Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The structure of the title compound, ammineaquadi-μ5-phosphato-trizinc(II), [Zn3(PO4)2(H2O)0.8(NH3)1.2], consists of two parts: (i) PO4 and ZnO4 vertex-sharing tetra­hedra arranged in layers parallel to (100) and (ii) ZnO2(N/O)2 tetra­hedra located between the layers. Elemental analysis establishes the ammine-to-water ratio as 3:2. ZnO2(N/O)2 tetra­hedra are located at special position 4e (site symmetry 2) in C2/c. The two O atoms of ZnO2(N/O)2 are bonded to neighbouring P atoms, forming two Zn—O—P linkages and connecting ZnO2(N/O)2 tetra­hedra with two adjacent bc plane layers. A noteworthy feature of the structure is the presence of NH3 and H2O at the same crystallographic position and, consequently, qualitative changes in the pattern of hydrogen bonding and weaker N/O—H...O electrostatic inter­actions, as compared to two closely related structures.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270110014885/fa3219sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270110014885/fa3219Isup2.hkl
Contains datablock I

Comment top

This work forms part of ongoing research on heteropolyhedral framework structures of divalent metal phosphates and arsenates with potentially interesting structural, physical and chemical properties (Đorđević et al., 2008; Đorđević & Karanović, 2008; Stojanović et al., 2008; Weil et al., 2009). The aim of the current study was the synthesis and characterization of new compounds in the CdO–ZnO–P2O5–NH3–H2O system. Using the low-temperature hydrothermal method, single crystals of ammineaquadi-µ5-phosphato-trizinc(II), [Zn3(PO4)2(H2O)0.8(NH3)1.2], were synthesized.

The crystal structure of [Zn3(PO4)2(H2O)0.8(NH3)1.2] is constructed from corrugate layers parallel to the bc plane, containing slightly distorted vertex-sharing P1O4 and Zn2O4 tetrahedra. The space between these layers is bounded by x 0.39 and x 0.61 (Fig. 1).

Considering the network of Zn2—O and P1—O bonds, the layers can be described as being composed of six- and eight-membered rings formed by congeners of Zn2, O and P1, in which O can be O2, O3 or O4 (Figs. 2, 3). Each eight-membered –Zn2/O/P1– ring is formed by alternating corner-sharing pairs of Zn2O4 and P1O4 tetrahedra, while one P1O4 and two symmetry-related Zn2O4 tetrahedra are connected at shared corners to form each six-membered Zn2—O2—P1—O4—Zn2v—O4iii– ring (symmetry codes from Fig. 3). The eight-membered rings are fused into chains parallel to [010]. These chains are interconnected by chains of six-membered rings, extending in the same direction. Two O atoms (O2, O3ii) from the Zn2O4 tetrahedron form Zn—O—P bridges, while two symmetry equivalents of three-coordinate O4, which complete the tetrahedron at Zn2, bridge two Zn2 and one P1 congener each. As a result, O4 mediates another set of linkages, namely Zn2v—O4—Zn2viii and P1—O4—Zn2v (symmetry codesf rom Fig. 3). Every Zn—O—Zn bridge in the structure is centred on a three-coordinate O atom. The trigonal coordination of the oxygen bridges is only common in structures with divalent tetrahedral atoms (Bu et al., 1996). The third bond to O in this structure is to P1. In this way every Zn2 is connected through O to six neighbouring tetrahedral cations (four equivalents of P1 and two of Zn2); and every P1 is linked to five Zn (four Zn2 and one Zn1) (Fig. 3).

The Zn2—O distances are, as expected, shorter for O2 and O3 than for the three-coordinate oxygens O4 (Table 1). The average Zn2—O bond length is 1.95 (2) Å. The Zn2O4 tetrahedron, having O—Zn2—O angles ranging between 102.62 (4) and 121.60 (6)°, is somewhat irregular.

The space between layers is occupied by Zn1O2(N1/O5)2 tetrahedra. Each Zn1 atom, located on a twofold axis (position 4e), is tetrahedrally coordinated by two bridging O atoms [two symmetry equivalents O1,O1i (i): -x, y, -z+3/2] and by two terminal ligands N1/O5 – disordered ammine and water molecules in the ratio 3:2 as established by elemental analysis. O1 and O1i are bonded to neighbouring P1 atoms forming two Zn1—O1—P1 linkages, thus connecting the Zn1O2(N1/O5)2 tetrahedra with the principal bc plane layers. The coordination about Zn1 is considerably distorted tetrahedral, with bond angles varying from 97.3 (1) to 117.4 (1)°. P1 exhibits nearly ideal tetrahedral coordination [mean P1—O 1.54 (1) Å, O—P1—O angles from 106.0 (1) to 112.6 (1)°] with the longest distance P1—O4 involving three-coordinate oxygen (Table 1). The results of bond-valence calculations (Wills, 2009) confirm the presence of divalent zinc and pentavalent phosphorus, [calculated values are Σνij(Zn1) = 2.02, Σνij(Pl) = 4.97 and Σνij(Zn2) = 2.09 v.u.]. In addition to the Zn1—O1—P1 linkages, N1/O5—H···O hydrogen bonds and other electrostatic contacts provide a connection between the ammine/water sites and the main bc plane layers (Table 2).

From the crystallographic and elemental analyses, the ammine and water occupy the same crystallographic site in the ratio 3:2. The NH3 molecule is pyramidal and the observed H—N—H angles are in the range 105 (3)–111 (3)°. It is evident that water at this site can have any of three orientations, and it is not possible to establish a model distinguishing among the possibilities, which in any event should be equally probable.

The title compound is isostructural with two compounds – one arsenate Be3(AsO4)2.2H2O (Harrison et al.,1994) and one phosphate Be3(PO4)2.2H2O (Gier et al., 1999). The incorporation of a larger cation in the structure (As or Zn instead of P or Be, respectively) increases the lengths of the unit-cell axes and decreases β (Table 3). Also, the average M—O—X (M = Be, Zn; X = As, P) bond angle of 126.1° in [Zn(NH3)1.2(H2O)0.8(ZnPO4)2] is 0.9 and 4.7° less than the corresponding M—O—X in Be3(AsO4)2.2H2O and Be3(PO4)2.2H2O, respectively. Differences in the structures are presumably related to the polyhedral dimensions and different networks of N/O—H···O hydrogen bonds and electrostatic contacts. In the isostructural Be3(AsO4)2.2H2O and Be3(PO4)2.2H2O compounds, there are two water molecules available for hydrogen bonding. It was reported that only one H atom is involved in hydrogen bonding, but from our examination of the structures it appears that in both structures all H atoms participate in hydrogen bonding. Two H atoms in Be3(AsO4)2.2H2O act similarly to H1 and H2 in [Zn(NH3)1.2(H2O)0.8(ZnPO4)2], while in Be3(PO4)2.2H2O they are similar to H1 and H3. In all three structures one of the (N/O)—H of each water or water/ammine site is hydrogen bonded to a M—O—X bridge and forms the strongest hydrogen bond between MO2(N/O)2 (M = Be, Zn) tetrahedra and the bc plane layers. The second O—H or (N/O)—H of each such site form weak hydrogen bonds in the isostructural Be compounds, but in the title compound the interaction distances have expanded to the point that these can be called simply electrostatic contacts, to neighbouring M1O2(N1/O5)2 tetrahedra. The DA distances are in the ranges 2.72–3.18, 2.71–3.16 and 2.977 (3)–3.232 (3) Å for Be3(PO4)2.2H2O, Be3(AsO4)2.2H2O and [Zn(NH3)1.2(H2O)0.8(ZnPO4)2], respectively. It appears that the influence of As substitution for P on the D···A distances is weak; but the incorporation of Zn instead of the smaller Be causes a significant increase in the D···A distances.

Related literature top

For related literature, see: Bu et al. (1996); Gier et al. (1999); Harrison et al. (1994); Stojanović et al. (2008); Weil et al. (2009); Wills (2009); Đorđević & Karanović (2008); Đorđević, Šutović, Stojanović & Karanović (2008).

Experimental top

[Zn3(PO4)2(H2O)0.8(NH3)1.2] was synthesized hydrothermally from a mixture of CdO, (NH4)2HPO4 (Loba Chemie 10310 >99%) and 5ZnO.2CO3.4H2O (Alfa Products, >99%). The solid mixture was transferred into a Teflon vessel which was filled to approximately 70% of its inner volume with distilled water. The pH of the mixture was 7. The vessel was enclosed in a stainless steel autoclave, which was heated under autogenous pressure from room temperature to 473 K (4 h), held at this temperature for 72 h, and finally permitted to cool to room temperature over a period of 96 h. The resulting products were filtered off, washed thoroughly with distilled water and dried in the air at room temperature. The title compound crystallized as regular, colourless, plate-like and lath-like crystals (yield 50%) up to 200 µm in length. Qualitative chemical analyses were performed using a JEOL JSM-6400LV scanning electron microscope connected with a LINK energy-dispersive X-ray analysis (EDX) unit. The presence of Zn and P was confirmed in all samples studied. Elemental analysis (H, N) was performed by the standard micromethods using an ELEMENTAR Vario EL III C.H.N.S=0 analyzer.

Refinement top

The terminal ligand at Zn1 was refined as a mixed (N1/O5) site, constrained to full occupancy and using identical fractional coordinates and displacement parameters for both atoms. Because the site occupancies for N1 and O5 could not be refined independently, they were fixed according to the elemental analysis N1 0.6 and O5 0.4. Fixed site occupancies of 0.87 were assigned to all three H atoms in order to have their sum fixed at 2.6 H atoms per (NH3)0.6(H2O)0.4 group.

All three H atoms were found in a difference Fourier map and refined with restraints [0.88 (2) Å] on the N1/O5—H distances. Uiso(H) values were fixed at 1.2Ueq(N1/O5).

Computing details top

Data collection: COLLECT (Nonius, 2002); cell refinement: HKL SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO-SMN (Otwinowski et al., 2003); program(s) used to solve structure: SIR97 (Altomare et al., 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008), WinGX (Farrugia, 1999); molecular graphics: ATOMS (Dowty, 2000); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Side view of the boundaries of layers of P1O4 and Zn2O4 vertex-sharing tetrahedra with the volume occupied by Zn1O2(N1/O5)2 tetrahedra. The H···A contacts are shown as dashed lines and H atoms as small spheres.
[Figure 2] Fig. 2. Projection of a single polyhedral layer showing Zn2—O—P1 rings generated from the vertex linking of P1O4 (grey) and Zn2O4 (black) tetrahedra.
[Figure 3] Fig. 3. Perspective view of neighbouring P1O4 tetrahedra in the title compound with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented by circles of arbitrary radius. Symmetry codes: (i) -x, y, -z+3/2; (ii) -x+1/2, -y+1/2; -z+2; (iii) -x+1/2, y+1/2, -z+3/2; (iv) x, y+1, z; (v) -x+1/2, y-1/2, -z+3/2; (vi) x, -y, z-1/2; (vii) -x+1/2, -y-1/2, -z+2; (viii) x, y-1, z; (ix) x, -y, z+1/2; (x) x, -y+1, z-1/2; (xi) -x+1/2, y+3/2, -z+3/2.
ammineaquadi-µ5-phosphato-trizinc(II) top
Crystal data top
[Zn3(PO4)2(H2O)0.8(NH3)1.2]F(000) = 816.1
Mr = 420.90Dx = 3.117 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 1792 reflections
a = 16.932 (3) Åθ = 0.4–32.6°
b = 5.0171 (10) ŵ = 8.34 mm1
c = 10.564 (2) ÅT = 294 K
β = 91.27 (3)°Plate-like, colourless
V = 897.2 (3) Å30.15 × 0.13 × 0.08 mm
Z = 4
Data collection top
Nonius KappaCCD diffractomer913 independent reflections
Radiation source: fine-focus sealed X-ray tube884 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.011
ϕ + ω scansθmax = 26.4°, θmin = 3.9°
Absorption correction: multi-scan
(Otwinowski & Minor, 1997)
h = 2020
Tmin = 0.298, Tmax = 0.513k = 66
1715 measured reflectionsl = 1313
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.014H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.035 w = 1/[σ^2^(Fo^2^) + (0.0138P)^2^ + 1.9417P]
where P = (Fo^2^ + 2Fc^2^)/3
S = 1.13(Δ/σ)max = 0.001
913 reflectionsΔρmax = 0.34 e Å3
79 parametersΔρmin = 0.31 e Å3
5 restraintsExtinction correction: SHELXL, Fc^*^=kFc[1+0.001xFc^2^λ^3^/sin(2θ)]^-1/4^
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0025 (2)
Crystal data top
[Zn3(PO4)2(H2O)0.8(NH3)1.2]V = 897.2 (3) Å3
Mr = 420.90Z = 4
Monoclinic, C2/cMo Kα radiation
a = 16.932 (3) ŵ = 8.34 mm1
b = 5.0171 (10) ÅT = 294 K
c = 10.564 (2) Å0.15 × 0.13 × 0.08 mm
β = 91.27 (3)°
Data collection top
Nonius KappaCCD diffractomer913 independent reflections
Absorption correction: multi-scan
(Otwinowski & Minor, 1997)
884 reflections with I > 2σ(I)
Tmin = 0.298, Tmax = 0.513Rint = 0.011
1715 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0145 restraints
wR(F2) = 0.035H atoms treated by a mixture of independent and constrained refinement
S = 1.13Δρmax = 0.34 e Å3
913 reflectionsΔρmin = 0.31 e Å3
79 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2^ against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2^, conventional R-factors R are based on F, with F set to zero for negative F^2^. The threshold expression of F^2^ > 2sigma(F^2^) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2^ are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Zn10.00000.23458 (7)0.75000.01616 (11)
Zn20.252843 (13)0.54824 (4)0.85789 (2)0.01090 (10)
P10.14805 (3)0.03247 (10)0.89402 (4)0.00887 (13)
O10.06423 (9)0.0209 (3)0.84674 (14)0.0176 (3)
O20.16414 (8)0.3308 (3)0.89628 (14)0.0183 (3)
O30.16181 (8)0.0984 (3)1.02338 (13)0.0159 (3)
O40.20795 (9)0.1036 (3)0.80233 (13)0.0151 (3)
N10.05747 (12)0.5015 (4)0.85859 (19)0.0299 (4)0.60
O50.05747 (12)0.5015 (4)0.85859 (19)0.0299 (4)0.40
H10.0874 (17)0.425 (6)0.915 (2)0.036*0.86667
H20.0210 (17)0.616 (6)0.897 (3)0.036*0.86667
H30.0906 (17)0.590 (6)0.808 (3)0.036*0.86667
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.01499 (18)0.01310 (18)0.02014 (18)0.0000.00559 (13)0.000
Zn20.01294 (14)0.00963 (14)0.01010 (13)0.00058 (8)0.00076 (8)0.00024 (8)
P10.0090 (2)0.0082 (2)0.0094 (2)0.00024 (18)0.00046 (17)0.00043 (17)
O10.0130 (7)0.0159 (7)0.0237 (8)0.0027 (6)0.0077 (6)0.0055 (6)
O20.0171 (7)0.0090 (7)0.0289 (8)0.0021 (6)0.0056 (6)0.0015 (6)
O30.0153 (7)0.0221 (8)0.0101 (6)0.0046 (6)0.0030 (5)0.0047 (6)
O40.0209 (7)0.0121 (7)0.0124 (6)0.0058 (6)0.0062 (5)0.0034 (5)
N10.0294 (11)0.0319 (11)0.0287 (10)0.0002 (9)0.0055 (8)0.0025 (9)
O50.0294 (11)0.0319 (11)0.0287 (10)0.0002 (9)0.0055 (8)0.0025 (9)
Geometric parameters (Å, º) top
Zn1—O11.9548 (15)O2—O4iii3.102 (2)
Zn1—N12.026 (2)O2—O3iii3.163 (2)
Zn2—O21.9073 (15)O2—N1viii3.299 (3)
Zn2—O3i1.9091 (15)O2—N1vi3.321 (3)
Zn2—O4ii1.9839 (14)O2—O3i3.331 (2)
Zn2—O4iii1.9883 (15)O2—Zn2v3.3709 (16)
Zn2—O3iii2.9487 (16)O3—Zn2i1.9091 (15)
Zn2—P1iii3.0375 (7)O3—O42.479 (2)
Zn2—P1i3.1070 (10)O3—Zn2iv2.9487 (16)
Zn2—P13.1654 (7)O3—N1ix2.977 (3)
Zn2—P1ii3.1785 (10)O3—O2iv3.163 (2)
Zn2—O2ii3.3709 (16)O3—O4x3.197 (2)
Zn2—O43.4056 (16)O3—O4xi3.210 (2)
Zn2—O2i3.4892 (17)O3—O2i3.331 (2)
P1—O11.5178 (15)O3—O3xi3.397 (3)
P1—O21.5213 (15)O4—Zn2v1.9839 (14)
P1—O31.5294 (14)O4—Zn2iv1.9883 (15)
P1—O41.5738 (15)O4—O2v3.066 (2)
P1—Zn2iv3.0375 (7)O4—O4ii3.1005 (17)
P1—Zn2i3.1071 (10)O4—O2iv3.102 (2)
P1—Zn2v3.1785 (10)O4—O3xii3.197 (2)
O1—O22.492 (2)O4—O3xi3.210 (2)
O1—O32.495 (2)N1—O3ix2.977 (3)
O1—O42.523 (2)N1—O5vi3.041 (4)
O1—O1vi2.952 (3)N1—O1iii3.165 (3)
O1—N1iv3.165 (3)N1—O1xiii3.232 (3)
O1—N1vii3.232 (3)N1—O2viii3.299 (3)
O1—N13.338 (3)N1—O2vi3.321 (3)
O1—N1vi3.403 (3)N1—O1vi3.403 (3)
O2—O42.514 (2)N1—H10.882 (14)
O2—O32.539 (2)N1—H20.932 (19)
O2—O4ii3.066 (2)N1—H30.889 (14)
O1vi—Zn1—O198.05 (9)P1—O2—Zn171.91 (6)
O1vi—Zn1—N1117.44 (8)Zn2—O2—Zn1131.76 (7)
O1—Zn1—N1113.95 (8)O4—O2—Zn186.51 (6)
O1vi—Zn1—O5vi113.95 (8)O3—O2—Zn195.99 (6)
O1—Zn1—O5vi117.44 (8)O4ii—O2—Zn1107.82 (5)
N1—Zn1—O5vi97.26 (13)O4iii—O2—Zn1101.28 (5)
O1vi—Zn1—N1vi113.95 (8)O3iii—O2—Zn1108.90 (5)
O1—Zn1—N1vi117.44 (8)P1—O2—O5viii99.34 (8)
N1—Zn1—N1vi97.26 (13)Zn2—O2—O5viii117.93 (7)
O5vi—Zn1—N1vi0.00 (9)O1—O2—O5viii87.97 (7)
O1vi—Zn1—P1vi24.10 (4)O4—O2—O5viii134.63 (7)
O1—Zn1—P1vi118.71 (5)O3—O2—O5viii77.64 (6)
N1—Zn1—P1vi95.83 (6)O4ii—O2—O5viii156.49 (7)
O5vi—Zn1—P1vi109.53 (6)O4iii—O2—O5viii99.02 (6)
N1vi—Zn1—P1vi109.53 (6)O3iii—O2—O5viii54.81 (5)
O1vi—Zn1—P1118.71 (5)Zn1—O2—O5viii86.13 (5)
O1—Zn1—P124.10 (4)P1—O2—N1viii99.34 (8)
N1—Zn1—P1109.53 (6)Zn2—O2—N1viii117.93 (7)
O5vi—Zn1—P195.83 (6)O1—O2—N1viii87.97 (7)
N1vi—Zn1—P195.83 (6)O4—O2—N1viii134.63 (7)
P1vi—Zn1—P1141.50 (3)O3—O2—N1viii77.64 (6)
O1vi—Zn1—O2145.29 (5)O4ii—O2—N1viii156.49 (7)
O1—Zn1—O251.44 (5)O4iii—O2—N1viii99.02 (6)
N1—Zn1—O292.86 (7)O3iii—O2—N1viii54.81 (5)
O5vi—Zn1—O275.51 (7)Zn1—O2—N1viii86.13 (5)
N1vi—Zn1—O275.51 (7)P1—O2—O5vi98.46 (8)
P1vi—Zn1—O2169.24 (3)Zn2—O2—O5vi95.55 (7)
P1—Zn1—O228.05 (3)O1—O2—O5vi70.00 (6)
O1vi—Zn1—O2vi51.44 (5)O4—O2—O5vi93.64 (7)
O1—Zn1—O2vi145.29 (5)O3—O2—O5vi129.28 (7)
N1—Zn1—O2vi75.51 (7)O4ii—O2—O5vi78.30 (6)
O5vi—Zn1—O2vi92.86 (7)O4iii—O2—O5vi68.55 (6)
N1vi—Zn1—O2vi92.86 (7)O3iii—O2—O5vi95.68 (6)
P1vi—Zn1—O2vi28.05 (3)O5viii—O2—O5vi105.86 (7)
P1—Zn1—O2vi169.24 (3)N1viii—O2—O5vi105.86 (7)
O2—Zn1—O2vi162.58 (6)P1—O2—N1vi98.46 (8)
O1vi—Zn1—O3ix78.93 (5)Zn2—O2—N1vi95.55 (7)
O1—Zn1—O3ix87.28 (5)O1—O2—N1vi70.00 (6)
N1—Zn1—O3ix52.46 (7)O4—O2—N1vi93.64 (7)
O5vi—Zn1—O3ix148.29 (7)O3—O2—N1vi129.28 (7)
N1vi—Zn1—O3ix148.29 (7)O4ii—O2—N1vi78.30 (6)
P1vi—Zn1—O3ix69.87 (3)O4iii—O2—N1vi68.55 (6)
P1—Zn1—O3ix102.93 (3)O3iii—O2—N1vi95.68 (6)
O2—Zn1—O3ix111.13 (4)O5viii—O2—N1vi105.86 (7)
O2vi—Zn1—O3ix72.23 (4)N1viii—O2—N1vi105.86 (7)
O1vi—Zn1—O3xii87.28 (5)P1—O2—O3i123.89 (8)
O1—Zn1—O3xii78.93 (5)O1—O2—O3i158.67 (7)
N1—Zn1—O3xii148.29 (7)O4—O2—O3i100.54 (6)
O5vi—Zn1—O3xii52.46 (7)O3—O2—O3i103.37 (6)
N1vi—Zn1—O3xii52.46 (7)O4ii—O2—O3i59.79 (5)
P1vi—Zn1—O3xii102.93 (3)O4iii—O2—O3i59.75 (5)
P1—Zn1—O3xii69.87 (3)O3iii—O2—O3i63.02 (5)
O2—Zn1—O3xii72.23 (4)Zn1—O2—O3i160.34 (6)
O2vi—Zn1—O3xii111.13 (4)O5viii—O2—O3i101.18 (6)
O3ix—Zn1—O3xii158.96 (5)N1viii—O2—O3i101.18 (6)
O1vi—Zn1—O4vi32.69 (5)O5vi—O2—O3i124.38 (6)
O1—Zn1—O4vi106.04 (5)N1vi—O2—O3i124.38 (6)
N1—Zn1—O4vi85.71 (7)P1—O2—Zn2v69.60 (6)
O5vi—Zn1—O4vi130.14 (7)Zn2—O2—Zn2v74.15 (5)
N1vi—Zn1—O4vi130.14 (7)O1—O2—Zn2v80.10 (6)
P1vi—Zn1—O4vi21.82 (2)O3—O2—Zn2v94.37 (6)
P1—Zn1—O4vi130.10 (3)O4iii—O2—Zn2v91.31 (5)
O2—Zn1—O4vi154.31 (4)O3iii—O2—Zn2v136.73 (5)
O2vi—Zn1—O4vi39.59 (4)Zn1—O2—Zn2v85.68 (4)
O3ix—Zn1—O4vi49.13 (3)O5viii—O2—Zn2v167.89 (6)
O3xii—Zn1—O4vi119.79 (3)N1viii—O2—Zn2v167.89 (6)
O1vi—Zn1—O4106.04 (5)O5vi—O2—Zn2v72.03 (5)
O1—Zn1—O432.69 (5)N1vi—O2—Zn2v72.03 (5)
N1—Zn1—O4130.14 (7)O3i—O2—Zn2v89.44 (5)
O5vi—Zn1—O485.71 (7)P1—O3—Zn2i128.94 (9)
N1vi—Zn1—O485.71 (7)Zn2i—O3—O4111.75 (7)
P1vi—Zn1—O4130.10 (3)Zn2i—O3—O1161.76 (9)
P1—Zn1—O421.82 (2)O4—O3—O160.95 (6)
O2—Zn1—O439.59 (4)Zn2i—O3—O2102.43 (7)
O2vi—Zn1—O4154.31 (4)O4—O3—O260.11 (6)
O3ix—Zn1—O4119.79 (3)O1—O3—O259.34 (6)
O3xii—Zn1—O449.13 (3)P1—O3—Zn2iv78.44 (6)
O4vi—Zn1—O4128.93 (5)Zn2i—O3—Zn2iv94.06 (6)
O1vi—Zn1—O5iv53.70 (6)O1—O3—Zn2iv89.79 (6)
O1—Zn1—O5iv51.69 (6)O2—O3—Zn2iv100.48 (6)
N1—Zn1—O5iv108.91 (8)P1—O3—O5ix125.87 (9)
O5vi—Zn1—O5iv153.83 (6)Zn2i—O3—O5ix105.19 (7)
N1vi—Zn1—O5iv153.83 (6)O4—O3—O5ix126.14 (8)
P1vi—Zn1—O5iv68.66 (3)O1—O3—O5ix91.71 (7)
P1—Zn1—O5iv75.79 (3)O2—O3—O5ix144.50 (8)
O2—Zn1—O5iv102.50 (4)Zn2iv—O3—O5ix99.37 (6)
O2vi—Zn1—O5iv93.64 (4)P1—O3—N1ix125.87 (9)
O3ix—Zn1—O5iv57.29 (4)Zn2i—O3—N1ix105.19 (7)
O3xii—Zn1—O5iv101.71 (4)O4—O3—N1ix126.14 (8)
O4vi—Zn1—O5iv54.44 (4)O1—O3—N1ix91.71 (7)
O4—Zn1—O5iv77.57 (4)O2—O3—N1ix144.50 (8)
O2—Zn2—O3i121.60 (6)Zn2iv—O3—N1ix99.37 (6)
O2—Zn2—O4ii103.99 (7)P1—O3—O2iv90.72 (7)
O3i—Zn2—O4ii110.39 (6)Zn2i—O3—O2iv112.45 (7)
O2—Zn2—O4iii105.52 (6)O4—O3—O2iv65.39 (5)
O3i—Zn2—O4iii110.91 (6)O1—O3—O2iv80.67 (6)
O4ii—Zn2—O4iii102.62 (4)O2—O3—O2iv122.88 (7)
O2—Zn2—O3iii78.07 (6)O5ix—O3—O2iv64.91 (6)
O3i—Zn2—O3iii85.94 (6)N1ix—O3—O2iv64.91 (6)
O4ii—Zn2—O3iii157.81 (5)P1—O3—O4x135.79 (9)
O4iii—Zn2—O3iii56.32 (5)O4—O3—O4x142.75 (7)
O2—Zn2—P1iii88.04 (5)O1—O3—O4x141.64 (8)
O3i—Zn2—P1iii104.34 (5)O2—O3—O4x102.25 (7)
O4ii—Zn2—P1iii128.45 (5)Zn2iv—O3—O4x128.09 (6)
O4iii—Zn2—P1iii27.61 (4)O5ix—O3—O4x87.96 (6)
O3iii—Zn2—P1iii29.56 (3)N1ix—O3—O4x87.96 (6)
O2—Zn2—P1i99.16 (5)O2iv—O3—O4x132.32 (6)
O3i—Zn2—P1i22.51 (4)P1—O3—O4xi143.27 (8)
O4ii—Zn2—P1i119.01 (5)O4—O3—O4xi107.97 (6)
O4iii—Zn2—P1i124.00 (4)O1—O3—O4xi159.46 (8)
O3iii—Zn2—P1i81.83 (3)O2—O3—O4xi132.83 (7)
P1iii—Zn2—P1i107.715 (18)Zn2iv—O3—O4xi72.46 (4)
O2—Zn2—P120.04 (4)O5ix—O3—O4xi81.37 (6)
O3i—Zn2—P1116.54 (5)N1ix—O3—O4xi81.37 (6)
O4ii—Zn2—P189.31 (5)O2iv—O3—O4xi78.88 (5)
O4iii—Zn2—P1122.83 (5)O4x—O3—O4xi57.88 (4)
O3iii—Zn2—P196.78 (4)P1—O3—O2i99.84 (7)
P1iii—Zn2—P1107.95 (2)O4—O3—O2i87.06 (6)
P1i—Zn2—P194.901 (19)O1—O3—O2i134.03 (7)
O2—Zn2—P1ii126.63 (5)O2—O3—O2i76.63 (6)
O3i—Zn2—P1ii98.47 (5)Zn2iv—O3—O2i85.54 (5)
O4ii—Zn2—P1ii23.54 (4)O5ix—O3—O2i134.18 (7)
O4iii—Zn2—P1ii88.87 (4)N1ix—O3—O2i134.18 (7)
O3iii—Zn2—P1ii143.52 (3)O2iv—O3—O2i116.98 (5)
P1iii—Zn2—P1ii116.48 (2)O4x—O3—O2i55.99 (5)
P1i—Zn2—P1ii114.69 (2)O4xi—O3—O2i56.57 (5)
P1—Zn2—P1ii112.86 (2)P1—O3—O3xi100.33 (8)
O2—Zn2—O2ii138.96 (4)Zn2i—O3—O3xi59.97 (5)
O3i—Zn2—O2ii98.33 (5)O4—O3—O3xi64.01 (6)
O4ii—Zn2—O2ii47.82 (5)O1—O3—O3xi122.05 (8)
O4iii—Zn2—O2ii63.83 (5)O2—O3—O3xi106.19 (7)
O3iii—Zn2—O2ii116.89 (4)O5ix—O3—O3xi106.77 (8)
P1iii—Zn2—O2ii91.08 (3)N1ix—O3—O3xi106.77 (8)
P1i—Zn2—O2ii119.98 (3)O2iv—O3—O3xi60.91 (5)
P1—Zn2—O2ii133.21 (3)O4x—O3—O3xi94.49 (6)
P1ii—Zn2—O2ii26.66 (3)O2i—O3—O3xi56.08 (5)
O2—Zn2—Zn2v73.08 (5)P1—O3—O5viii83.65 (7)
O3i—Zn2—Zn2v123.32 (5)Zn2i—O3—O5viii91.83 (6)
O4ii—Zn2—Zn2v31.47 (4)O4—O3—O5viii119.20 (7)
O4iii—Zn2—Zn2v116.53 (5)O1—O3—O5viii79.23 (6)
O3iii—Zn2—Zn2v146.75 (3)O2—O3—O5viii60.38 (6)
P1iii—Zn2—Zn2v131.95 (2)Zn2iv—O3—O5viii160.80 (6)
P1i—Zn2—Zn2v118.528 (16)O5ix—O3—O5viii96.68 (7)
P1—Zn2—Zn2v57.89 (2)N1ix—O3—O5viii96.68 (7)
P1ii—Zn2—Zn2v54.980 (14)O2iv—O3—O5viii152.20 (6)
O2ii—Zn2—Zn2v77.39 (3)O4x—O3—O5viii62.76 (5)
O2—Zn2—Zn2ii123.75 (5)O4xi—O3—O5viii120.64 (6)
O3i—Zn2—Zn2ii110.73 (5)O2i—O3—O5viii90.81 (6)
O4ii—Zn2—Zn2ii73.47 (5)O3xi—O3—O5viii146.89 (8)
O4iii—Zn2—Zn2ii31.39 (4)P1—O3—N1viii83.65 (7)
O3iii—Zn2—Zn2ii86.93 (3)Zn2i—O3—N1viii91.83 (6)
P1iii—Zn2—Zn2ii58.98 (2)O4—O3—N1viii119.20 (7)
P1i—Zn2—Zn2ii132.106 (14)O1—O3—N1viii79.23 (6)
P1—Zn2—Zn2ii132.72 (2)O2—O3—N1viii60.38 (6)
P1ii—Zn2—Zn2ii57.518 (14)Zn2iv—O3—N1viii160.80 (6)
O2ii—Zn2—Zn2ii32.77 (3)O5ix—O3—N1viii96.68 (7)
Zn2v—Zn2—Zn2ii95.480 (19)N1ix—O3—N1viii96.68 (7)
O2—Zn2—O446.65 (5)O2iv—O3—N1viii152.20 (6)
O3i—Zn2—O4113.75 (5)O4x—O3—N1viii62.76 (5)
O4ii—Zn2—O464.01 (5)O4xi—O3—N1viii120.64 (6)
O4iii—Zn2—O4135.26 (7)O2i—O3—N1viii90.81 (6)
O3iii—Zn2—O4124.19 (4)O3xi—O3—N1viii146.89 (8)
P1iii—Zn2—O4131.37 (3)P1—O4—Zn2v126.22 (9)
P1i—Zn2—O497.73 (3)P1—O4—Zn2iv116.54 (8)
P1—Zn2—O427.40 (3)Zn2v—O4—Zn2iv117.14 (7)
P1ii—Zn2—O487.24 (3)Zn2v—O4—O3156.65 (8)
O2ii—Zn2—O4111.22 (4)Zn2iv—O4—O381.81 (6)
Zn2v—Zn2—O433.95 (2)Zn2v—O4—O296.38 (7)
Zn2ii—Zn2—O4126.29 (3)Zn2iv—O4—O2139.41 (8)
O2—Zn2—O2i80.57 (6)O3—O4—O261.12 (6)
O3i—Zn2—O2i45.28 (5)Zn2v—O4—O1115.97 (7)
O4ii—Zn2—O2i106.79 (5)Zn2iv—O4—O1116.97 (7)
O4iii—Zn2—O2i147.51 (5)O3—O4—O159.84 (6)
O3iii—Zn2—O2i95.37 (4)O2—O4—O159.31 (6)
P1iii—Zn2—O2i124.69 (3)P1—O4—O2v160.44 (9)
P1i—Zn2—O2i25.84 (3)Zn2iv—O4—O2v80.59 (5)
P1—Zn2—O2i71.48 (3)O3—O4—O2v152.60 (7)
P1ii—Zn2—O2i113.46 (3)O2—O4—O2v125.62 (7)
O2ii—Zn2—O2i130.83 (5)O1—O4—O2v147.54 (7)
Zn2v—Zn2—O2i95.87 (3)P1—O4—O4ii100.13 (6)
Zn2ii—Zn2—O2i155.35 (3)Zn2iv—O4—O4ii129.82 (9)
O4—Zn2—O2i71.92 (4)O3—O4—O4ii118.97 (7)
O2—Zn2—Zn2xiv96.19 (5)O2—O4—O4ii65.24 (4)
O3i—Zn2—Zn2xiv54.24 (5)O1—O4—O4ii112.69 (6)
O4ii—Zn2—Zn2xiv159.53 (4)O2v—O4—O4ii60.39 (6)
O4iii—Zn2—Zn2xiv74.74 (4)P1—O4—O4v151.39 (8)
O3iii—Zn2—Zn2xiv31.70 (3)Zn2v—O4—O4v80.87 (7)
P1iii—Zn2—Zn2xiv54.75 (2)O3—O4—O4v120.08 (7)
P1i—Zn2—Zn2xiv52.970 (15)O2—O4—O4v169.82 (9)
P1—Zn2—Zn2xiv109.36 (2)O1—O4—O4v130.69 (7)
P1ii—Zn2—Zn2xiv137.033 (16)O2v—O4—O4v48.10 (5)
O2ii—Zn2—Zn2xiv116.37 (3)O4ii—O4—O4v108.01 (8)
Zn2v—Zn2—Zn2xiv165.853 (11)P1—O4—O2iv92.18 (7)
Zn2ii—Zn2—Zn2xiv98.213 (17)Zn2v—O4—O2iv135.34 (7)
O4—Zn2—Zn2xiv132.01 (3)O3—O4—O2iv68.01 (6)
O2i—Zn2—Zn2xiv72.87 (3)O2—O4—O2iv126.31 (7)
O1—P1—O2110.16 (8)O1—O4—O2iv81.51 (6)
O1—P1—O3109.94 (9)O2v—O4—O2iv107.36 (6)
O2—P1—O3112.63 (9)O4ii—O4—O2iv165.77 (7)
O1—P1—O4109.36 (9)O4v—O4—O2iv59.26 (4)
O2—P1—O4108.59 (8)P1—O4—O3xii106.39 (7)
O3—P1—O4106.03 (8)Zn2iv—O4—O3xii129.39 (7)
O1—P1—Zn2iv111.22 (6)O3—O4—O3xii142.12 (7)
O2—P1—Zn2iv133.15 (6)O2—O4—O3xii91.19 (6)
O2—P1—Zn180.04 (6)O1—O4—O3xii84.39 (6)
O3—P1—Zn1133.63 (6)O2v—O4—O3xii64.23 (5)
Zn2iv—P1—Zn1132.342 (19)O4ii—O4—O3xii61.28 (5)
O1—P1—Zn2i137.57 (7)O4v—O4—O3xii91.87 (7)
O2—P1—Zn2i91.25 (6)O2iv—O4—O3xii121.99 (6)
O4—P1—Zn2i96.85 (6)P1—O4—O3xi107.03 (7)
Zn2iv—P1—Zn2i72.285 (18)Zn2v—O4—O3xi115.43 (6)
Zn1—P1—Zn2i151.56 (2)O3—O4—O3xi72.03 (6)
O1—P1—Zn2128.84 (6)O2—O4—O3xi112.47 (7)
O3—P1—Zn2112.59 (6)O1—O4—O3xi128.54 (7)
O4—P1—Zn284.83 (6)O2v—O4—O3xi81.71 (5)
Zn2iv—P1—Zn2107.95 (2)O4ii—O4—O3xi105.44 (8)
Zn1—P1—Zn297.108 (19)O4v—O4—O3xi60.84 (5)
Zn2i—P1—Zn285.099 (19)O2iv—O4—O3xi63.68 (5)
O1—P1—Zn2v103.65 (7)O3xii—O4—O3xi145.79 (5)
O2—P1—Zn2v83.74 (6)P1—O4—Zn267.77 (5)
O3—P1—Zn2v133.32 (6)Zn2v—O4—Zn272.58 (4)
Zn2iv—P1—Zn2v66.043 (17)Zn2iv—O4—Zn2135.26 (6)
Zn1—P1—Zn2v90.99 (2)O3—O4—Zn284.34 (5)
Zn2i—P1—Zn2v115.10 (2)O1—O4—Zn291.29 (5)
Zn2—P1—Zn2v64.591 (16)O2v—O4—Zn293.59 (5)
O1—P1—O2iv84.13 (6)O4v—O4—Zn2137.38 (7)
O2—P1—O2iv165.23 (8)O2iv—O4—Zn2151.34 (5)
O3—P1—O2iv63.62 (7)O3xii—O4—Zn284.46 (4)
O4—P1—O2iv61.37 (6)O3xi—O4—Zn2101.56 (5)
Zn1—P1—O2iv113.20 (3)P1—O4—O5vii94.01 (7)
Zn2i—P1—O2iv79.88 (3)Zn2v—O4—O5vii93.14 (6)
Zn2—P1—O2iv140.58 (3)Zn2iv—O4—O5vii85.32 (6)
Zn2v—P1—O2iv89.33 (3)O3—O4—O5vii102.40 (7)
O1—P1—O4ii121.56 (7)O2—O4—O5vii116.68 (7)
O2—P1—O4ii53.55 (6)O1—O4—O5vii60.38 (6)
O3—P1—O4ii128.39 (6)O2v—O4—O5vii96.91 (6)
O4—P1—O4ii55.23 (4)O4ii—O4—O5vii126.81 (8)
Zn2iv—P1—O4ii86.01 (3)O4v—O4—O5vii73.37 (6)
Zn1—P1—O4ii95.71 (3)O2iv—O4—O5vii58.60 (5)
Zn2i—P1—O4ii100.73 (3)O3xii—O4—O5vii65.53 (5)
O2iv—P1—O4ii116.24 (4)O3xi—O4—O5vii118.80 (6)
O1—P1—O5viii86.96 (7)Zn2—O4—O5vii139.31 (6)
O2—P1—O5viii57.72 (7)P1—O4—N1vii94.01 (7)
O3—P1—O5viii73.10 (7)Zn2v—O4—N1vii93.14 (6)
O4—P1—O5viii162.37 (7)Zn2iv—O4—N1vii85.32 (6)
Zn2iv—P1—O5viii144.44 (4)O3—O4—N1vii102.40 (7)
Zn1—P1—O5viii78.64 (4)O2—O4—N1vii116.68 (7)
Zn2i—P1—O5viii73.88 (4)O1—O4—N1vii60.38 (6)
Zn2—P1—O5viii79.53 (4)O2v—O4—N1vii96.91 (6)
Zn2v—P1—O5viii141.15 (4)O4ii—O4—N1vii126.81 (8)
O2iv—P1—O5viii129.24 (4)O4v—O4—N1vii73.37 (6)
O4ii—P1—O5viii110.90 (5)O2iv—O4—N1vii58.60 (5)
O1—P1—N1viii86.96 (7)O3xii—O4—N1vii65.53 (5)
O2—P1—N1viii57.72 (7)O3xi—O4—N1vii118.80 (6)
O3—P1—N1viii73.10 (7)Zn2—O4—N1vii139.31 (6)
O4—P1—N1viii162.37 (7)Zn1—N1—O3ix94.88 (9)
Zn2iv—P1—N1viii144.44 (4)O3ix—N1—O5vi135.36 (6)
Zn1—P1—N1viii78.64 (4)O3ix—N1—N1vi135.36 (6)
Zn2i—P1—N1viii73.88 (4)Zn1—N1—O1iii99.01 (8)
Zn2—P1—N1viii79.53 (4)O3ix—N1—O1iii157.50 (9)
Zn2v—P1—N1viii141.15 (4)O5vi—N1—O1iii62.74 (6)
O2iv—P1—N1viii129.24 (4)N1vi—N1—O1iii62.74 (6)
O4ii—P1—N1viii110.90 (5)Zn1—N1—O1xiii96.91 (8)
O1—P1—O5vi61.62 (7)O3ix—N1—O1xiii140.54 (8)
O2—P1—O5vi58.54 (7)O5vi—N1—O1xiii60.49 (6)
O3—P1—O5vi158.76 (7)N1vi—N1—O1xiii60.49 (6)
O4—P1—O5vi95.21 (6)O1iii—N1—O1xiii54.95 (6)
Zn2iv—P1—O5vi128.79 (4)Zn1—N1—O2viii153.01 (10)
Zn2i—P1—O5vi149.71 (4)O3ix—N1—O2viii60.28 (5)
Zn2—P1—O5vi68.44 (4)O5vi—N1—O2viii164.32 (6)
Zn2v—P1—O5vi67.30 (3)N1vi—N1—O2viii164.32 (6)
O2iv—P1—O5vi130.05 (5)O1iii—N1—O2viii101.90 (7)
O4ii—P1—O5vi64.47 (4)O1xiii—N1—O2viii109.02 (7)
O5viii—P1—O5vi86.61 (3)Zn1—N1—O2vi68.28 (6)
N1viii—P1—O5vi86.61 (3)O3ix—N1—O2vi81.21 (7)
O1—P1—N1vi61.62 (7)O5vi—N1—O2vi74.57 (8)
O2—P1—N1vi58.54 (7)N1vi—N1—O2vi74.57 (8)
O3—P1—N1vi158.76 (7)O1iii—N1—O2vi120.41 (8)
O4—P1—N1vi95.21 (6)O1xiii—N1—O2vi68.69 (6)
Zn2iv—P1—N1vi128.79 (4)O2viii—N1—O2vi113.88 (8)
Zn2i—P1—N1vi149.71 (4)O3ix—N1—O181.66 (7)
Zn2—P1—N1vi68.44 (4)O5vi—N1—O164.27 (5)
Zn2v—P1—N1vi67.30 (3)N1vi—N1—O164.27 (5)
O2iv—P1—N1vi130.05 (5)O1iii—N1—O1100.95 (7)
O4ii—P1—N1vi64.47 (4)O1xiii—N1—O1124.72 (6)
O5viii—P1—N1vi86.61 (3)O2viii—N1—O1125.37 (8)
N1viii—P1—N1vi86.61 (3)O2vi—N1—O195.29 (7)
P1—O1—Zn1124.17 (9)O3ix—N1—O1vi74.45 (7)
Zn1—O1—O290.73 (7)O5vi—N1—O1vi62.10 (5)
Zn1—O1—O3147.64 (9)N1vi—N1—O1vi62.10 (5)
O2—O1—O361.20 (6)O1iii—N1—O1vi124.80 (6)
Zn1—O1—O4122.57 (8)O1xiii—N1—O1vi98.22 (7)
O2—O1—O460.16 (6)O2viii—N1—O1vi133.28 (8)
O3—O1—O459.21 (6)O1—N1—O1vi51.93 (6)
P1—O1—O1vi153.79 (11)Zn1—N1—O5viii102.34 (10)
O2—O1—O1vi129.18 (6)O3ix—N1—O5viii87.92 (8)
O3—O1—O1vi169.55 (7)O5vi—N1—O5viii106.77 (12)
O4—O1—O1vi124.77 (9)N1vi—N1—O5viii106.77 (12)
P1—O1—O5iv136.51 (9)O1iii—N1—O5viii71.91 (8)
Zn1—O1—O5iv99.32 (7)O1xiii—N1—O5viii125.59 (10)
O2—O1—O5iv165.34 (8)O2viii—N1—O5viii68.76 (7)
O3—O1—O5iv105.86 (7)O2vi—N1—O5viii164.79 (12)
O4—O1—O5iv120.96 (7)O1—N1—O5viii72.49 (8)
O1vi—O1—O5iv63.70 (6)O1vi—N1—O5viii123.13 (10)
P1—O1—N1iv136.51 (9)Zn1—N1—N1viii102.34 (10)
Zn1—O1—N1iv99.32 (7)O3ix—N1—N1viii87.92 (8)
O2—O1—N1iv165.34 (8)O5vi—N1—N1viii106.77 (12)
O3—O1—N1iv105.86 (7)N1vi—N1—N1viii106.77 (12)
O4—O1—N1iv120.96 (7)O1iii—N1—N1viii71.91 (8)
O1vi—O1—N1iv63.70 (6)O1xiii—N1—N1viii125.59 (10)
P1—O1—O5vii111.75 (9)O2viii—N1—N1viii68.76 (7)
Zn1—O1—O5vii97.13 (7)O2vi—N1—N1viii164.79 (12)
O2—O1—O5vii132.81 (8)O1—N1—N1viii72.49 (8)
O3—O1—O5vii113.54 (7)O1vi—N1—N1viii123.13 (10)
O4—O1—O5vii76.89 (7)Zn1—N1—O4xiii115.94 (8)
O1vi—O1—O5vii61.36 (5)O3ix—N1—O4xiii98.65 (7)
O5iv—O1—O5vii56.76 (7)O5vi—N1—O4xiii95.81 (8)
N1iv—O1—O5vii56.76 (7)N1vi—N1—O4xiii95.81 (8)
P1—O1—N1vii111.75 (9)O1iii—N1—O4xiii91.10 (7)
Zn1—O1—N1vii97.13 (7)O2viii—N1—O4xiii80.63 (6)
O2—O1—N1vii132.81 (8)O2vi—N1—O4xiii52.86 (5)
O3—O1—N1vii113.54 (7)O1—N1—O4xiii147.18 (7)
O4—O1—N1vii76.89 (7)O1vi—N1—O4xiii96.24 (6)
O1vi—O1—N1vii61.36 (5)O5viii—N1—O4xiii140.24 (10)
O5iv—O1—N1vii56.76 (7)N1viii—N1—O4xiii140.24 (10)
N1iv—O1—N1vii56.76 (7)Zn1—N1—O3viii164.32 (10)
P1—O1—N1114.99 (8)O3ix—N1—O3viii96.68 (7)
O2—O1—N181.54 (7)O5vi—N1—O3viii124.85 (4)
O3—O1—N1119.56 (8)N1vi—N1—O3viii124.85 (4)
O4—O1—N1137.30 (7)O1iii—N1—O3viii73.58 (6)
O1vi—O1—N165.16 (5)O1xiii—N1—O3viii67.47 (6)
O5iv—O1—N1100.95 (7)O2vi—N1—O3viii103.09 (7)
N1iv—O1—N1100.95 (7)O1—N1—O3viii161.11 (8)
O5vii—O1—N1126.47 (5)O1vi—N1—O3viii145.81 (7)
N1vii—O1—N1126.47 (5)O5viii—N1—O3viii88.66 (8)
P1—O1—O5vi95.27 (8)N1viii—N1—O3viii88.66 (8)
O2—O1—O5vi66.51 (6)O4xiii—N1—O3viii51.71 (4)
O3—O1—O5vi127.53 (7)Zn1—N1—P1viii171.52 (9)
O4—O1—O5vi91.55 (7)O3ix—N1—P1viii83.06 (6)
O1vi—O1—O5vi62.91 (5)O5vi—N1—P1viii141.56 (4)
O5iv—O1—O5vi126.56 (5)N1vi—N1—P1viii141.56 (4)
N1iv—O1—O5vi126.56 (5)O1iii—N1—P1viii80.60 (6)
O5vii—O1—O5vi98.22 (7)O1xiii—N1—P1viii89.81 (6)
N1vii—O1—O5vi98.22 (7)O2vi—N1—P1viii119.29 (7)
N1—O1—O5vi53.63 (7)O1—N1—P1viii139.26 (7)
P1—O1—N1vi95.27 (8)O1vi—N1—P1viii153.14 (7)
O2—O1—N1vi66.51 (6)O5viii—N1—P1viii69.42 (6)
O3—O1—N1vi127.53 (7)N1viii—N1—P1viii69.42 (6)
O4—O1—N1vi91.55 (7)O4xiii—N1—P1viii72.53 (5)
O1vi—O1—N1vi62.91 (5)Zn1—N1—H1113 (2)
O5iv—O1—N1vi126.56 (5)O5vi—N1—H1154 (2)
N1iv—O1—N1vi126.56 (5)N1vi—N1—H1154 (2)
O5vii—O1—N1vi98.22 (7)O1iii—N1—H1138 (2)
N1vii—O1—N1vi98.22 (7)O1xiii—N1—H1140 (2)
N1—O1—N1vi53.63 (7)O2vi—N1—H197 (2)
P1—O1—O2iv71.78 (6)O1—N1—H193 (2)
Zn1—O1—O2iv153.92 (7)O1vi—N1—H195 (2)
O2—O1—O2iv106.67 (7)O5viii—N1—H175 (2)
O3—O1—O2iv57.58 (5)N1viii—N1—H175 (2)
O4—O1—O2iv56.05 (5)O4xiii—N1—H198 (2)
O1vi—O1—O2iv115.20 (4)O3viii—N1—H181 (2)
O5iv—O1—O2iv67.96 (5)P1viii—N1—H164 (2)
N1iv—O1—O2iv67.96 (5)Zn1—N1—H2110 (2)
O5vii—O1—O2iv56.79 (5)O3ix—N1—H2129 (2)
N1vii—O1—O2iv56.79 (5)O5vi—N1—H285 (2)
N1—O1—O2iv165.04 (7)N1vi—N1—H285 (2)
O5vi—O1—O2iv140.95 (7)O1xiii—N1—H281 (2)
N1vi—O1—O2iv140.95 (7)O2viii—N1—H282 (2)
P1—O2—Zn2134.51 (9)O2vi—N1—H2149 (2)
Zn2—O2—O1153.44 (9)O1—N1—H296 (2)
Zn2—O2—O499.86 (7)O1vi—N1—H2140 (2)
O1—O2—O460.53 (6)O4xiii—N1—H2109 (2)
Zn2—O2—O3128.26 (8)O3viii—N1—H271 (2)
O1—O2—O359.47 (6)P1viii—N1—H266 (2)
O4—O2—O358.77 (6)H1—N1—H2111 (3)
P1—O2—O4ii102.93 (7)Zn1—N1—H3107 (2)
O1—O2—O4ii114.76 (7)O3ix—N1—H3103 (2)
O4—O2—O4ii66.66 (4)O5vi—N1—H387 (2)
O3—O2—O4ii118.20 (7)N1vi—N1—H387 (2)
P1—O2—O4iii159.89 (9)O1iii—N1—H390 (2)
O1—O2—O4iii138.31 (7)O2viii—N1—H390 (2)
O4—O2—O4iii126.31 (7)O2vi—N1—H347 (2)
O3—O2—O4iii162.17 (7)O1—N1—H3139 (2)
O4ii—O2—O4iii60.35 (4)O1vi—N1—H389 (2)
P1—O2—O3iii153.29 (9)O5viii—N1—H3148 (2)
Zn2—O2—O3iii65.78 (5)N1viii—N1—H3148 (2)
O1—O2—O3iii135.67 (7)O3viii—N1—H360 (2)
O4—O2—O3iii163.55 (7)P1viii—N1—H381 (2)
O3—O2—O3iii122.88 (7)H1—N1—H3105 (3)
O4ii—O2—O3iii102.06 (6)H2—N1—H3111 (3)
O4iii—O2—O3iii46.60 (4)
Symmetry codes: (i) x+1/2, y+1/2, z+2; (ii) x+1/2, y+1/2, z+3/2; (iii) x, y+1, z; (iv) x, y1, z; (v) x+1/2, y1/2, z+3/2; (vi) x, y, z+3/2; (vii) x, y1, z+3/2; (viii) x, y+1, z+2; (ix) x, y, z+2; (x) x, y, z+1/2; (xi) x+1/2, y1/2, z+2; (xii) x, y, z1/2; (xiii) x, y+1, z+3/2; (xiv) x+1/2, y+3/2, z+2.

Experimental details

Crystal data
Chemical formula[Zn3(PO4)2(H2O)0.8(NH3)1.2]
Mr420.90
Crystal system, space groupMonoclinic, C2/c
Temperature (K)294
a, b, c (Å)16.932 (3), 5.0171 (10), 10.564 (2)
β (°) 91.27 (3)
V3)897.2 (3)
Z4
Radiation typeMo Kα
µ (mm1)8.34
Crystal size (mm)0.15 × 0.13 × 0.08
Data collection
DiffractometerNonius KappaCCD diffractomer
Absorption correctionMulti-scan
(Otwinowski & Minor, 1997)
Tmin, Tmax0.298, 0.513
No. of measured, independent and
observed [I > 2σ(I)] reflections
1715, 913, 884
Rint0.011
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.014, 0.035, 1.13
No. of reflections913
No. of parameters79
No. of restraints5
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.34, 0.31

Computer programs: COLLECT (Nonius, 2002), HKL SCALEPACK (Otwinowski & Minor, 1997), DENZO-SMN (Otwinowski et al., 2003), SIR97 (Altomare et al., 1997), SHELXL97 (Sheldrick, 2008), WinGX (Farrugia, 1999), ATOMS (Dowty, 2000), publCIF (Westrip, 2010).

Selected bond lengths (Å) top
Zn1—O11.9548 (15)Zn2—O4iii1.9883 (15)
Zn1—N12.026 (2)P1—O11.5178 (15)
Zn2—O21.9073 (15)P1—O21.5213 (15)
Zn2—O3i1.9091 (15)P1—O31.5294 (14)
Zn2—O4ii1.9839 (14)P1—O41.5738 (15)
Symmetry codes: (i) x+1/2, y+1/2, z+2; (ii) x+1/2, y+1/2, z+3/2; (iii) x, y+1, z.
Table 2. Hydrogen bonds and electrostatic contacts (Å, °). top
D—H···AD—HH···AD···AD—H···A
N1/O5—H1···O3xii0.88 (1)2.17 (2)2.977 (3)151 (3)
N1/O5—H2···O1iv0.93 (2)2.39 (3)3.165 (3)140 (3)
N1/O5—H3···O1xiii0.89 (1)2.59 (3)3.232 (3)130 (3)
Symmetry codes: (iv) x, y+1, z; (xii) -x, -y, -z+2; (xiii) -x, y+1,-z+3/2
Table 3. Unit-cell parameters for three isostructural compounds. top
SampleBe3(PO4)2.2H2OaBe3(AsO4)2.2H2Ob[Zn(NH3)1.2(H2O)0.8(ZnPO4)2]c
a (Å)15.9640 (6)16.318 (2)16.932 (3)
b (Å)4.5842 (2)4.6664 (3)5.0171 (10)
c (Å)9.5320 (4)9.8755 (7)10.564 (2)
β (°)94.366 (2)93.777 (3)91.27 (3)
V (A3)695.5 (2)750.37 (2)897.2 (3)
References: (a) Gier et al. (1999); (b) Harrison et al. (1994): (c) this study.
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds