (4)
C200.074 (9)0.057 (7)0.061 (7)0.008 (6)0.014 (6)0.001 (5)
C210.049 (8)0.083 (9)0.077 (8)0.016 (6)0.018 (6)0.020 (7)
C220.043 (7)0.099 (9)0.083 (9)0.000 (6)0.014 (6)0.026 (7)
C230.049 (7)0.053 (6)0.060 (7)0.006 (5)0.014 (5)0.009 (5)
C240.038 (7)0.036 (6)0.043 (7)0.002 (5)0.008 (5)0.006 (5)
Geometric parameters (Å, º) top
Ba1—O12.727 (5)C4—H4A0.9700
Ba1—O32.771 (7)C4—H4B0.9700
Ba1—N1SB2.776 (15)C5—C61.423 (15)
Ba1—N1SA2.788 (11)C5—H5A0.9700
Ba1—O22.790 (9)C5—H5B0.9700
Ba1—N12.877 (8)C6—H6A0.9700
Ba1—N22.921 (8)C6—H6B0.9700
Ba1—N2S2.950 (8)C7—C81.488 (13)
Ba1—N42.999 (7)C7—H7A0.9700
Ba1—N33.020 (7)C7—H7B0.9700
S1S—C1S1.596 (10)C8—H8A0.9700
O1—C11.434 (10)C8—H8B0.9700
O1—C101.455 (11)C9—C101.502 (12)
N1SA—C1S1.215 (17)C9—H9A0.9700
N1SB—C1S1.202 (18)C9—H9B0.9700
N1—C171.433 (12)C10—H10A0.9700
N1—N23.911 (12)C10—H10B0.9700
N1—H1C0.9185C11—C121.529 (11)
N1—H1D1.0115C11—H11A0.9700
C1—C21.513 (13)C11—H11B0.9700
C1—H1A0.9700C12—C171.393 (12)
C1—H1B0.9700C12—C131.394 (12)
O2—C51.362 (13)C13—C141.387 (14)
O2—C41.393 (15)C13—H130.9300
N2—C241.434 (13)C14—C151.371 (16)
N2—H2C1.0594C14—H140.9300
N2—H2D1.0111C15—C161.360 (15)
S2S—C2S1.646 (10)C15—H150.9300
C2S—N2S1.130 (10)C16—C171.369 (12)
C2—N31.480 (11)C16—H160.9300
C2—H2A0.9700C18—C191.514 (13)
C2—H2B0.9700C18—H18A0.9700
N3—C181.478 (10)C18—H18B0.9700
N3—C31.516 (11)C19—C241.366 (15)
N3—N45.322 (10)C19—C201.395 (13)
O3—C61.330 (12)C20—C211.364 (14)
O3—C71.381 (13)C20—H200.9300
C3—C41.493 (16)C21—C221.367 (14)
C3—H3A0.9700C21—H210.9300
C3—H3B0.9700C22—C231.394 (13)
N4—C91.480 (10)C22—H220.9300
N4—C81.499 (10)C23—C241.404 (15)
N4—C111.506 (9)C23—H230.9300
O1—Ba1—O386.8 (3)C9—N4—C8110.6 (6)
O1—Ba1—N1SB157.8 (10)C9—N4—C11106.5 (7)
O3—Ba1—N1SB72.3 (13)C8—N4—C11110.2 (6)
O1—Ba1—N1SA152.0 (10)C9—N4—Ba1104.7 (5)
O3—Ba1—N1SA75.2 (6)C8—N4—Ba1110.8 (5)
N1SB—Ba1—N1SA13.9 (9)C11—N4—Ba1113.8 (4)
O1—Ba1—O278.2 (3)C9—N4—N378.2 (5)
O3—Ba1—O257.2 (3)C8—N4—N3113.0 (5)
N1SB—Ba1—O284.2 (7)C11—N4—N3131.3 (4)
N1SA—Ba1—O274.1 (11)Ba1—N4—N327.94 (11)
O1—Ba1—N1121.3 (2)O2—C4—C3110.2 (11)
O3—Ba1—N197.1 (3)O2—C4—H4A109.6
N1SB—Ba1—N169.9 (9)C3—C4—H4A109.6
N1SA—Ba1—N182.6 (11)O2—C4—H4B109.6
O2—Ba1—N1148.7 (2)C3—C4—H4B109.6
O1—Ba1—N2112.7 (2)H4A—C4—H4B108.1
O3—Ba1—N2156.0 (2)O2—C5—C6116.6 (10)
N1SB—Ba1—N286.1 (14)O2—C5—H5A108.1
N1SA—Ba1—N281.3 (5)C6—C5—H5A108.1
O2—Ba1—N2111.3 (3)O2—C5—H5B108.1
N1—Ba1—N284.8 (2)C6—C5—H5B108.1
O1—Ba1—N2S73.5 (2)H5A—C5—H5B107.3
O3—Ba1—N2S133.0 (2)O3—C6—C5113.4 (10)
N1SB—Ba1—N2S126.4 (6)O3—C6—H6A108.9
N1SA—Ba1—N2S134.3 (10)C5—C6—H6A108.9
O2—Ba1—N2S148.5 (3)O3—C6—H6B108.9
N1—Ba1—N2S61.6 (2)C5—C6—H6B108.9
N2—Ba1—N2S68.7 (2)H6A—C6—H6B107.7
O1—Ba1—N462.31 (19)O3—C7—C8114.5 (11)
O3—Ba1—N461.0 (2)O3—C7—H7A108.6
N1SB—Ba1—N4111.1 (16)C8—C7—H7A108.6
N1SA—Ba1—N4122.6 (7)O3—C7—H7B108.6
O2—Ba1—N4106.4 (3)C8—C7—H7B108.6
N1—Ba1—N469.1 (2)H7A—C7—H7B107.6
N2—Ba1—N4139.9 (2)C7—C8—N4111.9 (7)
N2S—Ba1—N472.1 (2)C7—C8—H8A109.2
O1—Ba1—N362.1 (2)N4—C8—H8A109.2
O3—Ba1—N3113.3 (2)C7—C8—H8B109.2
N1SB—Ba1—N3119.2 (14)N4—C8—H8B109.2
N1SA—Ba1—N3105.4 (10)H8A—C8—H8B107.9
O2—Ba1—N359.3 (2)N4—C9—C10115.8 (8)
N1—Ba1—N3149.6 (2)N4—C9—H9A108.3
N2—Ba1—N368.0 (2)C10—C9—H9A108.3
N2S—Ba1—N394.6 (2)N4—C9—H9B108.3
N4—Ba1—N3124.3 (2)C10—C9—H9B108.3
C1—O1—C10112.0 (7)H9A—C9—H9B107.4
C1—O1—Ba1119.5 (5)O1—C10—C9107.5 (7)
C10—O1—Ba1119.5 (5)O1—C10—H10A110.2
C1S—N1SA—Ba1139.9 (17)C9—C10—H10A110.2
C1S—N1SB—Ba1142.3 (19)O1—C10—H10B110.2
N1SB—C1S—S1S164 (3)C9—C10—H10B110.2
N1SA—C1S—S1S164 (2)H10A—C10—H10B108.5
C17—N1—Ba1120.5 (5)N4—C11—C12113.6 (7)
C17—N1—H1C116.8N4—C11—H11A108.8
Ba1—N1—H1C79.3C12—C11—H11A108.8
C17—N1—H1D96.9N4—C11—H11B108.8
Ba1—N1—H1D141.8C12—C11—H11B108.8
H1C—N1—H1D91.6H11A—C11—H11B107.7
O1—C1—C2107.9 (8)C17—C12—C13121.2 (9)
O1—C1—H1A110.1C17—C12—C11120.6 (8)
C2—C1—H1A110.1C13—C12—C11118.1 (9)
O1—C1—H1B110.1C14—C13—C12117.8 (12)
C2—C1—H1B110.1C14—C13—H13121.1
H1A—C1—H1B108.4C12—C13—H13121.1
C5—O2—C4121.5 (11)C15—C14—C13120.7 (12)
C5—O2—Ba1119.3 (7)C15—C14—H14119.7
C4—O2—Ba1110.1 (8)C13—C14—H14119.7
C24—N2—Ba1110.8 (7)C16—C15—C14120.7 (11)
C24—N2—H2C112.2C16—C15—H15119.7
Ba1—N2—H2C106.3C14—C15—H15119.7
C24—N2—H2D109.5C15—C16—C17120.9 (11)
Ba1—N2—H2D108.4C15—C16—H16119.5
H2C—N2—H2D109.5C17—C16—H16119.5
N2S—C2S—S2S178.0 (9)C16—C17—C12118.7 (10)
C2S—N2S—Ba1119.1 (7)C16—C17—N1119.4 (10)
N3—C2—C1115.2 (8)C12—C17—N1121.8 (8)
N3—C2—H2A108.5N3—C18—C19114.2 (8)
C1—C2—H2A108.5N3—C18—H18A108.7
N3—C2—H2B108.5C19—C18—H18A108.7
C1—C2—H2B108.5N3—C18—H18B108.7
H2A—C2—H2B107.5C19—C18—H18B108.7
C18—N3—C2107.5 (7)H18A—C18—H18B107.6
C18—N3—C3109.4 (7)C24—C19—C20118.4 (10)
C2—N3—C3109.3 (7)C24—C19—C18121.1 (10)
C18—N3—Ba1115.0 (5)C20—C19—C18120.4 (9)
C2—N3—Ba1104.7 (5)C21—C20—C19121.7 (10)
C3—N3—Ba1110.7 (5)C21—C20—H20119.1
C18—N3—N4132.7 (4)C19—C20—H20119.1
C2—N3—N478.3 (5)C20—C21—C22120.0 (10)
C3—N3—N4112.6 (5)C20—C21—H21120.0
Ba1—N3—N427.74 (11)C22—C21—H21120.0
C6—O3—C7120.5 (9)C21—C22—C23119.9 (10)
C6—O3—Ba1124.4 (7)C21—C22—H22120.0
C7—O3—Ba1112.8 (6)C23—C22—H22120.0
C4—C3—N3112.3 (9)C22—C23—C24119.3 (10)
C4—C3—H3A109.1C22—C23—H23120.4
N3—C3—H3A109.1C24—C23—H23120.4
C4—C3—H3B109.1C19—C24—C23120.6 (11)
N3—C3—H3B109.1C19—C24—N2121.2 (11)
H3A—C3—H3B107.9C23—C24—N2118.1 (11)
O3—Ba1—O1—C1101.4 (7)N1SA—Ba1—N3—N4150.0 (8)
N1SB—Ba1—O1—C182 (4)O2—Ba1—N3—N489.6 (3)
N1SA—Ba1—O1—C152.0 (16)N1—Ba1—N3—N4108.0 (5)
O2—Ba1—O1—C144.2 (7)N2—Ba1—N3—N4136.3 (2)
N1—Ba1—O1—C1162.3 (6)N2S—Ba1—N3—N471.5 (2)
N2—Ba1—O1—C164.2 (7)O1—Ba1—O3—C673.2 (10)
N2S—Ba1—O1—C1121.8 (7)N1SB—Ba1—O3—C699.3 (16)
N4—Ba1—O1—C1160.1 (7)N1SA—Ba1—O3—C685.2 (15)
N3—Ba1—O1—C117.2 (6)O2—Ba1—O3—C64.8 (10)
O3—Ba1—O1—C1043.2 (6)N1—Ba1—O3—C6165.6 (10)
N1SB—Ba1—O1—C1062 (4)N2—Ba1—O3—C672.3 (14)
N1SA—Ba1—O1—C1092.6 (16)N2S—Ba1—O3—C6137.0 (10)
O2—Ba1—O1—C10100.3 (7)N4—Ba1—O3—C6133.1 (11)
N1—Ba1—O1—C1053.2 (7)N3—Ba1—O3—C615.5 (11)
N2—Ba1—O1—C10151.3 (6)O1—Ba1—O3—C789.6 (8)
N2S—Ba1—O1—C1093.7 (7)N1SB—Ba1—O3—C797.8 (15)
N4—Ba1—O1—C1015.5 (6)N1SA—Ba1—O3—C7112.0 (14)
N3—Ba1—O1—C10161.7 (7)O2—Ba1—O3—C7167.7 (10)
O1—Ba1—N1SA—C1S77 (6)N1—Ba1—O3—C731.6 (9)
O3—Ba1—N1SA—C1S25 (5)N2—Ba1—O3—C7124.9 (8)
N1SB—Ba1—N1SA—C1S51 (4)N2S—Ba1—O3—C725.9 (10)
O2—Ba1—N1SA—C1S84 (5)N4—Ba1—O3—C729.7 (8)
N1—Ba1—N1SA—C1S74 (5)N3—Ba1—O3—C7147.3 (8)
N2—Ba1—N1SA—C1S160 (5)C18—N3—C3—C4109.2 (11)
N2S—Ba1—N1SA—C1S112 (5)C2—N3—C3—C4133.3 (10)
N4—Ba1—N1SA—C1S15 (6)Ba1—N3—C3—C418.5 (11)
N3—Ba1—N1SA—C1S136 (5)N4—N3—C3—C448.3 (11)
O1—Ba1—N1SB—C1S24 (12)O1—Ba1—N4—C916.2 (5)
O3—Ba1—N1SB—C1S44 (8)O3—Ba1—N4—C9118.8 (6)
N1SA—Ba1—N1SB—C1S56 (4)N1SB—Ba1—N4—C9172.9 (8)
O2—Ba1—N1SB—C1S13 (8)N1SA—Ba1—N4—C9164.2 (13)
N1—Ba1—N1SB—C1S149 (9)O2—Ba1—N4—C982.9 (5)
N2—Ba1—N1SB—C1S125 (8)N1—Ba1—N4—C9129.9 (5)
N2S—Ba1—N1SB—C1S175 (7)N2—Ba1—N4—C976.9 (6)
N4—Ba1—N1SB—C1S92 (8)N2S—Ba1—N4—C964.1 (5)
N3—Ba1—N1SB—C1S63 (9)N3—Ba1—N4—C919.1 (6)
Ba1—N1SB—C1S—N1SA58 (4)O1—Ba1—N4—C8103.1 (5)
Ba1—N1SB—C1S—S1S131 (4)O3—Ba1—N4—C80.4 (5)
Ba1—N1SA—C1S—N1SB54 (4)N1SB—Ba1—N4—C853.7 (8)
Ba1—N1SA—C1S—S1S136 (3)N1SA—Ba1—N4—C845.0 (13)
O1—Ba1—N1—C1778.1 (7)O2—Ba1—N4—C836.4 (5)
O3—Ba1—N1—C1712.4 (7)N1—Ba1—N4—C8110.9 (5)
N1SB—Ba1—N1—C1780.6 (17)N2—Ba1—N4—C8163.8 (5)
N1SA—Ba1—N1—C1786.5 (8)N2S—Ba1—N4—C8176.6 (6)
O2—Ba1—N1—C1744.6 (9)N3—Ba1—N4—C8100.1 (5)
N2—Ba1—N1—C17168.4 (7)O1—Ba1—N4—C11132.1 (5)
N2S—Ba1—N1—C17123.1 (7)O3—Ba1—N4—C11125.3 (6)
N4—Ba1—N1—C1742.7 (6)N1SB—Ba1—N4—C1171.2 (8)
N3—Ba1—N1—C17165.5 (6)N1SA—Ba1—N4—C1179.9 (13)
O1—Ba1—N1—N2113.5 (3)O2—Ba1—N4—C11161.3 (5)
O3—Ba1—N1—N2155.9 (2)N1—Ba1—N4—C1114.0 (5)
N1SB—Ba1—N1—N287.7 (16)N2—Ba1—N4—C1138.9 (6)
N1SA—Ba1—N1—N281.9 (5)N2S—Ba1—N4—C1151.7 (5)
O2—Ba1—N1—N2123.7 (5)N3—Ba1—N4—C11135.0 (5)
N2S—Ba1—N1—N268.5 (3)O1—Ba1—N4—N32.9 (3)
N4—Ba1—N1—N2148.9 (2)O3—Ba1—N4—N399.7 (3)
N3—Ba1—N1—N226.1 (4)N1SB—Ba1—N4—N3153.8 (7)
C10—O1—C1—C2165.8 (8)N1SA—Ba1—N4—N3145.1 (12)
Ba1—O1—C1—C247.2 (9)O2—Ba1—N4—N363.7 (3)
O1—Ba1—O2—C5108.0 (10)N1—Ba1—N4—N3149.0 (3)
O3—Ba1—O2—C514.3 (9)N2—Ba1—N4—N396.1 (4)
N1SB—Ba1—O2—C558.4 (18)N2S—Ba1—N4—N383.3 (3)
N1SA—Ba1—O2—C568.2 (11)C18—N3—N4—C9102.2 (9)
N1—Ba1—O2—C524.8 (13)C2—N3—N4—C90.9 (6)
N2—Ba1—O2—C5142.0 (9)C3—N3—N4—C9107.1 (7)
N2S—Ba1—O2—C5134.3 (8)Ba1—N3—N4—C9161.1 (6)
N4—Ba1—O2—C551.9 (10)C18—N3—N4—C8150.2 (9)
N3—Ba1—O2—C5172.4 (10)C2—N3—N4—C8106.7 (6)
O1—Ba1—O2—C4104.5 (9)C3—N3—N4—C80.4 (7)
O3—Ba1—O2—C4161.8 (10)Ba1—N3—N4—C891.3 (5)
N1SB—Ba1—O2—C489.1 (18)C18—N3—N4—C110.5 (10)
N1SA—Ba1—O2—C479.3 (11)C2—N3—N4—C11102.6 (7)
N1—Ba1—O2—C4122.8 (9)C3—N3—N4—C11151.2 (8)
N2—Ba1—O2—C45.5 (9)Ba1—N3—N4—C1159.4 (6)
N2S—Ba1—O2—C478.2 (11)C18—N3—N4—Ba158.9 (7)
N4—Ba1—O2—C4160.6 (9)C2—N3—N4—Ba1162.0 (5)
N3—Ba1—O2—C440.1 (8)C3—N3—N4—Ba191.8 (6)
O1—Ba1—N2—C2498.8 (8)C5—O2—C4—C3142.4 (12)
O3—Ba1—N2—C2443.4 (11)Ba1—O2—C4—C370.9 (12)
N1SB—Ba1—N2—C2469.1 (12)N3—C3—C4—O259.5 (15)
N1SA—Ba1—N2—C2456.0 (14)C4—O2—C5—C6175.6 (14)
O2—Ba1—N2—C2413.1 (8)Ba1—O2—C5—C631.9 (16)
N1—Ba1—N2—C24139.3 (8)C7—O3—C6—C5176.7 (12)
N2S—Ba1—N2—C24159.2 (8)Ba1—O3—C6—C521.7 (17)
N4—Ba1—N2—C24172.2 (7)O2—C5—C6—O334.5 (19)
N3—Ba1—N2—C2454.6 (8)C6—O3—C7—C8102.7 (12)
O1—Ba1—N2—N1121.9 (2)Ba1—O3—C7—C860.9 (11)
O3—Ba1—N2—N195.9 (6)O3—C7—C8—N459.6 (12)
N1SB—Ba1—N2—N170.2 (10)C9—N4—C8—C7142.0 (9)
N1SA—Ba1—N2—N183.3 (11)C11—N4—C8—C7100.6 (9)
O2—Ba1—N2—N1152.4 (3)Ba1—N4—C8—C726.3 (10)
N2S—Ba1—N2—N161.5 (3)N3—N4—C8—C756.4 (9)
N4—Ba1—N2—N148.4 (3)C8—N4—C9—C1070.5 (10)
N3—Ba1—N2—N1166.1 (2)C11—N4—C9—C10169.7 (8)
C17—N1—N2—C2427 (3)Ba1—N4—C9—C1048.9 (9)
Ba1—N1—N2—C2469.9 (11)N3—N4—C9—C1039.8 (7)
C17—N1—N2—Ba143 (2)C1—O1—C10—C9167.9 (8)
O1—Ba1—N2S—C2S80.7 (8)Ba1—O1—C10—C945.1 (10)
O3—Ba1—N2S—C2S149.8 (8)N4—C9—C10—O165.4 (10)
N1SB—Ba1—N2S—C2S110 (2)C9—N4—C11—C12177.5 (7)
N1SA—Ba1—N2S—C2S95.2 (14)C8—N4—C11—C1257.5 (9)
O2—Ba1—N2S—C2S53.8 (11)Ba1—N4—C11—C1267.7 (7)
N1—Ba1—N2S—C2S138.3 (9)N3—N4—C11—C1293.9 (7)
N2—Ba1—N2S—C2S42.5 (8)N4—C11—C12—C1777.6 (10)
N4—Ba1—N2S—C2S146.3 (9)N4—C11—C12—C13102.5 (11)
N3—Ba1—N2S—C2S21.7 (9)C17—C12—C13—C140.1 (18)
O1—C1—C2—N365.8 (11)C11—C12—C13—C14179.8 (10)
C1—C2—N3—C18170.2 (8)C12—C13—C14—C151 (2)
C1—C2—N3—C371.1 (10)C13—C14—C15—C162 (2)
C1—C2—N3—Ba147.4 (8)C14—C15—C16—C173.2 (18)
C1—C2—N3—N438.9 (7)C15—C16—C17—C122.1 (15)
O1—Ba1—N3—C18133.0 (7)C15—C16—C17—N1178.5 (9)
O3—Ba1—N3—C18154.3 (6)C13—C12—C17—C160.5 (15)
N1SB—Ba1—N3—C1872.2 (13)C11—C12—C17—C16179.5 (8)
N1SA—Ba1—N3—C1874.0 (9)C13—C12—C17—N1176.8 (10)
O2—Ba1—N3—C18134.4 (7)C11—C12—C17—N13.2 (13)
N1—Ba1—N3—C1828.0 (9)Ba1—N1—C17—C16117.6 (8)
N2—Ba1—N3—C180.3 (6)N2—N1—C17—C1682 (2)
N2S—Ba1—N3—C1864.5 (6)Ba1—N1—C17—C1258.7 (10)
N4—Ba1—N3—C18136.0 (6)N2—N1—C17—C1295 (2)
O1—Ba1—N3—C215.3 (5)C2—N3—C18—C19172.0 (8)
O3—Ba1—N3—C288.0 (5)C3—N3—C18—C1969.4 (9)
N1SB—Ba1—N3—C2170.1 (12)Ba1—N3—C18—C1955.8 (9)
N1SA—Ba1—N3—C2168.3 (9)N4—N3—C18—C1981.9 (10)
O2—Ba1—N3—C2107.9 (6)N3—C18—C19—C2479.1 (11)
N1—Ba1—N3—C289.8 (6)N3—C18—C19—C20103.7 (10)
N2—Ba1—N3—C2118.0 (5)C24—C19—C20—C212.1 (14)
N2S—Ba1—N3—C253.2 (5)C18—C19—C20—C21179.5 (9)
N4—Ba1—N3—C218.2 (6)C19—C20—C21—C220.7 (16)
O1—Ba1—N3—C3102.4 (6)C20—C21—C22—C232.6 (16)
O3—Ba1—N3—C329.7 (7)C21—C22—C23—C241.7 (15)
N1SB—Ba1—N3—C352.4 (13)C20—C19—C24—C232.9 (15)
N1SA—Ba1—N3—C350.6 (10)C18—C19—C24—C23179.7 (9)
O2—Ba1—N3—C39.8 (6)C20—C19—C24—N2179.9 (10)
N1—Ba1—N3—C3152.5 (6)C18—C19—C24—N22.8 (16)
N2—Ba1—N3—C3124.3 (6)C22—C23—C24—C191.1 (16)
N2S—Ba1—N3—C3170.9 (6)C22—C23—C24—N2178.2 (10)
N4—Ba1—N3—C399.4 (6)Ba1—N2—C24—C1968.0 (12)
O1—Ba1—N3—N42.9 (3)N1—N2—C24—C19115.4 (11)
O3—Ba1—N3—N469.7 (3)Ba1—N2—C24—C23109.1 (9)
N1SB—Ba1—N3—N4151.8 (11)N1—N2—C24—C2361.7 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1C···N2S0.922.152.986 (12)151
N2—H2D···S2S1.012.763.700 (9)155
N1—H1D···S1Si1.012.863.577 (9)128
N2—H2C···S1Si1.062.463.466 (9)157
Symmetry code: (i) x+1, y1/2, z+1.

Experimental details

Crystal data
Chemical formula[Ba(C24H36N4O3)(NCS)2]
Mr682.07
Crystal system, space groupMonoclinic, P21
Temperature (K)298
a, b, c (Å)10.4878 (2), 12.2591 (2), 11.9750 (3)
β (°) 95.029 (1)
V3)1533.71 (5)
Z2
Radiation typeMo Kα
µ (mm1)1.47
Crystal size (mm)0.20 × 0.10 × 0.05
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionEmpirical (using intensity measurements)
SADABS (Sheldrick, 1996)
Tmin, Tmax0.758, 0.930
No. of measured, independent and
observed [I > 2σ(I)] reflections
11420, 5697, 3718
Rint0.075
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.054, 0.099, 1.05
No. of reflections5697
No. of parameters353
No. of restraints27
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.75, 0.91
Absolute structureFlack (1983) with 1709 Friedel pairs
Absolute structure parameter0.02 (2)

Computer programs: SMART (Siemens, 1995), SAINT (Siemens, 1995), SAINT, SHELXS97 (Sheldrick, 1990), SHELXL97 (Sheldrick, 1997a), SHELXTL (Sheldrick, 1997b), SHELXTL.

Selected geometric parameters (Å, º) top
Ba1—O12.727 (5)Ba1—N12.877 (8)
Ba1—O32.771 (7)Ba1—N22.921 (8)
Ba1—N1SB2.776 (15)Ba1—N2S2.950 (8)
Ba1—N1SA2.788 (11)Ba1—N42.999 (7)
Ba1—O22.790 (9)Ba1—N33.020 (7)
O1—Ba1—O386.8 (3)N1SB—Ba1—N2S126.4 (6)
O1—Ba1—N1SB157.8 (10)N1SA—Ba1—N2S134.3 (10)
O3—Ba1—N1SB72.3 (13)O2—Ba1—N2S148.5 (3)
O1—Ba1—N1SA152.0 (10)N1—Ba1—N2S61.6 (2)
O3—Ba1—N1SA75.2 (6)N2—Ba1—N2S68.7 (2)
N1SB—Ba1—N1SA13.9 (9)O1—Ba1—N462.31 (19)
O1—Ba1—O278.2 (3)O3—Ba1—N461.0 (2)
O3—Ba1—O257.2 (3)N1SB—Ba1—N4111.1 (16)
N1SB—Ba1—O284.2 (7)N1SA—Ba1—N4122.6 (7)
N1SA—Ba1—O274.1 (11)O2—Ba1—N4106.4 (3)
O1—Ba1—N1121.3 (2)N1—Ba1—N469.1 (2)
O3—Ba1—N197.1 (3)N2—Ba1—N4139.9 (2)
N1SB—Ba1—N169.9 (9)N2S—Ba1—N472.1 (2)
N1SA—Ba1—N182.6 (11)O1—Ba1—N362.1 (2)
O2—Ba1—N1148.7 (2)O3—Ba1—N3113.3 (2)
O1—Ba1—N2112.7 (2)N1SB—Ba1—N3119.2 (14)
O3—Ba1—N2156.0 (2)N1SA—Ba1—N3105.4 (10)
N1SB—Ba1—N286.1 (14)O2—Ba1—N359.3 (2)
N1SA—Ba1—N281.3 (5)N1—Ba1—N3149.6 (2)
O2—Ba1—N2111.3 (3)N2—Ba1—N368.0 (2)
N1—Ba1—N284.8 (2)N2S—Ba1—N394.6 (2)
O1—Ba1—N2S73.5 (2)N4—Ba1—N3124.3 (2)
O3—Ba1—N2S133.0 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1C···N2S0.922.152.986 (12)151
N2—H2D···S2S1.012.763.700 (9)155
N1—H1D···S1Si1.012.863.577 (9)128
N2—H2C···S1Si1.062.463.466 (9)157
Symmetry code: (i) x+1, y1/2, z+1.
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds