Supporting information
Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270112015843/fn3103sup1.cif | |
Structure factor file (CIF format) https://doi.org/10.1107/S0108270112015843/fn3103Isup2.hkl |
CCDC reference: 889363
For related literature, see: Chaveerach et al. (2010); Dobrzyńska et al. (2010); Hubberstey et al. (2000); Husain et al. (2011); Meenongwa et al. (2011); Orpen et al. (1989); Rose & Swain (1956); Shapiro et al. (1961); Suksangpanya et al. (2002, 2003, 2004).
The N-(methylpyridin-2-yl)cyanoguanidine precursor (L3) was prepared as described previously (Rose & Swain, 1956; Shapiro et al., 1961). The copper(II) complex was prepared by mixing a 1:1 molar ratio of the N-(methylpyridin-2-yl)cyanoguanidine precursor (0.1760 g, 1 mmol) and copper(II) perchlorate hexahydrate (0.3705 g,1 mmol, Sigma–Aldrich, 98%) in methanol (50 ml). The reaction was refluxed for 24 h. The resulting greenish-blue mixture was then cooled to ambient temperature and filtered to remove excess solids. The solvent was removed in vacuo to give a deep-purple solid (yield 0.4448 g, 94.8%; m.p. 492.5–495 K). Selected IR data (KBr pellet, ν, cm-1): 3390 (m, N—H), 1686 (s, C═N), 1571 (m, NH2), 1547 (m, C═C), 1346 (m, C—O), 1144 (s, ClO4), 1088 (s, ClO4). Diffuse reflectance (λmax, nm): 583.0. Visible (2 mM in MeOH, λmax, nm): 621.4. Analysis, calculated for [Cu(L3m)(ClO4)](ClO4), (C9H13N5O9Cl2Cu) (MW = 469.5): C 23.00, H 2.77, N 14.91%; found: C 23.13, H 2.76, N 15.04%. ESI+ MS (m/z): 371 [Cu(L3m)(ClO4)+H]2+, 271 [Cu(L3m)]2+.
Suitable single crystals of (I) were obtained as blue columns from a methanol solution of the initial product by slow evaporation at 283 K over one week.
H atoms bonded to C and N were positioned geometrically and refined using a riding model, with N—H = 0.88 Å and C—H = 0.98, 0.99 or 0.95 Å for methyl, methylene and aromatic H, and with Uiso(H) = 1.2Ueq(C,N). The H atom bonded to the methanol O atom was located in a difference Fourier map and refined with an O—H distance restraint of 0.75 (3) Å.
Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000) and SHELXTL (Sheldrick, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: publCIF (Westrip, 2010).
[Cu(ClO4)2(C9H13N5O)(CH4O)] | Z = 2 |
Mr = 501.73 | F(000) = 510 |
Triclinic, P1 | Dx = 1.839 Mg m−3 |
Hall symbol: -P 1 | Melting point: 495.0 K |
a = 8.034 (2) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 9.804 (3) Å | Cell parameters from 5357 reflections |
c = 12.093 (3) Å | θ = 2.4–27.6° |
α = 74.720 (4)° | µ = 1.56 mm−1 |
β = 80.455 (4)° | T = 150 K |
γ = 86.176 (4)° | Column, blue |
V = 905.9 (4) Å3 | 0.30 × 0.15 × 0.10 mm |
Bruker SMART APEX CCD area-detector diffractometer | 4119 independent reflections |
Radiation source: sealed tube | 3857 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.014 |
ω scans | θmax = 27.6°, θmin = 2.2° |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | h = −10→10 |
Tmin = 0.656, Tmax = 0.746 | k = −12→12 |
8026 measured reflections | l = −15→15 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.031 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.081 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.07 | w = 1/[σ2(Fo2) + (0.0401P)2 + 0.7806P] where P = (Fo2 + 2Fc2)/3 |
4119 reflections | (Δ/σ)max = 0.001 |
259 parameters | Δρmax = 0.47 e Å−3 |
0 restraints | Δρmin = −0.27 e Å−3 |
[Cu(ClO4)2(C9H13N5O)(CH4O)] | γ = 86.176 (4)° |
Mr = 501.73 | V = 905.9 (4) Å3 |
Triclinic, P1 | Z = 2 |
a = 8.034 (2) Å | Mo Kα radiation |
b = 9.804 (3) Å | µ = 1.56 mm−1 |
c = 12.093 (3) Å | T = 150 K |
α = 74.720 (4)° | 0.30 × 0.15 × 0.10 mm |
β = 80.455 (4)° |
Bruker SMART APEX CCD area-detector diffractometer | 4119 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | 3857 reflections with I > 2σ(I) |
Tmin = 0.656, Tmax = 0.746 | Rint = 0.014 |
8026 measured reflections |
R[F2 > 2σ(F2)] = 0.031 | 0 restraints |
wR(F2) = 0.081 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.07 | Δρmax = 0.47 e Å−3 |
4119 reflections | Δρmin = −0.27 e Å−3 |
259 parameters |
x | y | z | Uiso*/Ueq | ||
Cu1 | 0.28810 (3) | 0.78462 (2) | 0.71615 (2) | 0.0218 (1) | |
Cl1 | 0.12760 (6) | 0.73533 (5) | 1.01644 (4) | 0.0274 (1) | |
Cl2 | 0.38940 (6) | 0.80286 (5) | 0.40055 (4) | 0.0249 (1) | |
O1 | 0.68822 (19) | 0.76408 (15) | 0.89641 (14) | 0.0285 (4) | |
O2 | 0.23440 (19) | 0.99142 (15) | 0.65346 (14) | 0.0263 (4) | |
O3 | 0.0930 (2) | 0.78386 (19) | 0.89958 (14) | 0.0367 (5) | |
O4 | 0.1728 (3) | 0.58684 (19) | 1.0403 (2) | 0.0527 (7) | |
O5 | 0.2676 (2) | 0.8100 (2) | 1.03095 (16) | 0.0437 (6) | |
O6 | −0.0189 (2) | 0.7585 (2) | 1.09430 (15) | 0.0469 (6) | |
O7 | 0.3912 (3) | 0.65291 (19) | 0.44288 (17) | 0.0570 (7) | |
O8 | 0.2231 (2) | 0.8571 (3) | 0.39177 (17) | 0.0602 (8) | |
O9 | 0.4607 (2) | 0.8636 (2) | 0.47813 (15) | 0.0410 (5) | |
O10 | 0.4936 (2) | 0.84241 (16) | 0.28729 (14) | 0.0324 (5) | |
N1 | 0.4771 (2) | 0.82838 (17) | 0.77985 (15) | 0.0232 (5) | |
N2 | 0.3498 (2) | 0.58576 (17) | 0.74996 (15) | 0.0234 (5) | |
N3 | 0.0938 (2) | 0.72402 (18) | 0.66206 (14) | 0.0231 (5) | |
N4 | 0.5002 (2) | 0.38271 (18) | 0.83200 (16) | 0.0305 (5) | |
N5 | 0.5686 (2) | 0.59538 (18) | 0.85322 (15) | 0.0248 (5) | |
C1 | 0.7007 (3) | 0.9073 (2) | 0.9044 (2) | 0.0324 (7) | |
C2 | 0.5720 (2) | 0.7379 (2) | 0.83952 (17) | 0.0224 (5) | |
C3 | 0.4673 (3) | 0.5222 (2) | 0.80801 (17) | 0.0235 (5) | |
C4 | 0.2400 (3) | 0.4978 (2) | 0.71433 (19) | 0.0275 (6) | |
C5 | 0.0916 (3) | 0.5849 (2) | 0.67133 (17) | 0.0250 (5) | |
C6 | −0.0419 (3) | 0.5241 (2) | 0.64272 (19) | 0.0308 (6) | |
C7 | −0.1750 (3) | 0.6098 (3) | 0.60346 (19) | 0.0333 (7) | |
C8 | −0.1720 (3) | 0.7538 (3) | 0.59397 (19) | 0.0301 (6) | |
C9 | −0.0365 (3) | 0.8075 (2) | 0.62329 (18) | 0.0276 (6) | |
C10 | 0.1438 (3) | 1.0781 (2) | 0.7250 (2) | 0.0344 (7) | |
H1 | 0.50000 | 0.91830 | 0.76680 | 0.0280* | |
H1A | 0.73550 | 0.96880 | 0.82670 | 0.0490* | |
H1B | 0.78440 | 0.91020 | 0.95410 | 0.0490* | |
H1C | 0.59060 | 0.94020 | 0.93770 | 0.0490* | |
H4A | 0.44020 | 0.32760 | 0.80790 | 0.0370* | |
H4B | 0.58190 | 0.34610 | 0.87190 | 0.0370* | |
H4C | 0.19990 | 0.41800 | 0.78090 | 0.0330* | |
H4D | 0.30390 | 0.45840 | 0.65200 | 0.0330* | |
H5 | 0.63980 | 0.54370 | 0.89620 | 0.0300* | |
H6 | −0.04150 | 0.42520 | 0.65010 | 0.0370* | |
H7 | −0.26710 | 0.57070 | 0.58330 | 0.0400* | |
H8 | −0.26240 | 0.81450 | 0.56760 | 0.0360* | |
H9 | −0.03420 | 0.90630 | 0.61610 | 0.0330* | |
H10A | 0.02770 | 1.04570 | 0.75130 | 0.0520* | |
H10B | 0.14230 | 1.17700 | 0.67960 | 0.0520* | |
H10C | 0.20010 | 1.07050 | 0.79240 | 0.0520* | |
H11 | 0.312 (4) | 1.026 (3) | 0.618 (2) | 0.034 (8)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cu1 | 0.0201 (1) | 0.0176 (1) | 0.0280 (1) | 0.0018 (1) | −0.0070 (1) | −0.0046 (1) |
Cl1 | 0.0274 (2) | 0.0271 (2) | 0.0261 (2) | 0.0042 (2) | −0.0050 (2) | −0.0045 (2) |
Cl2 | 0.0231 (2) | 0.0234 (2) | 0.0283 (2) | −0.0026 (2) | −0.0028 (2) | −0.0071 (2) |
O1 | 0.0274 (7) | 0.0261 (7) | 0.0349 (8) | 0.0040 (6) | −0.0129 (6) | −0.0088 (6) |
O2 | 0.0232 (7) | 0.0206 (7) | 0.0330 (8) | 0.0013 (6) | −0.0051 (6) | −0.0031 (6) |
O3 | 0.0282 (8) | 0.0530 (10) | 0.0262 (8) | 0.0066 (7) | −0.0048 (6) | −0.0070 (7) |
O4 | 0.0570 (12) | 0.0307 (9) | 0.0778 (14) | 0.0154 (8) | −0.0388 (11) | −0.0132 (9) |
O5 | 0.0440 (10) | 0.0436 (10) | 0.0453 (10) | −0.0075 (8) | −0.0152 (8) | −0.0079 (8) |
O6 | 0.0404 (10) | 0.0623 (12) | 0.0310 (9) | 0.0054 (9) | 0.0064 (7) | −0.0087 (8) |
O7 | 0.0949 (17) | 0.0241 (9) | 0.0460 (11) | −0.0154 (10) | 0.0090 (11) | −0.0074 (8) |
O8 | 0.0254 (9) | 0.1061 (18) | 0.0411 (11) | 0.0139 (10) | −0.0066 (8) | −0.0080 (11) |
O9 | 0.0406 (9) | 0.0490 (10) | 0.0394 (9) | −0.0115 (8) | −0.0054 (7) | −0.0198 (8) |
O10 | 0.0348 (8) | 0.0265 (8) | 0.0344 (8) | −0.0061 (6) | 0.0055 (7) | −0.0107 (6) |
N1 | 0.0207 (8) | 0.0183 (8) | 0.0305 (9) | 0.0008 (6) | −0.0049 (7) | −0.0056 (6) |
N2 | 0.0245 (8) | 0.0190 (8) | 0.0268 (8) | 0.0010 (6) | −0.0058 (7) | −0.0052 (6) |
N3 | 0.0216 (8) | 0.0243 (8) | 0.0225 (8) | −0.0008 (6) | −0.0030 (6) | −0.0049 (6) |
N4 | 0.0384 (10) | 0.0202 (8) | 0.0345 (10) | 0.0061 (7) | −0.0139 (8) | −0.0065 (7) |
N5 | 0.0252 (8) | 0.0215 (8) | 0.0271 (9) | 0.0060 (6) | −0.0087 (7) | −0.0042 (6) |
C1 | 0.0293 (10) | 0.0281 (11) | 0.0452 (13) | 0.0010 (8) | −0.0123 (9) | −0.0153 (9) |
C2 | 0.0197 (8) | 0.0242 (9) | 0.0227 (9) | 0.0010 (7) | −0.0019 (7) | −0.0064 (7) |
C3 | 0.0269 (9) | 0.0207 (9) | 0.0213 (9) | 0.0012 (7) | −0.0011 (7) | −0.0045 (7) |
C4 | 0.0303 (10) | 0.0204 (9) | 0.0327 (11) | −0.0011 (8) | −0.0070 (8) | −0.0068 (8) |
C5 | 0.0253 (9) | 0.0270 (10) | 0.0217 (9) | −0.0030 (8) | −0.0021 (8) | −0.0050 (8) |
C6 | 0.0312 (11) | 0.0323 (11) | 0.0301 (11) | −0.0071 (9) | −0.0024 (9) | −0.0100 (9) |
C7 | 0.0271 (10) | 0.0469 (13) | 0.0275 (11) | −0.0102 (9) | −0.0033 (8) | −0.0108 (9) |
C8 | 0.0225 (9) | 0.0413 (12) | 0.0253 (10) | 0.0019 (9) | −0.0052 (8) | −0.0064 (9) |
C9 | 0.0255 (10) | 0.0300 (10) | 0.0262 (10) | 0.0012 (8) | −0.0040 (8) | −0.0060 (8) |
C10 | 0.0301 (11) | 0.0269 (11) | 0.0460 (13) | 0.0052 (9) | −0.0043 (10) | −0.0114 (10) |
Cu1—N1 | 1.9315 (17) | N5—C2 | 1.364 (3) |
Cu1—N2 | 1.9319 (17) | N5—C3 | 1.381 (3) |
Cu1—N3 | 1.9711 (17) | N5—H5 | 0.8800 |
Cu1—O2 | 2.0132 (16) | N4—C3 | 1.339 (3) |
Cu1—O3 | 2.4935 (17) | N4—H4A | 0.8800 |
Cu1—O9 | 2.9074 (19) | N4—H4B | 0.8800 |
Cl1—O3 | 1.4350 (17) | C4—C5 | 1.503 (3) |
Cl1—O4 | 1.4412 (18) | C4—H4C | 0.9900 |
Cl1—O5 | 1.4403 (18) | C4—H4D | 0.9900 |
Cl1—O6 | 1.4256 (18) | C9—C8 | 1.375 (3) |
Cl2—O7 | 1.4235 (19) | C9—H9 | 0.9500 |
Cl2—O8 | 1.4150 (19) | C5—C6 | 1.394 (3) |
Cl2—O9 | 1.4430 (17) | C6—C7 | 1.383 (3) |
Cl2—O10 | 1.4527 (16) | C6—H6 | 0.9500 |
O2—C10 | 1.448 (3) | C8—C7 | 1.387 (3) |
O2—H11 | 0.74 (3) | C8—H8 | 0.9500 |
N2—C3 | 1.297 (3) | C7—H7 | 0.9500 |
N2—C4 | 1.460 (3) | C1—H1A | 0.9800 |
N1—C2 | 1.283 (3) | C1—H1B | 0.9800 |
N1—H1 | 0.8800 | C1—H1C | 0.9800 |
N3—C5 | 1.340 (3) | C10—H10A | 0.9800 |
N3—C9 | 1.353 (3) | C10—H10B | 0.9800 |
O1—C2 | 1.323 (2) | C10—H10C | 0.9800 |
O1—C1 | 1.444 (3) | ||
N1—Cu1—N2 | 92.08 (7) | C3—N4—H4A | 120.0 |
N1—Cu1—N3 | 174.89 (7) | C3—N4—H4B | 120.0 |
N2—Cu1—N3 | 83.78 (7) | H4A—N4—H4B | 120.0 |
N1—Cu1—O2 | 91.42 (7) | Cl2—O9—Cu1 | 113.57 (9) |
N2—Cu1—O2 | 170.60 (7) | N1—C2—O1 | 127.18 (19) |
N3—Cu1—O2 | 93.13 (7) | N1—C2—N5 | 124.15 (19) |
N1—Cu1—O3 | 91.34 (7) | O1—C2—N5 | 108.67 (17) |
N2—Cu1—O3 | 98.56 (7) | N2—C3—N4 | 124.49 (19) |
N3—Cu1—O3 | 86.34 (6) | N2—C3—N5 | 121.65 (18) |
O2—Cu1—O3 | 90.08 (6) | N4—C3—N5 | 113.85 (18) |
N1—Cu1—O9 | 93.85 (6) | N2—C4—C5 | 109.72 (17) |
N2—Cu1—O9 | 97.51 (6) | N2—C4—H4C | 109.7 |
N3—Cu1—O9 | 89.66 (6) | C5—C4—H4C | 109.7 |
O2—Cu1—O9 | 73.54 (6) | N2—C4—H4D | 109.7 |
O3—Cu1—O9 | 162.91 (6) | C5—C4—H4D | 109.7 |
O8—Cl2—O7 | 111.06 (15) | H4C—C4—H4D | 108.2 |
O8—Cl2—O9 | 109.60 (13) | N3—C9—C8 | 122.0 (2) |
O7—Cl2—O9 | 109.19 (13) | N3—C9—H9 | 119.0 |
O8—Cl2—O10 | 109.49 (11) | C8—C9—H9 | 119.0 |
O7—Cl2—O10 | 109.49 (11) | N3—C5—C6 | 121.63 (19) |
O9—Cl2—O10 | 107.93 (10) | N3—C5—C4 | 116.66 (18) |
O6—Cl1—O3 | 109.14 (11) | C6—C5—C4 | 121.71 (19) |
O6—Cl1—O5 | 109.90 (12) | C7—C6—C5 | 119.0 (2) |
O3—Cl1—O5 | 110.17 (11) | C7—C6—H6 | 120.5 |
O6—Cl1—O4 | 110.21 (13) | C5—C6—H6 | 120.5 |
O3—Cl1—O4 | 109.26 (12) | C9—C8—C7 | 119.1 (2) |
O5—Cl1—O4 | 108.14 (12) | C9—C8—H8 | 120.4 |
C10—O2—Cu1 | 122.85 (14) | C7—C8—H8 | 120.4 |
C10—O2—H11 | 112 (2) | C6—C7—C8 | 119.1 (2) |
Cu1—O2—H11 | 109 (2) | C6—C7—H7 | 120.5 |
C3—N2—C4 | 117.51 (17) | C8—C7—H7 | 120.5 |
C3—N2—Cu1 | 127.33 (14) | O1—C1—H1A | 109.5 |
C4—N2—Cu1 | 114.90 (13) | O1—C1—H1B | 109.5 |
C2—N1—Cu1 | 125.70 (14) | H1A—C1—H1B | 109.5 |
C2—N1—H1 | 117.1 | O1—C1—H1C | 109.5 |
Cu1—N1—H1 | 117.1 | H1A—C1—H1C | 109.5 |
C5—N3—C9 | 119.11 (18) | H1B—C1—H1C | 109.5 |
C5—N3—Cu1 | 114.56 (14) | O2—C10—H10A | 109.5 |
C9—N3—Cu1 | 126.25 (15) | O2—C10—H10B | 109.5 |
C2—O1—C1 | 118.04 (16) | H10A—C10—H10B | 109.5 |
Cl1—O3—Cu1 | 128.06 (9) | O2—C10—H10C | 109.5 |
C2—N5—C3 | 128.02 (17) | H10A—C10—H10C | 109.5 |
C2—N5—H5 | 116.0 | H10B—C10—H10C | 109.5 |
C3—N5—H5 | 116.0 |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···O10i | 0.88 | 2.26 | 3.129 (3) | 167 |
N4—H4A···O10ii | 0.88 | 2.25 | 2.932 (3) | 134 |
N4—H4B···O4iii | 0.88 | 2.59 | 3.328 (3) | 143 |
N4—H4B···O5iii | 0.88 | 2.11 | 2.950 (3) | 159 |
N5—H5···O4iii | 0.88 | 2.03 | 2.889 (3) | 167 |
O2—H11···O9i | 0.75 (3) | 2.18 (3) | 2.919 (3) | 176 |
C4—H4C···O6iv | 0.99 | 2.37 | 3.316 (3) | 159 |
C7—H7···O7v | 0.95 | 2.58 | 3.413 (4) | 146 |
C8—H8···O9vi | 0.95 | 2.59 | 3.461 (3) | 152 |
Symmetry codes: (i) −x+1, −y+2, −z+1; (ii) −x+1, −y+1, −z+1; (iii) −x+1, −y+1, −z+2; (iv) −x, −y+1, −z+2; (v) −x, −y+1, −z+1; (vi) x−1, y, z. |
Experimental details
Crystal data | |
Chemical formula | [Cu(ClO4)2(C9H13N5O)(CH4O)] |
Mr | 501.73 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 150 |
a, b, c (Å) | 8.034 (2), 9.804 (3), 12.093 (3) |
α, β, γ (°) | 74.720 (4), 80.455 (4), 86.176 (4) |
V (Å3) | 905.9 (4) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 1.56 |
Crystal size (mm) | 0.30 × 0.15 × 0.10 |
Data collection | |
Diffractometer | Bruker SMART APEX CCD area-detector diffractometer |
Absorption correction | Multi-scan (SADABS; Sheldrick, 1996) |
Tmin, Tmax | 0.656, 0.746 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 8026, 4119, 3857 |
Rint | 0.014 |
(sin θ/λ)max (Å−1) | 0.652 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.031, 0.081, 1.07 |
No. of reflections | 4119 |
No. of parameters | 259 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.47, −0.27 |
Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2000) and SHELXTL (Sheldrick, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), publCIF (Westrip, 2010).
Cu1—N1 | 1.9315 (17) | Cu1—O2 | 2.0132 (16) |
Cu1—N2 | 1.9319 (17) | Cu1—O3 | 2.4935 (17) |
Cu1—N3 | 1.9711 (17) | Cu1—O9 | 2.9074 (19) |
N1—Cu1—N2 | 92.08 (7) | N3—Cu1—O2 | 93.13 (7) |
N1—Cu1—N3 | 174.89 (7) | N1—Cu1—O3 | 91.34 (7) |
N2—Cu1—N3 | 83.78 (7) | N2—Cu1—O3 | 98.56 (7) |
N1—Cu1—O2 | 91.42 (7) | N3—Cu1—O3 | 86.34 (6) |
N2—Cu1—O2 | 170.60 (7) | O2—Cu1—O3 | 90.08 (6) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···O10i | 0.88 | 2.26 | 3.129 (3) | 167 |
N4—H4A···O10ii | 0.88 | 2.25 | 2.932 (3) | 134 |
N4—H4B···O4iii | 0.88 | 2.59 | 3.328 (3) | 143 |
N4—H4B···O5iii | 0.88 | 2.11 | 2.950 (3) | 159 |
N5—H5···O4iii | 0.88 | 2.03 | 2.889 (3) | 167 |
O2—H11···O9i | 0.75 (3) | 2.18 (3) | 2.919 (3) | 176 |
C4—H4C···O6iv | 0.99 | 2.37 | 3.316 (3) | 159 |
C7—H7···O7v | 0.95 | 2.58 | 3.413 (4) | 146 |
C8—H8···O9vi | 0.95 | 2.59 | 3.461 (3) | 152 |
Symmetry codes: (i) −x+1, −y+2, −z+1; (ii) −x+1, −y+1, −z+1; (iii) −x+1, −y+1, −z+2; (iv) −x, −y+1, −z+2; (v) −x, −y+1, −z+1; (vi) x−1, y, z. |
Subscribe to Acta Crystallographica Section C: Structural Chemistry
The full text of this article is available to subscribers to the journal.
- Information on subscribing
- Sample issue
- Purchase subscription
- Reduced-price subscriptions
- If you have already subscribed, you may need to register
Amidino-O-alkylureas (aOau) are a series of guanidine derivatives which have important roles in supramolecular architectures and bioinorganic systems because of their versatile hydrogen-bonding potential (Hubberstey et al., 2000). Several copper(II) complexes containing N-donor aOau ligands with various extended structures have been reported. For example, Suksangpanya and co-workers have reported the synthesis of two-dimensional rhombic (4,4) grids using copper(II) halides of two bidentate (N-alkylamidino-O-alkylurea) ligands (Suksangpanya et al., 2003). Also, copper(II) halide complexes containing tridentate (Suksangpanya et al., 2004) and tetradentate (Suksangpanya et al., 2002) aOau derivatives have been intensively investigated by single-crystal X-ray diffraction. Crystallographic data indicate that their different extended hydrogen-bonding interactions depend partially on the substituents on the aOau ligand defining the hydrogen-bond donors and acceptors. Recently, Chaveerach and co-workers have investigated the DNA binding and nuclease behaviors (Chaveerach et al., 2010) and the interactions with cytosine nucleobase (Meenongwa et al., 2011) of copper(II) complexes containing amidino-O-methylurea (L1m) and N-(methylphenyl)-amidino-O-methylurea (L2m). Herein, we present the structure of the title compound, (I), a copper(II) bis(perchlorate) complex of N-(methylpyridin-2-yl)-amidino-O-methylurea (L3m) (Scheme 1), which was prepared using a procedure similar to that previously reported (Suksangpanya et al., 2004) but using copper(II) perchlorate hexahydrate instead of a copper(II) halide.
The initial product was obtained as a purple solid (Scheme 2) with a d–d transition at λmax = 583.0 nm. The elemental analysis was in agreement with the formula [Cu(L3m)(ClO4)](ClO4). In the presence of methanol, the product solution turned greenish-blue in color and displayed an electronic absorption at λmax = 621.4 nm. This result could mirror the change in the coordination geometry at the CuII center between solid and solution phases of this complex. Suitable single crystals of the title complex, (I), were obtained by slow evaporation of a methanol solution of the initial product.
The molecular structure of (I) is shown in Fig. 1. This complex crystallizes in the triclinic space group P1 with one molecule of [Cu(L3m)(CH3OH)(ClO4)2] in the asymmetric unit. The CuII cation is coordinated by three N donor atoms (N1, N2 and N3) from the chelating L3m ligand and by atom O2 from the methanol molecule (as a result of crystal growth from that solvent) lying in the equatorial plane, and atoms O3 and O9 from mutually trans perchlorate anions located at the two apical sites. The Cu—N bond distances range from 1.9315 (17) to 1.9711 (17) Å and the Cu1—O2 bond distance is 2.0132 (16) Å, while perchlorate atom O3 lies at a distance of 2.4935 (17) Å from the CuII center. The remaining axial site at Cu1 is occupied by atom O9 from another perchlorate anion. Although the Cu1—O9 distance of 2.9074 (19) Å is quite long (Dobrzyńska et al., 2010; Husain et al., 2011) compared with the average Cu—O(perchlorate) bond of 2.495 Å calculated from 91 examples of a perchlorate ion terminally coordinated to copper (Orpen et al., 1989), the role of O9 in completing the coordination around the CuII center results in the overall geometry being a distorted octahedron. The N1—Cu1—N3 and N2—Cu1—O2 angles are approximately linear (Table 1). Atom Cu1 is displaced by 0.0531 (2) Å from the mean plane through the equatorial donor atoms in the direction of the O3 axial donor, with a dihedral angle of 8.21 (8)° between the least-squares mean planes of the five-membered CuN2C2 and six-membered CuN3C2 chelate rings.
Two [Cu(L3m)(CH3OH)(ClO4)2] molecules form a dimeric unit (Fig. 2) via N—H···O hydrogen bonds (Table 2, entries 3, 4 and 5). The weakly coordinated perchlorate anion plays a major role in constructing an extensive network via N—H···O (Table 2, entries 1 and 2) and C—H···O (Table 2, entries 8 and 9) hydrogen bonds to form a two-dimensional layer in the (100) plane (Fig. 3). Further O—H···O and C—H···O hydrogen bonds (Table 2, entries 6 and 7) perpendicular to (010) link the two-dimensional layers to generate a three-dimensional network (Fig. 4). Although the title complex contains aromatic moieties, these are not observed to participate in π–π stacking interactions.
A comparison between (I) and the previously reported copper(II) complex containing the same L3m ligand but with halide anions instead of perchlorate anions, [Cu(L3m)X2] (X = Cl or Br; Suksangpanya et al., 2004) is also possible: both complexes show differences in geometry and chromophore. The [Cu(L3m)X2] complex displays a slightly distorted square-pyramidal geometry with a CuN3X2 chromophore, while a CuN3O3 chromophore with a highly-distorted octahedral geometry is observed in (I). This difference may arise from the fact that perchlorate anions are more sterically demanding than halide anions, but the fact that perchlorate is a poorly coordinating ligand may also be significant. As a result, the remaining free basal position is coordinated by a methanol molecule from the recrystallization solvent.
In summary, we have determined the crystal structure of [Cu(L3m)(CH3OH)(ClO4)2], (I). This is controlled not only by the high potential for hydrogen-bond formation exhibited by the L3m ligand, resulting in a three-dimensional packing motif, but also by the size, geometry and weak coordination of the perchlorate anion.