Supporting information
Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270105013375/fg1828sup1.cif | |
Structure factor file (CIF format) https://doi.org/10.1107/S0108270105013375/fg1828Isup2.hkl | |
Structure factor file (CIF format) https://doi.org/10.1107/S0108270105013375/fg1828IIsup3.hkl | |
Structure factor file (CIF format) https://doi.org/10.1107/S0108270105013375/fg1828IIIsup4.hkl |
CCDC references: 265293; 275508; 275509
Orange plate crystals of (I) were obtained by slow evaporation of a dimethylformamide (DMF) solution of a mixture of biq and PdCl2 (molar ratio 1:1) at room temperature. Red plate crystals of (II) were obtained by slow evaporation of a DMF solution of a mixture of biq and CuCl2·2H2O (molar ratio 1:1) at room temperature. Colourless plate crystals of (III) were obtained by slow evaporation of a DMF solution of a mixture of biq and ZnCl2 (molar ratio 1:1) at room temperature.
All H atoms were located in the difference Fourier maps and were then treated as riding, with C—H = 0.93 Å and with Uiso(H) = 1.2Ueq(C).
For all compounds, data collection: MSC/AFC Diffractometer Control Software (Molecular Structure Corporation, 1992); cell refinement: MSC/AFC Diffractometer Control Software; data reduction: TEXSAN (Molecular Structure Corporation & Rigaku, 2000); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: TEXSAN.
[PdCl2(C18H12N2)] | F(000) = 856 |
Mr = 433.62 | Dx = 1.802 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71069 Å |
Hall symbol: -P 2ybc | Cell parameters from 25 reflections |
a = 13.017 (4) Å | θ = 14.5–15.0° |
b = 7.726 (4) Å | µ = 1.49 mm−1 |
c = 15.972 (3) Å | T = 296 K |
β = 95.675 (19)° | Plate, orange |
V = 1598.4 (10) Å3 | 0.30 × 0.20 × 0.05 mm |
Z = 4 |
Rigaku AFC-5R diffractometer | 2724 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.043 |
Graphite monochromator | θmax = 27.5°, θmin = 2.6° |
ω/2θ scans | h = 0→16 |
Absorption correction: ψ scan (North et al., 1968) | k = 0→10 |
Tmin = 0.606, Tmax = 0.928 | l = −20→20 |
3825 measured reflections | 3 standard reflections every 150 reflections |
3669 independent reflections | intensity decay: 0.2% |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.027 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.076 | H-atom parameters constrained |
S = 1.03 | w = 1/[σ2(Fo2) + (0.034P)2 + 0.2227P] where P = (Fo2 + 2Fc2)/3 |
3669 reflections | (Δ/σ)max = 0.001 |
208 parameters | Δρmax = 0.40 e Å−3 |
0 restraints | Δρmin = −0.38 e Å−3 |
[PdCl2(C18H12N2)] | V = 1598.4 (10) Å3 |
Mr = 433.62 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 13.017 (4) Å | µ = 1.49 mm−1 |
b = 7.726 (4) Å | T = 296 K |
c = 15.972 (3) Å | 0.30 × 0.20 × 0.05 mm |
β = 95.675 (19)° |
Rigaku AFC-5R diffractometer | 2724 reflections with I > 2σ(I) |
Absorption correction: ψ scan (North et al., 1968) | Rint = 0.043 |
Tmin = 0.606, Tmax = 0.928 | 3 standard reflections every 150 reflections |
3825 measured reflections | intensity decay: 0.2% |
3669 independent reflections |
R[F2 > 2σ(F2)] = 0.027 | 0 restraints |
wR(F2) = 0.076 | H-atom parameters constrained |
S = 1.03 | Δρmax = 0.40 e Å−3 |
3669 reflections | Δρmin = −0.38 e Å−3 |
208 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Pd1 | 0.285333 (17) | 0.21575 (3) | 0.141722 (13) | 0.03799 (8) | |
Cl1 | 0.14692 (7) | 0.21821 (15) | 0.21894 (6) | 0.0683 (3) | |
Cl2 | 0.33172 (7) | 0.47385 (12) | 0.20474 (5) | 0.0555 (2) | |
N1 | 0.23319 (18) | 0.0243 (3) | 0.05765 (14) | 0.0385 (5) | |
N2 | 0.40119 (19) | 0.2113 (3) | 0.06532 (15) | 0.0377 (5) | |
C2 | 0.2670 (2) | 0.0633 (4) | −0.01699 (17) | 0.0387 (7) | |
C3 | 0.2131 (3) | 0.0121 (4) | −0.09382 (19) | 0.0465 (8) | |
H3 | 0.2365 | 0.0443 | −0.1447 | 0.056* | |
C4 | 0.1266 (3) | −0.0852 (5) | −0.0922 (2) | 0.0515 (8) | |
H4 | 0.0877 | −0.1134 | −0.1423 | 0.062* | |
C5 | 0.0951 (2) | −0.1436 (4) | −0.0154 (2) | 0.0454 (7) | |
C6 | 0.0107 (3) | −0.2572 (4) | −0.0102 (3) | 0.0575 (10) | |
H6 | −0.0288 | −0.2918 | −0.0590 | 0.069* | |
C7 | −0.0129 (3) | −0.3156 (5) | 0.0650 (3) | 0.0644 (11) | |
H7 | −0.0696 | −0.3879 | 0.0676 | 0.077* | |
C8 | 0.0466 (3) | −0.2690 (5) | 0.1391 (3) | 0.0630 (10) | |
H8 | 0.0313 | −0.3155 | 0.1901 | 0.076* | |
C9 | 0.1270 (3) | −0.1558 (5) | 0.1375 (2) | 0.0528 (8) | |
H9 | 0.1650 | −0.1233 | 0.1874 | 0.063* | |
C10 | 0.1524 (2) | −0.0883 (4) | 0.06021 (19) | 0.0408 (7) | |
C12 | 0.3660 (2) | 0.1568 (4) | −0.01144 (17) | 0.0388 (6) | |
C13 | 0.4245 (3) | 0.1758 (4) | −0.0807 (2) | 0.0511 (8) | |
H13 | 0.3986 | 0.1359 | −0.1335 | 0.061* | |
C14 | 0.5187 (3) | 0.2525 (4) | −0.0699 (2) | 0.0529 (9) | |
H14 | 0.5561 | 0.2704 | −0.1158 | 0.063* | |
C15 | 0.5596 (2) | 0.3050 (4) | 0.0110 (2) | 0.0477 (8) | |
C16 | 0.6583 (3) | 0.3816 (5) | 0.0269 (3) | 0.0600 (10) | |
H16 | 0.6977 | 0.4032 | −0.0175 | 0.072* | |
C17 | 0.6960 (3) | 0.4238 (5) | 0.1065 (3) | 0.0664 (11) | |
H17 | 0.7598 | 0.4781 | 0.1162 | 0.080* | |
C18 | 0.6390 (3) | 0.3858 (5) | 0.1743 (3) | 0.0647 (10) | |
H18 | 0.6671 | 0.4102 | 0.2288 | 0.078* | |
C19 | 0.5430 (3) | 0.3138 (5) | 0.1618 (2) | 0.0533 (9) | |
H19 | 0.5064 | 0.2886 | 0.2074 | 0.064* | |
C20 | 0.5000 (2) | 0.2780 (4) | 0.0798 (2) | 0.0427 (7) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Pd1 | 0.03819 (13) | 0.05016 (15) | 0.02575 (11) | −0.00225 (11) | 0.00383 (8) | −0.00049 (10) |
Cl1 | 0.0522 (5) | 0.1038 (8) | 0.0522 (5) | −0.0185 (5) | 0.0220 (4) | −0.0260 (5) |
Cl2 | 0.0711 (5) | 0.0562 (5) | 0.0410 (4) | −0.0122 (4) | 0.0148 (4) | −0.0075 (4) |
N1 | 0.0373 (12) | 0.0459 (15) | 0.0324 (12) | 0.0011 (11) | 0.0033 (10) | 0.0014 (11) |
N2 | 0.0411 (13) | 0.0381 (13) | 0.0344 (12) | 0.0027 (11) | 0.0062 (10) | 0.0066 (11) |
C2 | 0.0457 (16) | 0.0388 (16) | 0.0321 (14) | 0.0094 (13) | 0.0064 (12) | 0.0014 (12) |
C3 | 0.060 (2) | 0.0477 (19) | 0.0319 (15) | 0.0103 (16) | 0.0046 (14) | −0.0026 (13) |
C4 | 0.0545 (19) | 0.054 (2) | 0.0439 (17) | 0.0105 (16) | −0.0078 (15) | −0.0125 (15) |
C5 | 0.0414 (16) | 0.0377 (16) | 0.0561 (19) | 0.0096 (14) | −0.0008 (14) | −0.0119 (15) |
C6 | 0.0464 (19) | 0.045 (2) | 0.078 (3) | 0.0021 (15) | −0.0056 (18) | −0.0215 (18) |
C7 | 0.048 (2) | 0.049 (2) | 0.097 (3) | −0.0074 (17) | 0.014 (2) | −0.011 (2) |
C8 | 0.057 (2) | 0.061 (2) | 0.074 (3) | −0.0040 (19) | 0.0183 (19) | 0.009 (2) |
C9 | 0.0429 (17) | 0.066 (2) | 0.0496 (18) | −0.0052 (17) | 0.0027 (14) | 0.0063 (17) |
C10 | 0.0361 (15) | 0.0417 (17) | 0.0441 (16) | 0.0053 (13) | 0.0017 (12) | −0.0004 (13) |
C12 | 0.0466 (16) | 0.0367 (15) | 0.0339 (14) | 0.0078 (13) | 0.0083 (12) | 0.0038 (12) |
C13 | 0.068 (2) | 0.050 (2) | 0.0383 (16) | 0.0041 (17) | 0.0178 (15) | 0.0002 (14) |
C14 | 0.063 (2) | 0.047 (2) | 0.054 (2) | 0.0061 (16) | 0.0279 (17) | 0.0081 (15) |
C15 | 0.0447 (17) | 0.0378 (18) | 0.063 (2) | 0.0108 (14) | 0.0184 (15) | 0.0133 (15) |
C16 | 0.0494 (19) | 0.044 (2) | 0.089 (3) | 0.0065 (16) | 0.0212 (19) | 0.0169 (19) |
C17 | 0.0378 (18) | 0.057 (2) | 0.104 (3) | 0.0001 (17) | 0.004 (2) | 0.015 (2) |
C18 | 0.0477 (19) | 0.071 (3) | 0.071 (2) | −0.0032 (19) | −0.0119 (18) | 0.009 (2) |
C19 | 0.0460 (18) | 0.059 (2) | 0.0532 (19) | −0.0031 (16) | −0.0023 (15) | 0.0141 (16) |
C20 | 0.0415 (16) | 0.0380 (15) | 0.0487 (17) | 0.0058 (14) | 0.0058 (13) | 0.0104 (14) |
Pd1—N2 | 2.032 (2) | C8—C9 | 1.366 (5) |
Pd1—N1 | 2.067 (3) | C8—H8 | 0.93 |
Pd1—Cl1 | 2.2819 (10) | C9—C10 | 1.410 (4) |
Pd1—Cl2 | 2.2878 (13) | C9—H9 | 0.93 |
N1—C2 | 1.345 (3) | C12—C13 | 1.410 (4) |
N1—C10 | 1.368 (4) | C13—C14 | 1.358 (5) |
N2—C12 | 1.334 (4) | C13—H13 | 0.93 |
N2—C20 | 1.383 (4) | C14—C15 | 1.406 (5) |
C2—C3 | 1.408 (4) | C14—H14 | 0.93 |
C2—C12 | 1.473 (4) | C15—C16 | 1.415 (5) |
C3—C4 | 1.357 (5) | C15—C20 | 1.422 (4) |
C3—H3 | 0.93 | C16—C17 | 1.356 (5) |
C4—C5 | 1.405 (5) | C16—H16 | 0.93 |
C4—H4 | 0.93 | C17—C18 | 1.403 (5) |
C5—C6 | 1.415 (5) | C17—H17 | 0.93 |
C5—C10 | 1.422 (4) | C18—C19 | 1.364 (5) |
C6—C7 | 1.346 (6) | C18—H18 | 0.93 |
C6—H6 | 0.93 | C19—C20 | 1.401 (5) |
C7—C8 | 1.396 (6) | C19—H19 | 0.93 |
C7—H7 | 0.93 | ||
N2—Pd1—N1 | 79.24 (10) | C8—C9—C10 | 120.0 (3) |
N2—Pd1—Cl1 | 175.80 (7) | C8—C9—H9 | 120.0 |
N1—Pd1—Cl1 | 97.53 (7) | C10—C9—H9 | 120.0 |
N2—Pd1—Cl2 | 95.71 (8) | N1—C10—C9 | 120.6 (3) |
N1—Pd1—Cl2 | 164.82 (7) | N1—C10—C5 | 120.4 (3) |
Cl1—Pd1—Cl2 | 86.74 (3) | C9—C10—C5 | 118.9 (3) |
C2—N1—C10 | 119.2 (3) | N2—C12—C13 | 121.7 (3) |
C2—N1—Pd1 | 107.5 (2) | N2—C12—C2 | 115.4 (2) |
C10—N1—Pd1 | 129.75 (19) | C13—C12—C2 | 122.7 (3) |
C12—N2—C20 | 120.0 (3) | C14—C13—C12 | 119.7 (3) |
C12—N2—Pd1 | 110.48 (19) | C14—C13—H13 | 120.1 |
C20—N2—Pd1 | 128.8 (2) | C12—C13—H13 | 120.1 |
N1—C2—C3 | 122.1 (3) | C13—C14—C15 | 119.9 (3) |
N1—C2—C12 | 114.7 (2) | C13—C14—H14 | 120.1 |
C3—C2—C12 | 123.2 (3) | C15—C14—H14 | 120.1 |
C4—C3—C2 | 118.8 (3) | C14—C15—C16 | 122.7 (3) |
C4—C3—H3 | 120.6 | C14—C15—C20 | 118.7 (3) |
C2—C3—H3 | 120.6 | C16—C15—C20 | 118.5 (3) |
C3—C4—C5 | 120.6 (3) | C17—C16—C15 | 120.5 (3) |
C3—C4—H4 | 119.7 | C17—C16—H16 | 119.8 |
C5—C4—H4 | 119.7 | C15—C16—H16 | 119.8 |
C4—C5—C6 | 123.1 (3) | C16—C17—C18 | 120.2 (3) |
C4—C5—C10 | 118.1 (3) | C16—C17—H17 | 119.9 |
C6—C5—C10 | 118.8 (3) | C18—C17—H17 | 119.9 |
C7—C6—C5 | 120.5 (4) | C19—C18—C17 | 121.2 (4) |
C7—C6—H6 | 119.7 | C19—C18—H18 | 119.4 |
C5—C6—H6 | 119.7 | C17—C18—H18 | 119.4 |
C6—C7—C8 | 120.9 (4) | C18—C19—C20 | 119.6 (3) |
C6—C7—H7 | 119.6 | C18—C19—H19 | 120.2 |
C8—C7—H7 | 119.6 | C20—C19—H19 | 120.2 |
C9—C8—C7 | 120.7 (4) | N2—C20—C19 | 120.6 (3) |
C9—C8—H8 | 119.6 | N2—C20—C15 | 119.7 (3) |
C7—C8—H8 | 119.6 | C19—C20—C15 | 119.7 (3) |
[CuCl2(C18H12N2)] | F(000) = 788 |
Mr = 390.75 | Dx = 1.629 Mg m−3 |
Monoclinic, C2/c | Mo Kα radiation, λ = 0.71069 Å |
Hall symbol: -C 2yc | Cell parameters from 24 reflections |
a = 19.430 (3) Å | θ = 11.0–14.5° |
b = 8.528 (2) Å | µ = 1.71 mm−1 |
c = 11.884 (3) Å | T = 296 K |
β = 125.991 (10)° | Plate, red |
V = 1593.2 (6) Å3 | 0.30 × 0.10 × 0.10 mm |
Z = 4 |
Rigaku AFC-5R diffractometer | 1032 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.062 |
Graphite monochromator | θmax = 27.5°, θmin = 2.6° |
ω/2θ scans | h = 0→25 |
Absorption correction: ψ scan (North et al., 1968) | k = 0→11 |
Tmin = 0.715, Tmax = 0.843 | l = −15→12 |
1877 measured reflections | 3 standard reflections every 150 reflections |
1825 independent reflections | intensity decay: 0.0% |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.045 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.131 | H-atom parameters constrained |
S = 0.99 | w = 1/[σ2(Fo2) + (0.0586P)2] where P = (Fo2 + 2Fc2)/3 |
1825 reflections | (Δ/σ)max < 0.001 |
105 parameters | Δρmax = 0.70 e Å−3 |
0 restraints | Δρmin = −0.71 e Å−3 |
[CuCl2(C18H12N2)] | V = 1593.2 (6) Å3 |
Mr = 390.75 | Z = 4 |
Monoclinic, C2/c | Mo Kα radiation |
a = 19.430 (3) Å | µ = 1.71 mm−1 |
b = 8.528 (2) Å | T = 296 K |
c = 11.884 (3) Å | 0.30 × 0.10 × 0.10 mm |
β = 125.991 (10)° |
Rigaku AFC-5R diffractometer | 1032 reflections with I > 2σ(I) |
Absorption correction: ψ scan (North et al., 1968) | Rint = 0.062 |
Tmin = 0.715, Tmax = 0.843 | 3 standard reflections every 150 reflections |
1877 measured reflections | intensity decay: 0.0% |
1825 independent reflections |
R[F2 > 2σ(F2)] = 0.045 | 0 restraints |
wR(F2) = 0.131 | H-atom parameters constrained |
S = 0.99 | Δρmax = 0.70 e Å−3 |
1825 reflections | Δρmin = −0.71 e Å−3 |
105 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Cu1 | 0.5000 | 0.24318 (8) | 0.7500 | 0.0363 (2) | |
Cl1 | 0.39305 (8) | 0.40667 (14) | 0.61503 (14) | 0.0539 (4) | |
N1 | 0.55076 (19) | 0.0667 (4) | 0.7110 (3) | 0.0294 (7) | |
C2 | 0.5286 (2) | −0.0743 (5) | 0.7269 (4) | 0.0278 (8) | |
C3 | 0.5560 (3) | −0.2142 (5) | 0.7026 (5) | 0.0381 (10) | |
H3 | 0.5392 | −0.3110 | 0.7147 | 0.046* | |
C4 | 0.6079 (3) | −0.2048 (5) | 0.6609 (5) | 0.0403 (10) | |
H4 | 0.6274 | −0.2962 | 0.6457 | 0.048* | |
C5 | 0.6321 (3) | −0.0592 (5) | 0.6406 (4) | 0.0336 (9) | |
C6 | 0.6845 (3) | −0.0422 (6) | 0.5947 (5) | 0.0429 (11) | |
H6 | 0.7059 | −0.1307 | 0.5793 | 0.051* | |
C7 | 0.7036 (3) | 0.1025 (6) | 0.5732 (5) | 0.0481 (12) | |
H7 | 0.7382 | 0.1123 | 0.5434 | 0.058* | |
C8 | 0.6720 (3) | 0.2370 (6) | 0.5951 (5) | 0.0431 (10) | |
H8 | 0.6851 | 0.3350 | 0.5781 | 0.052* | |
C9 | 0.6220 (3) | 0.2271 (5) | 0.6412 (5) | 0.0380 (10) | |
H9 | 0.6018 | 0.3176 | 0.6563 | 0.046* | |
C10 | 0.6015 (2) | 0.0782 (5) | 0.6654 (4) | 0.0317 (9) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cu1 | 0.0430 (4) | 0.0179 (3) | 0.0545 (5) | 0.000 | 0.0322 (4) | 0.000 |
Cl1 | 0.0620 (8) | 0.0345 (6) | 0.0612 (8) | 0.0182 (6) | 0.0340 (7) | 0.0074 (6) |
N1 | 0.0294 (16) | 0.0233 (16) | 0.0341 (18) | −0.0005 (14) | 0.0179 (15) | 0.0000 (14) |
C2 | 0.0297 (19) | 0.0251 (19) | 0.029 (2) | 0.0019 (16) | 0.0173 (18) | 0.0010 (16) |
C3 | 0.049 (3) | 0.023 (2) | 0.047 (3) | 0.0023 (18) | 0.031 (2) | 0.0007 (18) |
C4 | 0.045 (2) | 0.031 (2) | 0.046 (3) | 0.0062 (19) | 0.028 (2) | −0.003 (2) |
C5 | 0.030 (2) | 0.038 (2) | 0.030 (2) | 0.0038 (18) | 0.0159 (19) | 0.0003 (19) |
C6 | 0.047 (3) | 0.044 (3) | 0.045 (3) | 0.006 (2) | 0.031 (2) | −0.002 (2) |
C7 | 0.038 (2) | 0.064 (3) | 0.052 (3) | 0.000 (2) | 0.031 (2) | 0.002 (3) |
C8 | 0.043 (2) | 0.040 (2) | 0.051 (3) | 0.000 (2) | 0.030 (2) | 0.007 (2) |
C9 | 0.039 (2) | 0.031 (2) | 0.051 (3) | −0.0004 (18) | 0.030 (2) | 0.002 (2) |
C10 | 0.030 (2) | 0.032 (2) | 0.031 (2) | 0.0002 (17) | 0.0165 (19) | 0.0015 (17) |
Cu1—N1i | 1.997 (3) | C4—H4 | 0.93 |
Cu1—N1 | 1.997 (3) | C5—C6 | 1.416 (6) |
Cu1—Cl1i | 2.2175 (13) | C5—C10 | 1.422 (6) |
Cu1—Cl1 | 2.2175 (13) | C6—C7 | 1.356 (7) |
N1—C2 | 1.328 (5) | C6—H6 | 0.93 |
N1—C10 | 1.379 (5) | C7—C8 | 1.395 (7) |
C2—C3 | 1.404 (5) | C7—H7 | 0.93 |
C2—C2i | 1.500 (7) | C8—C9 | 1.370 (6) |
C3—C4 | 1.361 (6) | C8—H8 | 0.93 |
C3—H3 | 0.93 | C9—C10 | 1.410 (6) |
C4—C5 | 1.398 (6) | C9—H9 | 0.93 |
N1i—Cu1—N1 | 82.24 (18) | C4—C5—C6 | 123.3 (4) |
N1i—Cu1—Cl1i | 133.34 (10) | C4—C5—C10 | 118.2 (4) |
N1—Cu1—Cl1i | 105.13 (10) | C6—C5—C10 | 118.5 (4) |
N1i—Cu1—Cl1 | 105.13 (10) | C7—C6—C5 | 120.3 (4) |
N1—Cu1—Cl1 | 133.34 (10) | C7—C6—H6 | 119.8 |
Cl1i—Cu1—Cl1 | 102.09 (8) | C5—C6—H6 | 119.8 |
C2—N1—C10 | 119.2 (3) | C6—C7—C8 | 120.9 (4) |
C2—N1—Cu1 | 113.8 (2) | C6—C7—H7 | 119.6 |
C10—N1—Cu1 | 127.0 (3) | C8—C7—H7 | 119.6 |
N1—C2—C3 | 123.1 (3) | C9—C8—C7 | 121.2 (4) |
N1—C2—C2i | 115.1 (2) | C9—C8—H8 | 119.4 |
C3—C2—C2i | 121.9 (2) | C7—C8—H8 | 119.4 |
C4—C3—C2 | 118.5 (4) | C8—C9—C10 | 119.3 (4) |
C4—C3—H3 | 120.8 | C8—C9—H9 | 120.4 |
C2—C3—H3 | 120.8 | C10—C9—H9 | 120.4 |
C3—C4—C5 | 120.8 (4) | N1—C10—C9 | 119.8 (4) |
C3—C4—H4 | 119.6 | N1—C10—C5 | 120.3 (4) |
C5—C4—H4 | 119.6 | C9—C10—C5 | 119.8 (4) |
Symmetry code: (i) −x+1, y, −z+3/2. |
[ZnCl2(C18H12N2)] | F(000) = 792 |
Mr = 392.59 | Dx = 1.620 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71069 Å |
Hall symbol: -P 2yn | Cell parameters from 24 reflections |
a = 7.986 (2) Å | θ = 11.6–14.7° |
b = 12.257 (6) Å | µ = 1.86 mm−1 |
c = 16.8390 (16) Å | T = 296 K |
β = 102.464 (13)° | Plate, colourless |
V = 1609.4 (9) Å3 | 0.50 × 0.20 × 0.05 mm |
Z = 4 |
Rigaku AFC-5R diffractometer | 1835 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.044 |
Graphite monochromator | θmax = 27.5°, θmin = 2.6° |
ω/2θ scans | h = 0→10 |
Absorption correction: ψ scan (North et al., 1968) | k = 0→15 |
Tmin = 0.547, Tmax = 0.911 | l = −21→21 |
3943 measured reflections | 3 standard reflections every 150 reflections |
3686 independent reflections | intensity decay: 1.2% |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.044 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.122 | H-atom parameters constrained |
S = 0.96 | w = 1/[σ2(Fo2) + (0.0437P)2] where P = (Fo2 + 2Fc2)/3 |
3686 reflections | (Δ/σ)max < 0.001 |
208 parameters | Δρmax = 0.41 e Å−3 |
0 restraints | Δρmin = −0.40 e Å−3 |
[ZnCl2(C18H12N2)] | V = 1609.4 (9) Å3 |
Mr = 392.59 | Z = 4 |
Monoclinic, P21/n | Mo Kα radiation |
a = 7.986 (2) Å | µ = 1.86 mm−1 |
b = 12.257 (6) Å | T = 296 K |
c = 16.8390 (16) Å | 0.50 × 0.20 × 0.05 mm |
β = 102.464 (13)° |
Rigaku AFC-5R diffractometer | 1835 reflections with I > 2σ(I) |
Absorption correction: ψ scan (North et al., 1968) | Rint = 0.044 |
Tmin = 0.547, Tmax = 0.911 | 3 standard reflections every 150 reflections |
3943 measured reflections | intensity decay: 1.2% |
3686 independent reflections |
R[F2 > 2σ(F2)] = 0.044 | 0 restraints |
wR(F2) = 0.122 | H-atom parameters constrained |
S = 0.96 | Δρmax = 0.41 e Å−3 |
3686 reflections | Δρmin = −0.40 e Å−3 |
208 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Zn1 | 0.33341 (7) | 0.22824 (5) | 0.35773 (3) | 0.04252 (17) | |
Cl1 | 0.44286 (18) | 0.15916 (11) | 0.25920 (7) | 0.0610 (4) | |
Cl2 | 0.07082 (17) | 0.29680 (12) | 0.32675 (8) | 0.0643 (4) | |
N1 | 0.3555 (4) | 0.1379 (3) | 0.46332 (19) | 0.0358 (8) | |
N2 | 0.5064 (4) | 0.3240 (3) | 0.43591 (19) | 0.0354 (8) | |
C2 | 0.4368 (5) | 0.1918 (4) | 0.5283 (2) | 0.0370 (10) | |
C3 | 0.4389 (6) | 0.1534 (4) | 0.6076 (3) | 0.0455 (12) | |
H3 | 0.4964 | 0.1923 | 0.6527 | 0.068* | |
C4 | 0.3570 (6) | 0.0597 (4) | 0.6175 (3) | 0.0486 (12) | |
H4 | 0.3565 | 0.0352 | 0.6697 | 0.073* | |
C5 | 0.2725 (6) | −0.0012 (4) | 0.5500 (3) | 0.0407 (11) | |
C6 | 0.1841 (6) | −0.1007 (4) | 0.5545 (3) | 0.0540 (13) | |
H6 | 0.1824 | −0.1305 | 0.6051 | 0.081* | |
C7 | 0.1024 (6) | −0.1530 (4) | 0.4865 (4) | 0.0559 (14) | |
H7 | 0.0430 | −0.2172 | 0.4909 | 0.084* | |
C8 | 0.1065 (6) | −0.1108 (4) | 0.4086 (3) | 0.0567 (14) | |
H8 | 0.0517 | −0.1482 | 0.3622 | 0.085* | |
C9 | 0.1900 (6) | −0.0159 (4) | 0.4014 (3) | 0.0449 (11) | |
H9 | 0.1927 | 0.0112 | 0.3501 | 0.067* | |
C10 | 0.2730 (6) | 0.0418 (4) | 0.4715 (3) | 0.0400 (11) | |
C12 | 0.5308 (5) | 0.2910 (4) | 0.5129 (2) | 0.0367 (10) | |
C13 | 0.6445 (6) | 0.3460 (4) | 0.5761 (3) | 0.0444 (11) | |
H13 | 0.6588 | 0.3224 | 0.6297 | 0.067* | |
C14 | 0.7328 (6) | 0.4338 (4) | 0.5577 (3) | 0.0481 (12) | |
H14 | 0.8079 | 0.4703 | 0.5991 | 0.072* | |
C15 | 0.7123 (6) | 0.4708 (4) | 0.4762 (3) | 0.0418 (11) | |
C16 | 0.7996 (6) | 0.5607 (4) | 0.4537 (3) | 0.0560 (14) | |
H16 | 0.8768 | 0.5991 | 0.4930 | 0.084* | |
C17 | 0.7719 (7) | 0.5923 (5) | 0.3741 (4) | 0.0657 (16) | |
H17 | 0.8310 | 0.6516 | 0.3594 | 0.099* | |
C18 | 0.6540 (8) | 0.5351 (4) | 0.3144 (3) | 0.0630 (16) | |
H18 | 0.6359 | 0.5574 | 0.2605 | 0.095* | |
C19 | 0.5656 (7) | 0.4473 (4) | 0.3342 (3) | 0.0532 (13) | |
H19 | 0.4871 | 0.4109 | 0.2941 | 0.080* | |
C20 | 0.5941 (6) | 0.4122 (4) | 0.4160 (3) | 0.0399 (11) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Zn1 | 0.0501 (3) | 0.0482 (3) | 0.0265 (2) | −0.0026 (3) | 0.0022 (2) | 0.0004 (3) |
Cl1 | 0.0777 (9) | 0.0727 (9) | 0.0315 (6) | 0.0129 (8) | 0.0091 (6) | −0.0043 (6) |
Cl2 | 0.0536 (8) | 0.0792 (10) | 0.0540 (8) | 0.0115 (7) | −0.0020 (6) | 0.0057 (7) |
N1 | 0.037 (2) | 0.042 (2) | 0.0274 (17) | 0.0070 (17) | 0.0049 (15) | 0.0021 (15) |
N2 | 0.038 (2) | 0.039 (2) | 0.0285 (17) | −0.0006 (17) | 0.0038 (15) | −0.0002 (16) |
C2 | 0.036 (2) | 0.041 (3) | 0.032 (2) | 0.0102 (19) | 0.0034 (18) | −0.0003 (18) |
C3 | 0.053 (3) | 0.052 (3) | 0.028 (2) | 0.009 (2) | 0.003 (2) | 0.004 (2) |
C4 | 0.060 (3) | 0.050 (3) | 0.039 (3) | 0.005 (3) | 0.016 (2) | 0.010 (2) |
C5 | 0.042 (3) | 0.037 (3) | 0.045 (3) | 0.011 (2) | 0.015 (2) | 0.008 (2) |
C6 | 0.050 (3) | 0.053 (3) | 0.065 (3) | 0.008 (3) | 0.024 (3) | 0.015 (3) |
C7 | 0.048 (3) | 0.044 (3) | 0.082 (4) | −0.002 (2) | 0.027 (3) | 0.002 (3) |
C8 | 0.046 (3) | 0.056 (3) | 0.068 (4) | −0.004 (3) | 0.013 (3) | −0.014 (3) |
C9 | 0.040 (3) | 0.049 (3) | 0.046 (3) | −0.004 (2) | 0.009 (2) | −0.006 (2) |
C10 | 0.036 (3) | 0.043 (3) | 0.043 (3) | 0.009 (2) | 0.011 (2) | 0.000 (2) |
C12 | 0.036 (2) | 0.044 (3) | 0.029 (2) | 0.007 (2) | 0.0040 (17) | −0.0027 (19) |
C13 | 0.042 (3) | 0.046 (3) | 0.040 (2) | 0.010 (2) | −0.002 (2) | 0.001 (2) |
C14 | 0.038 (3) | 0.052 (3) | 0.049 (3) | 0.007 (2) | −0.003 (2) | −0.007 (2) |
C15 | 0.029 (2) | 0.042 (3) | 0.053 (3) | 0.001 (2) | 0.008 (2) | −0.006 (2) |
C16 | 0.044 (3) | 0.056 (3) | 0.069 (4) | −0.005 (3) | 0.016 (3) | −0.011 (3) |
C17 | 0.069 (4) | 0.054 (4) | 0.087 (4) | −0.002 (3) | 0.045 (4) | −0.004 (3) |
C18 | 0.089 (4) | 0.051 (3) | 0.058 (3) | −0.006 (3) | 0.035 (3) | 0.004 (3) |
C19 | 0.064 (3) | 0.057 (3) | 0.039 (3) | −0.003 (3) | 0.015 (2) | 0.003 (2) |
C20 | 0.039 (3) | 0.042 (3) | 0.040 (2) | 0.003 (2) | 0.011 (2) | −0.004 (2) |
Zn1—N2 | 2.058 (3) | C8—C9 | 1.360 (7) |
Zn1—N1 | 2.070 (3) | C8—H8 | 0.93 |
Zn1—Cl1 | 2.2044 (14) | C9—C10 | 1.413 (6) |
Zn1—Cl2 | 2.2143 (15) | C9—H9 | 0.93 |
N1—C2 | 1.322 (5) | C12—C13 | 1.412 (6) |
N1—C10 | 1.371 (6) | C13—C14 | 1.359 (6) |
N2—C12 | 1.332 (5) | C13—H13 | 0.93 |
N2—C20 | 1.368 (6) | C14—C15 | 1.420 (7) |
C2—C3 | 1.413 (6) | C14—H14 | 0.93 |
C2—C12 | 1.481 (6) | C15—C16 | 1.400 (7) |
C3—C4 | 1.349 (6) | C15—C20 | 1.422 (6) |
C3—H3 | 0.93 | C16—C17 | 1.366 (7) |
C4—C5 | 1.405 (7) | C16—H16 | 0.93 |
C4—H4 | 0.93 | C17—C18 | 1.407 (8) |
C5—C6 | 1.420 (7) | C17—H17 | 0.93 |
C5—C10 | 1.423 (6) | C18—C19 | 1.367 (7) |
C6—C7 | 1.350 (7) | C18—H18 | 0.93 |
C6—H6 | 0.93 | C19—C20 | 1.413 (6) |
C7—C8 | 1.417 (7) | C19—H19 | 0.93 |
C7—H7 | 0.93 | ||
N2—Zn1—N1 | 80.49 (14) | C8—C9—C10 | 120.3 (5) |
N2—Zn1—Cl1 | 112.34 (11) | C8—C9—H9 | 119.9 |
N1—Zn1—Cl1 | 117.83 (11) | C10—C9—H9 | 119.9 |
N2—Zn1—Cl2 | 113.89 (11) | N1—C10—C9 | 119.6 (4) |
N1—Zn1—Cl2 | 107.84 (10) | N1—C10—C5 | 120.6 (4) |
Cl1—Zn1—Cl2 | 118.53 (5) | C9—C10—C5 | 119.7 (4) |
C2—N1—C10 | 120.4 (4) | N2—C12—C13 | 121.6 (4) |
C2—N1—Zn1 | 112.3 (3) | N2—C12—C2 | 116.5 (4) |
C10—N1—Zn1 | 126.3 (3) | C13—C12—C2 | 121.9 (4) |
C12—N2—C20 | 120.2 (4) | C14—C13—C12 | 119.1 (4) |
C12—N2—Zn1 | 112.7 (3) | C14—C13—H13 | 120.4 |
C20—N2—Zn1 | 127.0 (3) | C12—C13—H13 | 120.4 |
N1—C2—C3 | 121.3 (4) | C13—C14—C15 | 121.0 (4) |
N1—C2—C12 | 116.3 (4) | C13—C14—H14 | 119.5 |
C3—C2—C12 | 122.4 (4) | C15—C14—H14 | 119.5 |
C4—C3—C2 | 119.6 (4) | C16—C15—C14 | 123.6 (5) |
C4—C3—H3 | 120.2 | C16—C15—C20 | 119.8 (5) |
C2—C3—H3 | 120.2 | C14—C15—C20 | 116.7 (4) |
C3—C4—C5 | 120.9 (4) | C17—C16—C15 | 120.3 (5) |
C3—C4—H4 | 119.6 | C17—C16—H16 | 119.8 |
C5—C4—H4 | 119.6 | C15—C16—H16 | 119.8 |
C4—C5—C6 | 124.8 (5) | C16—C17—C18 | 120.1 (5) |
C4—C5—C10 | 117.2 (4) | C16—C17—H17 | 120.0 |
C6—C5—C10 | 118.0 (5) | C18—C17—H17 | 120.0 |
C7—C6—C5 | 121.2 (5) | C19—C18—C17 | 121.3 (5) |
C7—C6—H6 | 119.4 | C19—C18—H18 | 119.4 |
C5—C6—H6 | 119.4 | C17—C18—H18 | 119.4 |
C6—C7—C8 | 120.5 (5) | C18—C19—C20 | 119.6 (5) |
C6—C7—H7 | 119.7 | C18—C19—H19 | 120.2 |
C8—C7—H7 | 119.7 | C20—C19—H19 | 120.2 |
C9—C8—C7 | 120.3 (5) | N2—C20—C19 | 119.8 (4) |
C9—C8—H8 | 119.9 | N2—C20—C15 | 121.3 (4) |
C7—C8—H8 | 119.8 | C19—C20—C15 | 118.9 (4) |
Experimental details
(I) | (II) | (III) | |
Crystal data | |||
Chemical formula | [PdCl2(C18H12N2)] | [CuCl2(C18H12N2)] | [ZnCl2(C18H12N2)] |
Mr | 433.62 | 390.75 | 392.59 |
Crystal system, space group | Monoclinic, P21/c | Monoclinic, C2/c | Monoclinic, P21/n |
Temperature (K) | 296 | 296 | 296 |
a, b, c (Å) | 13.017 (4), 7.726 (4), 15.972 (3) | 19.430 (3), 8.528 (2), 11.884 (3) | 7.986 (2), 12.257 (6), 16.8390 (16) |
β (°) | 95.675 (19) | 125.991 (10) | 102.464 (13) |
V (Å3) | 1598.4 (10) | 1593.2 (6) | 1609.4 (9) |
Z | 4 | 4 | 4 |
Radiation type | Mo Kα | Mo Kα | Mo Kα |
µ (mm−1) | 1.49 | 1.71 | 1.86 |
Crystal size (mm) | 0.30 × 0.20 × 0.05 | 0.30 × 0.10 × 0.10 | 0.50 × 0.20 × 0.05 |
Data collection | |||
Diffractometer | Rigaku AFC-5R diffractometer | Rigaku AFC-5R diffractometer | Rigaku AFC-5R diffractometer |
Absorption correction | ψ scan (North et al., 1968) | ψ scan (North et al., 1968) | ψ scan (North et al., 1968) |
Tmin, Tmax | 0.606, 0.928 | 0.715, 0.843 | 0.547, 0.911 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 3825, 3669, 2724 | 1877, 1825, 1032 | 3943, 3686, 1835 |
Rint | 0.043 | 0.062 | 0.044 |
(sin θ/λ)max (Å−1) | 0.650 | 0.650 | 0.650 |
Refinement | |||
R[F2 > 2σ(F2)], wR(F2), S | 0.027, 0.076, 1.03 | 0.045, 0.131, 0.99 | 0.044, 0.122, 0.96 |
No. of reflections | 3669 | 1825 | 3686 |
No. of parameters | 208 | 105 | 208 |
H-atom treatment | H-atom parameters constrained | H-atom parameters constrained | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.40, −0.38 | 0.70, −0.71 | 0.41, −0.40 |
Computer programs: MSC/AFC Diffractometer Control Software (Molecular Structure Corporation, 1992), MSC/AFC Diffractometer Control Software, TEXSAN (Molecular Structure Corporation & Rigaku, 2000), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 1997), ORTEPII (Johnson, 1976), TEXSAN.
Parameter | (I) | (II) | (III) |
M—N1 | 2.067 (3) | 1.997 (3) | 2.070 (3) |
M—N2 | 2.032 (2) | 2.058 (3) | |
M—Cl1 | 2.2819 (10) | 2.2175 (13) | 2.2044 (14) |
M—Cl2 | 2.2878 (13) | 2.2143 (15) | |
N—M—N | 79.24 (10) | 82.24 (18) | 80.49 (14) |
Cl—M—Cl | 86.74 (3) | 102.09 (8) | 118.53 (5) |
M = Pd in (I), Cu in (II) and Zn in (III). |
D—H···A | D—H | H···A | D···A | D—H···A | |
(I) | C3—H3···Cl2i | 0.93 | 2.82 | 3.705 (3) | 161 |
C13—H13···Cl2i | 0.93 | 2.78 | 3.705 (4) | 176 | |
(III) | C13—H13···Cl1ii | 0.93 | 2.80 | 3.466 (5) | 130 |
Symmetry codes: (i) x, 1/2 − y, −1/2 − z; (ii) 1/2 + x, 1/2 − y, 1/2 + z. |
Subscribe to Acta Crystallographica Section C: Structural Chemistry
The full text of this article is available to subscribers to the journal.
- Information on subscribing
- Sample issue
- Purchase subscription
- Reduced-price subscriptions
- If you have already subscribed, you may need to register
PtII complexes, such as cis-diamminedichloroplatinum(II) (cisplatin), cis-[(H3N)2PtCl2] (Rosenberg et al., 1969), cis-diammine(1,1-cyclobutanedicarboxylato)platinum(II) (carboplatin), cis-[(H3N)2Pt(C6H3O4)] and (trans-R,R-cyclohexane-1,2-diamineoxalato)platinum(II) (oxaliplatin), [(C6H12N2)Pt(C2O4)] (Wong & Giadomenico, 1999), are well known as therapeutic anticancer drugs (Jakupec et al., 2003). As a consequence of the similar coordination behaviour of PdII and PtII, PdII complexes have been treated as ideal models for studies of square-planar complexes (Rau & van Eldik, 1996) such as [Pd(en)Cl2] (en is ethylenediamine) and cis-[Pd(NH3)2Cl2], and much interest has been focused on the creation of new antitumour PdII complexes, such as [Pd(asme)2] (asme is an anionic form of the acetone Schiff base of S-methyldithiocarbazate; Ali et al., 2002) or [Pd(bpy)(cbdca)] (bpy is 2,2'-bipyridine and cbdca is 1,1-cyclobutanedicarboxylate; Mansuri-Torshizi et al., 2001).
We have previously synthesized mixed-ligand PdII complexes of a cis-square-planar coordination geometry with N and O ligand atoms and have determined their structures, e.g. [Pd(bd)(phen)] (bd is 1,2-benzenediol and phen is 1,10-phenanthroline; Okabe et al., 2003), [Pd(nad)(bpy)] (nad is 2,3-naphthalenediol and bpy is 2,2'-bipyridine), [Pd(nad)(biq)] (biq is 2,2'-biquinoline; Okabe et al., 2004) or [Pd(cbdca)(bpy)] and [Pd(cbdca)(phen)] (Muranishi & Okabe, 2004). The complex of PdII with the heterocyclic N,N'-bidentate ligand biq, [Pd(biq)(en)](ClO4)2 (en is ethylenediamine), shows antitumour activity (Cusmano & Giannetto, 1997).
It is important to clarify whether the transition metals CuII and ZnII have a cis-square-planar coordination geometry with the same ligands as the PdII or PtII complexes, since CuII and ZnII are also able to have a square-planar [see, for example, Koman et al. (1998), Fun et al. (2002) and Liu et al. (2002) for CuII, and Wu (2004) and Dastidar & Goldberg (1996) for ZnII] or tetrahedral coordination geometry [see, for example, Malkov et al. (2001), Małecka et al. (1998) and Dessy & Fares (1985) for CuII, and Zhu et al. (2002) and Halvorsen et al. (1995) for ZnII]. Furthermore, both CuII and ZnII have many important biological functions as cofactors in enzymes, or antimicrobial activity as complexes (Okide et al., 2000; Patel et al., 1999).
In this study, the structures of PdII, CuII and ZnII complexes with biq and Cl− ligands have been characterized, as [PdCl2(biq)], (I), [CuCl2(biq)], (II), and [ZnCl2(biq)], (III), and these are shown in Figs. 1, 2 and 3, respectively. Selected coordination bond distances and angles are shown in Table 1. A search of the February 2005 release of the Cambridge Structural Database (Allen, 2002) for relevant MN2Cl2 complexes (error-free, non-disordered, R < 0.05) gave 94, 100 and 37 hits for M = Pd, Cu and Zn, respectively. Analysis with VISTA (Reference?) gave the following distance ranges and mean values (Å): Pd—N 2.000–2.114, 2.034; Pd—Cl 2.262–2.331, 2.994; Cu—N 1.948–2.106, 2.105; Cu—Cl 2.186–2.498, 2.286; Zn—N 2.009–2.138, 2.056; Zn—Cl 2.171–2.290, 2.217. The dimensions in Table 1 are in entirely in accord with these known dimensions.
The coordination geometry around the central metal PdII atom of (I) is remarkably different from those in (II) and (III). In (I), the PdII atom has a distorted cis-square-planar coordination geometry, whereas in (II) and (III), the CuII and ZnII atoms have a distorted tetrahedral geometry. The dihedral angles between the N—M—N and Cl—M—Cl planes are 14.53 (13), 65.42 (15) and 85.19 (9)° for (I), (II) and (III), respectively.
In (I), the overall structure is not planar. The PdII and two Cl atoms deviate from the mean plane formed through atoms N1/C2/C12/N2 in the same direction, by 0.810 (4) Å for Pd1, 1.739 (8) Å for Cl1 and 2.128 (7) Å for Cl2. As a result of this distortion, the five-membered ring (Pd/N1/C2/C12/N2) forms a half-chair with PdII as the flap. This deviation seems to be caused by the intramolecular steric hindrance between biq moieties (C9—H9 and C19—H19) and Cl atoms (Cl1 and Cl2), as reflected by the relatively short Cl1···H9 and Cl2···H19 separations of 2.70 Å and 2.68 Å, respectively. The two quinoline rings of the biq ligand of (I) are bowed in the same direction, like two wings, with a dihedral angle of 17.81 (8) Å.
In (II) and (III), the deviations of the central metal atoms from the mean plane (N1/C2/C12/N2) are zero for CuII and 0.267 (7) Å for ZnII, as the five-membered rings (M/N1/C2/C12/N2) of (II) and (III) form a planar and a slight half-chair form for M = CuII and M = ZnII, respectively. The Cl···H separations are Cl1···H9(1 − x,y,3/2 − z) [= Cl1(1 − x,y,3/2 − z)···H9] 2.77 Å in (II), and Cl1···H19 3.15 Å and Cl2···H9 3.63 Å in (III). The dihedral angles between the quinoline rings in the biq ligand are 1.4 (2) and 10.3 (2) Å for (II) and (III), respectively. These indicate that the conformation of the biq ligand of (II) is almost planar, while that of (III) is slightly bowed.
Figs. 4, 5 and 6 show the crystal packing of complexes (I), (II) and (III), respectively. The crystal structures of the three complexes are stabilized by π–π interactions between inversion-related biq ligands. In (I) and (III), C—H···Cl hydrogen bonds are present (Table 2). In (I), the N1 ring (N1/C2–C10) stacks with the inversion-related N1 ring, with a centroid···centroid separation of 3.770 (3) Å [between the centroids of rings N1/C2–C5/C10 and C5–C10(−x, −y, −z)]. The N2 ring (N2/C12–C20) also stacks with neighbouring N2 rings, with centroid···centroid separations of 3.653 (3) and 3.689 (3) Å [between the centroids of rings N2/C12–C15/C20 and C15–C20(1 − x, 1 − y, −z), and between the centroids of rings N2/C12–C15/C20 and N2/C12–C15/C20(1 − x, −y, −z), respectively]. In (II), the N1 ring (N1/C2–C5/C10) stacks with the inversion-related N1 ring at (1 − x, −y, 1 − z), with a centroid···centroid separation of 3.769 (3) Å. In (III), the N1 ring (N1/C2–C10) stacks with the inversion-related neighbouring N1 ring at (−x, −y, 1 − z), with a centroid···centroid separation of 3.519 (3) Å between the C5–C10 rings. The N2 ring (N2/C12–C20) stacks with the inversion-related neighbouring N2 ring at (1 − x, 1 − y, 1 − z), with a centroid···centroid separation of 3.539 (3) Å between inversion-related N2/C12–C15/C20 rings.