Buy article online - an online subscription or single-article purchase is required to access this article.
Weak interactions between organic molecules are important in solid-state structures where the sum of the weaker interactions support the overall three-dimensional crystal structure. The
sp-C—H
N hydrogen-bonding interaction is strong enough to promote the deliberate cocrystallization of a series of diynes with a series of dipyridines. It is also possible that a similar series of cocrystals could be formed between molecules containing a terminal alkyne and molecules which contain carbonyl O atoms as the potential hydrogen-bond acceptor. I now report the crystal structure of two cocrystals that support this hypothesis. The 1:1 cocrystal of 1,4-diethynylbenzene with 1,3-diacetylbenzene, C
10H
6·C
10H
10O
2, (1), and the 1:1 cocrystal of 1,4-diethynylbenzene with benzene-1,4-dicarbaldehyde, C
10H
6·C
8H
6O
2, (2), are presented. In both cocrystals, a strong nonconventional ethynyl–carbonyl
sp-C—H
O hydrogen bond is observed between the components. In cocrystal (1), the C—H
O hydrogen-bond angle is 171.8 (16)° and the H
O and C
O hydrogen-bond distances are 2.200 (19) and 3.139 (2) Å, respectively. In cocrystal (2), the C—H
O hydrogen-bond angle is 172.5 (16)° and the H
O and C
O hydrogen-bond distances are 2.25 (2) and 3.203 (2) Å, respectively.
Supporting information
CCDC references: 1505708; 1505707
For both compounds, data collection: SMART (Bruker, 2012); cell refinement: SMART (Bruker, 2012); data reduction: SAINT (Bruker, 2012); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: X-SEED (Barbour, 2001).
(1) 1-(3-Acetylphenyl)ethan-1-one–1,4-diethynylbenzene (1/1)
top
Crystal data top
C10H6·C10H10O2 | F(000) = 608 |
Mr = 288.33 | Dx = 1.229 Mg m−3 |
Monoclinic, C2/c | Mo Kα radiation, λ = 0.71073 Å |
a = 19.749 (10) Å | Cell parameters from 2546 reflections |
b = 7.284 (3) Å | θ = 2.6–27.0° |
c = 13.374 (7) Å | µ = 0.08 mm−1 |
β = 125.890 (13)° | T = 173 K |
V = 1558.6 (13) Å3 | Irregular, yellow |
Z = 4 | 0.43 × 0.33 × 0.32 mm |
Data collection top
Bruker APEXII CCD diffractometer | 1741 independent reflections |
Radiation source: fine-focus sealed tube | 1356 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.079 |
Detector resolution: 8.3660 pixels mm-1 | θmax = 27.2°, θmin = 2.6° |
phi and ω scans | h = −25→25 |
Absorption correction: multi-scan (SADABS; Bruker, 2012) | k = −9→9 |
Tmin = 0.492, Tmax = 0.746 | l = −17→17 |
9573 measured reflections | |
Refinement top
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.051 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.159 | w = 1/[σ2(Fo2) + (0.1007P)2 + 0.1951P] where P = (Fo2 + 2Fc2)/3 |
S = 1.05 | (Δ/σ)max < 0.001 |
1741 reflections | Δρmax = 0.28 e Å−3 |
106 parameters | Δρmin = −0.30 e Å−3 |
Special details top
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes)
are estimated using the full covariance matrix. The cell esds are taken
into account individually in the estimation of esds in distances, angles
and torsion angles; correlations between esds in cell parameters are only
used when they are defined by crystal symmetry. An approximate (isotropic)
treatment of cell esds is used for estimating esds involving l.s. planes. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top | x | y | z | Uiso*/Ueq | |
O1 | 0.39785 (6) | 0.49943 (17) | 0.42438 (9) | 0.0420 (4) | |
C1 | 0.5000 | 0.7982 (3) | 0.7500 | 0.0418 (5) | |
H1 | 0.5000 | 0.9286 | 0.7500 | 0.050* | |
C2 | 0.46566 (9) | 0.7038 (2) | 0.64051 (14) | 0.0367 (4) | |
H2 | 0.4423 | 0.7697 | 0.5657 | 0.044* | |
C3 | 0.46517 (8) | 0.5125 (2) | 0.63941 (12) | 0.0292 (4) | |
C4 | 0.5000 | 0.4185 (3) | 0.7500 | 0.0290 (5) | |
H4 | 0.5000 | 0.2881 | 0.7500 | 0.035* | |
C5 | 0.42691 (9) | 0.4141 (2) | 0.51946 (13) | 0.0314 (4) | |
C6 | 0.42518 (11) | 0.2082 (2) | 0.51840 (14) | 0.0445 (4) | |
H6A | 0.3975 | 0.1640 | 0.4337 | 0.067* | |
H6B | 0.3944 | 0.1650 | 0.5506 | 0.067* | |
H6C | 0.4825 | 0.1611 | 0.5703 | 0.067* | |
C7 | 0.25624 (9) | 1.4300 (2) | 0.03752 (13) | 0.0351 (4) | |
H7 | 0.2606 | 1.5537 | 0.0632 | 0.042* | |
C8 | 0.28409 (9) | 1.2900 (2) | 0.12288 (13) | 0.0343 (4) | |
H8 | 0.3072 | 1.3177 | 0.2066 | 0.041* | |
C9 | 0.27822 (9) | 1.1082 (2) | 0.08614 (13) | 0.0326 (4) | |
C10 | 0.30741 (10) | 0.9613 (2) | 0.17345 (14) | 0.0380 (4) | |
C11 | 0.33131 (11) | 0.8371 (3) | 0.24456 (16) | 0.0472 (5) | |
H11 | 0.3485 (11) | 0.740 (3) | 0.3019 (16) | 0.059 (6)* | |
Atomic displacement parameters (Å2) top | U11 | U22 | U33 | U12 | U13 | U23 |
O1 | 0.0521 (7) | 0.0392 (7) | 0.0296 (6) | 0.0050 (5) | 0.0211 (5) | 0.0075 (4) |
C1 | 0.0543 (13) | 0.0211 (10) | 0.0487 (13) | 0.000 | 0.0295 (11) | 0.000 |
C2 | 0.0454 (9) | 0.0262 (8) | 0.0387 (9) | 0.0034 (6) | 0.0249 (7) | 0.0059 (6) |
C3 | 0.0335 (7) | 0.0239 (7) | 0.0307 (8) | 0.0007 (5) | 0.0191 (6) | 0.0018 (5) |
C4 | 0.0356 (10) | 0.0215 (10) | 0.0299 (10) | 0.000 | 0.0192 (8) | 0.000 |
C5 | 0.0343 (7) | 0.0305 (8) | 0.0275 (7) | 0.0004 (5) | 0.0171 (6) | 0.0019 (5) |
C6 | 0.0630 (10) | 0.0305 (8) | 0.0310 (8) | −0.0074 (7) | 0.0226 (8) | −0.0044 (6) |
C7 | 0.0419 (8) | 0.0249 (7) | 0.0349 (8) | 0.0028 (6) | 0.0204 (7) | 0.0014 (6) |
C8 | 0.0404 (8) | 0.0306 (8) | 0.0291 (7) | 0.0019 (6) | 0.0187 (6) | 0.0006 (5) |
C9 | 0.0330 (7) | 0.0304 (8) | 0.0313 (7) | 0.0028 (6) | 0.0171 (6) | 0.0047 (6) |
C10 | 0.0422 (8) | 0.0326 (8) | 0.0358 (8) | 0.0020 (6) | 0.0210 (7) | 0.0029 (6) |
C11 | 0.0562 (10) | 0.0390 (9) | 0.0386 (9) | 0.0040 (7) | 0.0234 (8) | 0.0097 (7) |
Geometric parameters (Å, º) top
O1—C5 | 1.2154 (17) | C5—C6 | 1.500 (2) |
C1—C2 | 1.383 (2) | C7—C8 | 1.382 (2) |
C1—C2i | 1.383 (2) | C7—C9ii | 1.398 (2) |
C2—C3 | 1.394 (2) | C8—C9 | 1.394 (2) |
C3—C4 | 1.3915 (17) | C9—C7ii | 1.398 (2) |
C3—C5 | 1.496 (2) | C9—C10 | 1.432 (2) |
C4—C3i | 1.3915 (17) | C10—C11 | 1.192 (2) |
| | | |
C2—C1—C2i | 120.4 (2) | C3—C5—C6 | 118.92 (12) |
C1—C2—C3 | 120.29 (15) | C8—C7—C9ii | 120.83 (14) |
C4—C3—C2 | 118.99 (14) | C7—C8—C9 | 119.97 (14) |
C4—C3—C5 | 121.89 (14) | C8—C9—C7ii | 119.20 (13) |
C2—C3—C5 | 119.12 (13) | C8—C9—C10 | 120.80 (14) |
C3i—C4—C3 | 121.06 (19) | C7ii—C9—C10 | 120.00 (14) |
O1—C5—C3 | 120.58 (14) | C11—C10—C9 | 178.91 (17) |
O1—C5—C6 | 120.49 (13) | | |
| | | |
C2i—C1—C2—C3 | 0.14 (9) | C2—C3—C5—O1 | 1.2 (2) |
C1—C2—C3—C4 | −0.27 (19) | C4—C3—C5—C6 | 0.77 (18) |
C1—C2—C3—C5 | 179.45 (10) | C2—C3—C5—C6 | −178.94 (14) |
C2—C3—C4—C3i | 0.14 (9) | C9ii—C7—C8—C9 | 0.2 (2) |
C5—C3—C4—C3i | −179.58 (13) | C7—C8—C9—C7ii | −0.2 (2) |
C4—C3—C5—O1 | −179.06 (11) | C7—C8—C9—C10 | 179.46 (13) |
Symmetry codes: (i) −x+1, y, −z+3/2; (ii) −x+1/2, −y+5/2, −z. |
Hydrogen-bond geometry (Å, º) top
D—H···A | D—H | H···A | D···A | D—H···A |
C11—H11···O1 | 0.946 (19) | 2.200 (19) | 3.139 (2) | 171.8 (16) |
C8—H8···O1iii | 0.95 | 2.71 | 3.607 (3) | 158 |
Symmetry code: (iii) x, y+1, z. |
(2) Benzene-1,4-dicarbaldehyde–1,4-diethynylbenzene (1/1)
top
Crystal data top
C10H6·C8H6O2 | F(000) = 272 |
Mr = 260.28 | Dx = 1.289 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 7.6207 (11) Å | Cell parameters from 1102 reflections |
b = 8.5205 (13) Å | θ = 3.1–24.9° |
c = 10.3361 (15) Å | µ = 0.08 mm−1 |
β = 91.762 (3)° | T = 100 K |
V = 670.83 (17) Å3 | Cut block, gold |
Z = 2 | 0.30 × 0.30 × 0.30 mm |
Data collection top
Bruker APEXII CCD diffractometer | 1490 independent reflections |
Radiation source: fine-focus sealed tube | 1093 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.049 |
Detector resolution: 8.3660 pixels mm-1 | θmax = 27.2°, θmin = 2.7° |
phi and ω scans | h = −9→9 |
Absorption correction: multi-scan (SADABS; Bruker, 2012) | k = −10→10 |
Tmin = 0.657, Tmax = 0.746 | l = −13→13 |
8561 measured reflections | |
Refinement top
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.047 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.129 | w = 1/[σ2(Fo2) + (0.0533P)2 + 0.2043P] where P = (Fo2 + 2Fc2)/3 |
S = 1.04 | (Δ/σ)max < 0.001 |
1490 reflections | Δρmax = 0.32 e Å−3 |
95 parameters | Δρmin = −0.20 e Å−3 |
Special details top
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes)
are estimated using the full covariance matrix. The cell esds are taken
into account individually in the estimation of esds in distances, angles
and torsion angles; correlations between esds in cell parameters are only
used when they are defined by crystal symmetry. An approximate (isotropic)
treatment of cell esds is used for estimating esds involving l.s. planes. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top | x | y | z | Uiso*/Ueq | |
O1 | 0.69613 (16) | 0.50487 (14) | 0.33121 (11) | 0.0334 (3) | |
C1 | 0.8014 (2) | 0.49771 (18) | 0.63352 (16) | 0.0271 (4) | |
H1 | 0.760 (2) | 0.496 (2) | 0.545 (2) | 0.044 (6)* | |
C2 | 0.85696 (19) | 0.49781 (17) | 0.74283 (14) | 0.0225 (4) | |
C3 | 0.92830 (18) | 0.49889 (17) | 0.87346 (14) | 0.0207 (4) | |
C4 | 0.95879 (19) | 0.35766 (18) | 0.94029 (14) | 0.0228 (4) | |
H4 | 0.9306 | 0.2606 | 0.8996 | 0.027* | |
C5 | 1.02972 (19) | 0.35893 (18) | 1.06519 (14) | 0.0227 (4) | |
H5 | 1.0500 | 0.2627 | 1.1096 | 0.027* | |
C6 | 0.4196 (2) | 0.38565 (18) | −0.07825 (15) | 0.0241 (4) | |
H6 | 0.3643 | 0.3084 | −0.1317 | 0.029* | |
C7 | 0.49060 (19) | 0.34502 (19) | 0.04163 (15) | 0.0245 (4) | |
H7 | 0.4851 | 0.2394 | 0.0706 | 0.029* | |
C8 | 0.57054 (18) | 0.45918 (19) | 0.12032 (14) | 0.0220 (4) | |
C9 | 0.6419 (2) | 0.4130 (2) | 0.24911 (14) | 0.0272 (4) | |
H9 | 0.6457 | 0.3043 | 0.2693 | 0.033* | |
Atomic displacement parameters (Å2) top | U11 | U22 | U33 | U12 | U13 | U23 |
O1 | 0.0375 (7) | 0.0406 (8) | 0.0216 (6) | 0.0040 (5) | −0.0072 (5) | −0.0030 (5) |
C1 | 0.0314 (9) | 0.0262 (9) | 0.0231 (9) | 0.0011 (7) | −0.0047 (7) | −0.0011 (7) |
C2 | 0.0242 (8) | 0.0203 (8) | 0.0228 (8) | 0.0001 (6) | −0.0013 (6) | −0.0014 (6) |
C3 | 0.0177 (7) | 0.0263 (8) | 0.0183 (8) | −0.0004 (6) | 0.0002 (6) | −0.0007 (6) |
C4 | 0.0247 (8) | 0.0222 (8) | 0.0214 (8) | −0.0010 (6) | −0.0023 (6) | −0.0033 (6) |
C5 | 0.0245 (8) | 0.0223 (8) | 0.0212 (8) | 0.0000 (6) | −0.0017 (6) | 0.0015 (6) |
C6 | 0.0237 (8) | 0.0259 (8) | 0.0227 (8) | −0.0011 (6) | −0.0007 (6) | −0.0035 (6) |
C7 | 0.0261 (8) | 0.0233 (8) | 0.0242 (8) | 0.0000 (6) | 0.0005 (6) | 0.0020 (6) |
C8 | 0.0183 (7) | 0.0285 (9) | 0.0192 (8) | 0.0020 (6) | 0.0012 (6) | 0.0006 (6) |
C9 | 0.0270 (8) | 0.0327 (10) | 0.0217 (9) | 0.0028 (7) | −0.0008 (7) | 0.0017 (7) |
Geometric parameters (Å, º) top
O1—C9 | 1.2173 (19) | C5—C3i | 1.400 (2) |
C1—C2 | 1.194 (2) | C6—C7 | 1.381 (2) |
C2—C3 | 1.440 (2) | C6—C8ii | 1.395 (2) |
C3—C5i | 1.400 (2) | C7—C8 | 1.396 (2) |
C3—C4 | 1.403 (2) | C8—C6ii | 1.395 (2) |
C4—C5 | 1.384 (2) | C8—C9 | 1.476 (2) |
| | | |
C1—C2—C3 | 178.54 (16) | C7—C6—C8ii | 119.60 (14) |
C5i—C3—C4 | 119.14 (14) | C6—C7—C8 | 120.01 (15) |
C5i—C3—C2 | 120.31 (13) | C6ii—C8—C7 | 120.38 (14) |
C4—C3—C2 | 120.54 (13) | C6ii—C8—C9 | 120.80 (14) |
C5—C4—C3 | 120.42 (14) | C7—C8—C9 | 118.81 (15) |
C4—C5—C3i | 120.43 (14) | O1—C9—C8 | 124.42 (16) |
| | | |
C5i—C3—C4—C5 | −0.1 (2) | C6—C7—C8—C6ii | −0.5 (2) |
C2—C3—C4—C5 | 179.07 (13) | C6—C7—C8—C9 | 178.68 (14) |
C3—C4—C5—C3i | 0.1 (2) | C6ii—C8—C9—O1 | 7.8 (2) |
C8ii—C6—C7—C8 | 0.5 (2) | C7—C8—C9—O1 | −171.33 (15) |
Symmetry codes: (i) −x+2, −y+1, −z+2; (ii) −x+1, −y+1, −z. |
Hydrogen-bond geometry (Å, º) top
D—H···A | D—H | H···A | D···A | D—H···A |
C1—H1···O1 | 0.96 (2) | 2.25 (2) | 3.203 (2) | 172.5 (16) |
C7—H7···O1iii | 0.95 | 2.65 | 3.502 (2) | 150 |
Symmetry code: (iii) −x+1, y−1/2, −z+1/2. |
Subscribe to Acta Crystallographica Section C: Structural Chemistry
The full text of this article is available to subscribers to the journal.
If you have already registered and are using a computer listed in your registration details, please email
support@iucr.org for assistance.