Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
Phospho­ric tri­amides have extensive applications in biochemistry and are also used as O-donor ligands. Four new mixed-amide phospho­ric tri­amide structures, namely rac-N-tert-butyl-N′,N′′-di­cyclo­hexyl-N′′-methyl­phospho­ric tri­amide, C17H36N3OP, (I), rac-N,N′-di­cyclo­hexyl-N′-methyl-N′′-(p-tol­yl)phospho­ric tri­amide, C20H34N3OP, (II), N,N′,N′′-tri­cyclo­hexyl-N′′-methyl­phospho­ric tri­amide, C19H38N3OP, (III), and 2-[cyclo­hex­yl(meth­yl)amino]-5,5-dimethyl-1,3,2λ5-di­aza­phosphinan-2-one, C12H26N3OP, (IV), have been synthesized and studied by X-ray diffraction and spectroscopic methods. Structures (I) and (II) are the first diffraction studies of acyclic racemic mixed-amide phospho­ric tri­amides. The P—N bonds resulting from the different substituent –N(CH3)(C6H11), (C6H11)NH–, 4-CH3-C6H4NH–, (tert-C4H9)NH– and –NHCH2C(CH3)2CH2NH– groups are com­pared, along with the different mol­ecular volumes and electron-donor strengths. In all four structures, the mol­ecules form extended chains through N—H...O hydrogen bonds.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S2053229616001595/fp3025sup1.cif
Contains datablocks I, II, III, IV, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229616001595/fp3025Isup2.hkl
Contains datablock I

cml

Chemical Markup Language (CML) file https://doi.org/10.1107/S2053229616001595/fp3025Isup6.cml
Supplementary material

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229616001595/fp3025IIsup3.hkl
Contains datablock 1

cml

Chemical Markup Language (CML) file https://doi.org/10.1107/S2053229616001595/fp3025IIsup7.cml
Supplementary material

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229616001595/fp3025IIIsup4.hkl
Contains datablock 1

cml

Chemical Markup Language (CML) file https://doi.org/10.1107/S2053229616001595/fp3025IIIsup8.cml
Supplementary material

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229616001595/fp3025IVsup5.hkl
Contains datablock 1

cml

Chemical Markup Language (CML) file https://doi.org/10.1107/S2053229616001595/fp3025IVsup9.cml
Supplementary material

pdf

Portable Document Format (PDF) file https://doi.org/10.1107/S2053229616001595/fp3025sup10.pdf
MS and NMR spectra for compounds (I)–(IV)

CCDC references: 1449952; 1449951; 1449950; 1449949

Introduction top

Phospho­ric tri­amides are attractive to study owing to their extensive applications in biochemistry (Domínguez et al., 2008) and using as O-donor ligands (Gholivand et al., 2010).

Recently, we have investigated the syntheses and crystal structures of racemic mixed-amide phosphinates with an (N1)P(O)(OC6H5)(N2) segment, where N1 and N2 belong to two different –NRxRy groups (Rx ≠ H; Ry = H or ≠ H) (Pourayoubi et al., 2011, 2013).

Racemic Cl(R1R2N)P(O)(OC6H5) phospho­rus–chlorine reagents (NR1R2 = NH-cyclo-C6H11 and NH—C6H4-4-CH3) were used in reactions with different amines (Pourayoubi et al., 2011, 2013). In these reactions, the most challenging tasks are related to the synthesis of racemic Cl(R1R2N)P(O)(OC6H5) phospho­rus–chlorine compounds [from the commercial (C6H5O)P(O)Cl2 reagent and two molar equivalents of the amine NHR1R2] and then separation of the racemic reagent from the [R1R2NH2]Cl alkyl/aryl ammonium chloride by-product.

It is necessary to select a suitable solvent with considerable differences of solubility for the phospho­rus–chlorine reagent and the amine hydro­chloride salt in order to obtain a pure product. Aceto­nitrile appears to be a good choice, with a high solubility for ClP(O)(OR)[NH(cyclo-C6H11)] or ClP(O)(OR)(NH—C6H4-4-CH3) and a low solubility for the related amine hydro­chloride salt.

Controlling the amount of precipitate formed is also necessary, which was achieved by a careful selection of the volume of solvent. A high volume of solvent leads to greater dissolution of the [R1R2NH2]Cl salt, which should be avoided as it leads to salt impurities in the aceto­nitrile solution of the phospho­rus–chlorine reagent. On the other hand, a low volume of solvent reduces the amount of phospho­rus–chlorine compound in solution, causing precipitation of a portion of the reagent, and this may also lead to the formation of the fully amide-substituted dechlorinated compound. So, in order to successfully prepare a pure phospho­rus–chlorine reagent, one needs to control the mass of precipitate formed to achieve a mass near to what is calculated for the salt from the stoichiometry of reaction.

After completion of the reaction, the [R1R2NH2]Cl by-product was removed by filtration (Pourayoubi et al., 2013; Sabbaghi et al., 2011; Ghadimi et al., 2009). It should be mentioned that, although H2O is usually used for removing the [R1R2NH2]Cl salts in the preparation of compounds such as phospho­ric tri­amide (which does not include phospho­rus–halogen bonds), it could not be used for removing the [R1R2NH2]Cl by-product in the purification of the phospho­rus–chlorine reagent.

With these elements in mind concerning the synthesis of racemic mixed-amide phosphinates, we decided to design experiments for the preparation of mixed-amide phospho­ric tri­amides, especially phospho­ric tri­amides having three differently substituted amide groups, with the P atom in a chiral environment. A search in the Cambridge Structural Database (CSD, Version 5.35, February 2014 update; Groom & Allen, 2014) for the P(O)[N]3 motif in phospho­ric tri­amides gives possible structures with the formulae P(O)[NHR1]3, P(O)[NR1R2]3, P(O)[NHR1][NR2R3]2 and P(O)[NHR1]2[NR2R3] (R1–3 = H or a hydro­carbon segment and NHR1, NR1R2 and NR2R3 ≠ NH2). For the case of P(O)[NR1R2][NR3R4][NR5R6] (NR1R2 ≠ NR3R4 ≠ NR5R6), however, no structure was found in the CSD. In other words, no structure could be found for acyclic compounds including a chiral P atom in a P(O)(N1)(N2)(N3) environment (N1, N2 and N3 indicate the N atoms of three different NRxRy groups). Some cyclic compounds have been reported; see (A) in Scheme 1 for a typical example (Denmark et al., 2006).

In the present study, we present the first structures of examples of acyclic racemic phospho­ric tri­amides having three differently substituted amide groups, with a P(O)(N1)(N2)(N3) skeleton, i.e. rac-LP(O)[N(CH3)(C6H11](NHC6H11) [L = NHC(CH3)3 in (I) and NHC6H4-p-CH3 in (II)]. Moreover, the crystal structures of the mixed-amide phospho­ric tri­amides (C6H11NH)2P(O)[N(CH3)(C6H11)], (III), and (C5H10)(NH)2P(O)[N(CH3)(C6H11)], (IV), having the same P(O)[N(CH3)(C6H11)] part as (I) and (II), were also studied.

It should be noted that the description mixed-amide phospho­ric tri­amides refers to compounds with the general formula P(O)(NR1R2)(NR3R4)(NR5R6) [R1–6 = H or a hydro­carbon segment, and NR1R2 ≠ NR3R4 ≠ NR5R6], which are also referred to as mixed tri­amide phosphine oxides.

Experimental top

Synthesis and crystallization top

The starting phospho­rus–chlorine compound Cl2P(O)[N(CH3)(C6H11)] was synthesized at 273 K by the reaction of NH(CH3)(C6H11) (20 mmol) dissolved in dry aceto­nitrile (10 ml) with a solution of P(O)Cl3 (10 mmol) in the same solvent (20 ml). After stirring for 5 h, the solid which formed, i.e. (C6H11)(CH3)NH·HCl, was filtered off. The aceto­nitrile solution of Cl2P(O)[N(CH3)(C6H11)] was used for the next step. The other starting compound, i.e. rac-ClP(O)[N(CH3)(C6H11)](NHC6H11) was synthesized from Cl2P(O)[N(CH3)(C6H11)] using the same procedure, but using Cl2P(O)[N(CH3)(C6H11)] as the starting phospho­rus–chlorine compound in the reaction with NH2(C6H11).

For the synthesis of (I), a solution of tert-butyl­amine (4 mmol) in dry aceto­nitrile (10 ml) was added to a solution of ClP(O)[N(CH3)(C6H11)](NHC6H11) (2 mmol) in the same solvent (20 ml) at 273 K. After stirring for 7 h, the solvent was removed in vacuo and the solid obtained was washed with distilled water.

Compound (II) was synthesized following the same procedure but by using a mixture of p-toluidine and tri­ethyl­amine (2 mmol of each) instead of tert-butyl­amine. Colourless single crystals suitable for X-ray diffraction experiments were obtained at room temperature from CH3OH/CHCl3/DMF (4:4:1 v/v/v) for (I) and from CHCl3/C2H5OH (4:1 v/v) for (II).

For the synthesis of (III), a solution of cyclo­hexyl­amine (8 mmol) in dry aceto­nitrile (10 ml) was added to a solution of Cl2P(O)[N(CH3)(C6H11)] (2 mmol) in the same solvent (20 ml) at 273 K. After stirring for 4 h, the solvent was removed in vacuo and the solid obtained was washed with distilled water.

Compound (IV) was obtained using a similar procedure as for (III), but using 2,2-di­methyl­propane-1,3-di­amine (4 mmol) instead of cyclo­hexyl­amine. Colourless single crystals suitable for X-ray diffraction experiments were obtained at room temperature from CHCl3/C2H5OH (2:2 v/v) for (III) and from CH3OH/DMF (4:1 v/v) for (IV). The 1H NMR, 13C NMR and MS spectra of compounds (I)–(IV) are given in Figs. S1–S15 in the Supporting information.

NMR, IR and MS analyses top

For (I) top

IR (KBr disc, ν, cm−1): 3251, 2931, 2853, 1451, 1369, 1230, 1195, 1121, 1014, 972, 889, 765.MS (70 ev, EI): m/z (%) = 330 (12) [M + 1]+, 329 (73) [M]+, 327 (92) [M − 2]+, 256 (57) [M - tBuNH2]+, 231 (45) [M - C6H11NH]+, 216 (56) [M - (C6H11)NH(CH3)]+, 174 (41) [(C6H11N(CH3))P(O)NH]+, 112 (100) [C7H14N]+, 98 (82) [C6H10NH2]+, 71 (9) [C4H9N]+ [for reporting of relative intensities, the intensity of base peak in Fig. S9 (93%) (see Supporting information was changed to 100% and the intensities of the other peaks were corrected by a factor of 100/93]. 31P{1H} NMR (121.78 MHz, CDCl3, 303.2 K, 85% H3PO4): δ 15.58 (s). 1H NMR (300.85 MHz, CDCl3, 294.9 K, TMS): δ 0.836–2.16 (m, 20H, CH2), 1.29 (s, 9H, 3CH3), 2.50 (m, 3H, CH3—N), 2.60 (s, 1H, NH), 2.86 (m, 1H, NH), 2.77–2.93 (m, 2H, 1CH and 1NH of C6H11NH), 3.37–3.53 (m, 1H, CH). 13C NMR (75.65 MHz, CDCl3, 295.7 K, TMS): δ 25.24 (d, JC–P = 5.3 Hz), 25.56 (s), 25.69 (s), 26.05 (s), 27.86 (d, JC–P = 5.3 Hz), 28.91 (s), 29.75 (s) 31.75 (d, JC–P = 4.5 Hz), 36.17 (d, JC–P = 4.5 Hz), 36.32 (d, JC–P = 5.3 Hz), 50.02 (s), 54.45 (d, JC–P = 4.5 Hz).

For (II) top

IR (KBr disc, ν, cm−1): 3275, 2925, 2851, 1617, 1517, 1446, 1395, 1297, 1169, 1113, 1009, 976, 933, 816. MS (70 ev, EI): m/z (%) = 363 (5) [M]+, 362 (48) [M − 1]+, 361 (92) [M − 2]+, 197 (20) [{(4-CH3)C6H4NH}P(O)(NCH3)(NH)]+, 182 (17) [{(4-CH3)C6H4NH}P(O)(NCH3)]+, 168 (24) [{(4-CH3)C6H4NH}P(O)(NH)]+, 153 (10) [{(4-CH3)C6H4NH}P(O)]+, 112 (100) [C6H11N(CH3)]+, 106 (90) [(4-CH3)C6H4NH]+, 98 (70) [C6H11NH]+, 83 (89) [C6H11]+. 31P{1H} NMR (121.78 MHz, CDCl3, 303.2 K, 85% H3PO4): δ 11.00 (s). 1H NMR (300.85 MHz, CDCl3, 295.7 K, TMS): δ 0.99–2.09 (m, 20H, CH2), 2.25 (s, 3H, CH3), 2.56 (m, 3H, CH3—N), 3.04–3.09 (m, 2H, 1CH and 1NH of C6H11NH), 3.46–3.60 (m, 1H, CH), 5.05 (d, 2JH–P = 7.8 Hz, 1H, NH), 6.91 (d, 3JH–H = 8.4 Hz, 2H, Ar—H), 7.00 (d, 3JH–H = 8.1 Hz, 2H, Ar—H). 13C NMR (75.65 MHz, CDCl3, 295.7 K, TMS): δ 20.55 (s, 1 C, CH3), 25.24 (d, JC–P = 7.6 Hz), 25.46 (s), 25.61 (s), 26.00 (s), 27.72 (d, JC–P = 5.3 Hz), 31.10 (d, JC–P = 2.3 Hz), 36.12 (d, JC–P = 6.1 Hz), 36.23 (d, JC–P = 4.5 Hz), 50.01 (s), 54.72 (d, JC–P = 3.8 Hz), 117.74 (d, JC–P) = 6.8 Hz), 129.50 (s), 129.92 (s), 138.74 (s).

For (III) top

IR (KBr disc, ν, cm−1): 3268, 2930, 2853, 1450, 1430, 1270, 1226, 1183, 1160, 1103, 1013, 977, 898. MS (70 ev, EI): m/z (%) = 356 (20) [M + 1]+, 355 (82) [M]+, 354 (86) [M − 1]+, 256 (65) [M - C6H11NH2]+, 174 (58) [(C6H11N(CH3))P(O)NH]+, 159 (25) [(C6H11N(CH3))P(O)]+, 112 (100) [C6H11N(CH3)]+, 98 (83) [C6H11NH]+, 83 (63) [C6H11]+. 31P{1H} NMR (121.78 MHz, CDCl3, 303.2 K, 85% H3PO4): δ 15.25 (s). 1H NMR (300.85 MHz, CDCl3, 294.5 K, TMS): δ 0.94–2.02 (m, 30H, CH2), 2.51 (d, 3JH–P = 9.9 Hz, 3H, CH3), 2.95 (m, 2H, NH), 3.44–3.54 (m, 2H and 1H, CH of C6H11 groups). 13C NMR (75.65 MHz, CDCl3, 295.8 K, TMS): δ 25.21 (d, JC–P = 3.0 Hz), 25.49 (s), 25.63 (s), 25.97 (s), 27.72 (d, JC–P = 4.5 Hz), 31.18 (d, JC–P = 2.3 Hz), 36.27 (d, JC–P = 4.5 Hz), 36.50 (d, JC–P = 4.5 Hz), 49.86 (s), 54.30 (d, JC–P = 3.8 Hz).

For (IV) top

IR (KBr disc, ν, cm−1): 3224, 3182, 2937, 2852, 1438, 1200, 1111, 1005, 962, 856, 701. MS (70 ev, EI): m/z (%) = 260 (4) [M + 1]+, 259 (40) [M]+, 258 (81) [M − 1]+, 243 (21) [M - CH4]+, 147 (81) [M - N(CH3)(C6H11)]+, 112 (100) [C6H11N(CH3)]+, 98 (29) [C6H11NH]+, 84 (27) [C6H12]+. 31P{1H} NMR (162.01 MHz, DMSO-d6, 294.9 K, 85% H3PO4): δ 14.78 (s). 1H NMR (400.22 MHz, DMSO-d6, 294.7 K, TMS): δ 0.75 (s, 3H, CH3), 0.98 (s, 3H, CH3), 1.00–1.76 (m, 10H, CH2 of cyclo­hexyl), 2.46 (d, 3JH–P = 10.7 Hz, 3H, CH3—N), 2.59 (m, 4H, CH2), 3.29 (m, 1H, CH of cyclo­hexyl), 3.99 (m, 2H, NH). 13C NMR (100.63 MHz, DMSO-d6, 295.0 K, TMS): δ 23.66 (s), 25.18 (s), 25.78 (s), 26.27 (s), 26.89 (s), 26.93 (s), 30.33 (d, JC–P = 5.6 Hz), 31.19 (d, JC–P = 3.6 Hz), 53.71 (d, JC–P = 2.9 Hz), 53.82 (d, JC–P = 3.5 Hz), 53.87 (s).

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 1. Non-H atoms were refined anisotropically. H atoms were all located in the difference Fourier maps for each of the title structures, but those attached to C atoms were repositioned geometrically. The H atoms were initially refined with soft restraints on the bond lengths and angles to regularize their geometry (C—H in the range 0.92 – 1.00 Å de pending on hybridization state), after which the positions of H-atoms not involved in hydrogen bonding inter­actions were refined with riding constraints (Cooper et al., 2010) and fixed isotropic displacement parameters Uiso(H) = 1.5Ueq(Ci) for CH3 groups or 1.2Ueq(Cii) for CH2 and CH groups, where Ueq(Ci) and Ueq(Cii) are the equivalent displacement parameters of the C atoms to which corresponding H atoms are bonded. The H atoms of the NH groups were allowed to refine with a restrained N—H bond distance of 0.86 (2) Å and Uiso(H) = 1.2Ueq(N). The H atoms of the NH groups were refined using soft distance and angle restraints.

In (I), the absolute configuration was arbitrarily assigned. One independent molecule of (I) appeared to be heavily disordered. This disorder was modelled with split positions. Two orientations of tert-butyl were found, and they were restrained to have a similar geometry. In addition restraints were used in order to keep reasonable C—C sp3-sp3 bond distances. The anisotropic atomic displacement parameters of adjacent atoms in the disordered fragment were restrained to be the same (Betteridge et al., 2003). The similarity restraint was not used for the two disordered parts of the cyclo­hexane group of the same molecule. Instead, only the anisotropic atomic displacement parameters of adjacent atoms were restrained to be the same, and restraints were used in order to keep reasonable C—C sp3-sp3 bond distances within the rings. The occupancies of the two parts for tert-butyl and cyclo­hexane were refined to 0.233 (9)/0.767 (9) and 0.443 (11)/0.557 (9), respectively.

In (III), disorder on all six-membered rings appeared to be impossible to model satisfactorily using split positions. For this reason restraints on angles and distances were used in order to get an acceptable geometry. It was in addition necessary to use thermal similarity restraints on all atoms within the rings.

Although the general structural features are certainly correct in (I) and (III), some caution is necessary when inter­preting the fine structural details in especially the disordered parts.

Results and discussion top

Synthesis top

Cl2P(O)[N(CH3)(cyclo-C6H11)] was synthesized from the reaction between Cl3P(O) and N-methyl­cyclo­hexyl­amine (1:2 molar ratio). Racemic ClP(O)[N(CH3)(cyclo-C6H11)][NH(cyclo-C6H11)] was then prepared from Cl2P(O)[N(CH3)(cyclo-C6H11)]and cyclo­hexyl­amine (1:2 molar ratio), for the first time. In each reaction, the corresponding amine acts as both a nucleophile and an HCl scavenger.

Aceto­nitrile was found to be a suitable solvent in these reactions, due to the low solubility of the [(cyclo-C6H11)NH2(CH3)]Cl (first reaction) and [(cyclo-C6H11)NH3]Cl (second reaction) salts and the good solubility of Cl2P(O)[N(CH3)(cyclo-C6H11)] and ClP(O)[N(CH3)(cyclo-C6H11)][NH(cyclo-C6H11)]. Thus, the salts formed in each reaction were simply filtered off and the pure products Cl2P(O)[N(CH3)(cyclo-C6H11)] and ClP(O)[N(CH3)(cyclo-C6H11)][NH(cyclo-C6H11)] remained in the aceto­nitrile solution.

In the final step, for the preparation of (I) and (II) (see Scheme 2), rac-ClP(O)[N(CH3)(cyclo-C6H11)][NH(cyclo-C6H11)] reacts with the corresponding amine [2 eqivalents of tert-butyl­amine for (I) and an equimolar mixture of p-toluidine and tri­ethyl­amine for (II)] to yield the racemic (RNH)P(O)[N(CH3)(cyclo-C6H11)][NH(cyclo-C6H11)] mixed phospho­ric tri­amides [R = t-Bu in (I) and 4-CH3—C6H4 in (II)], and the [tBuNH3]Cl salt for (I) and 4-CH3—C6H4NH3Cl for (II)) were removed by dissolving in H2O.

The phospho­ric tri­amides (III) and (IV) were prepared from the reaction between an aceto­nitrile solution of Cl2P(O)[N(CH3)(cyclo-C6H11)] and the corresponding amine. The salts which formed were removed with H2O (see Scheme 2).

Structural features top

The molecular structures of tri­amides (I)–(IV) are shown in Figs. 1–4, respectively, indicating four, three, two and one molecule in the asymmetric units. In all four compounds, the P atoms display a distorted tetra­hedral environment, as (N1)P(O)(N2)(N3) for (I) and (II), and as (N1)P(O)(N2)2 for (III) and (IV), where N1, N2 and N3 in (I) and (II) denote the N atoms of three different groups. On the other hand, the two N2 atoms in (III) belong to two chemically (and not crystallographically) equivalent groups containing N atoms, and in (IV), N2 is related to a bifunctional group containing two chemically equivalent N atoms.

Selected bond lengths and angles of (I)–(IV) are given in Tables 2–5, respectively. The PO bond lengths and OP—N and P—N—C bond angles are comparable with those in similar compounds (Pourayoubi et al., 2012, 2014).

The bond-angle sums at the tertiary N atoms of the P—N(CH3)(C6H11) segment in (I)–(IV), i.e. P—N—C + C—N—C + C—N—P, confirm the sp2 character of such N atoms, for example, bond-angle sums of 358.31 (2), 359.03 (1) and 357.33 (2)° in the three independent molecules of (II).

In compound (IV), the PO bond is located in the equatorial 2-position of the 1,3,2-di­aza­phospho­rinane ring, and the P—N bond made by the –N(CH3)(C6H11) segment is in the axial position.

The P—N bonds formed by the relatively bulky –N(CH3)(C6H11) segment are longer than those formed by the tert-C4H9NH– and –NHCH2C(CH3)2CH2NH– segments. For example, we note the P—N bond in structure (IV), made by the –N(CH3)(C6H11) and –NHCH2C(CH3)2CH2NH— segments is 1.6672 (18) Å for the former and 1.6440 (18) and 1.628 (2) Å for the latter.

Moreover, among the nine molecules in the three structures including both –N(CH3)(C6H11) and –NHC6H11 segments, for eight of the molecules, longer P—N bonds were found involving –N(CH3)(C6H11). For example, note P1—N3 = 1.6405 (16) Å and P1—N11 1.6300 (16) Å involving the –N(CH3)(C6H11) and C6H11NH– segments, respectively in (II). On the other hand, in one of the independent molecules of (III), a shorter P—N bond [1.650 (4) Å] was found made by –N(CH3)(C6H11) in comparison with the two C6H11NH– segments [1.680 (6) and 1.655 (7) Å]. [bond lengths don't match Table 4]

Surprisingly, in (II), the 4-CH3—C6H4NH– segment makes a longer P—N bond with respect to the –N(CH3)(C6H11) segment, which is attributed to the different hybridization states of the C atoms attached to the N atoms in these groups (sp2 and sp3, respectively), resulting in an electron-withdrawing effect of the aromatic ring. This is similar to what was reported previously for the P—N bonds made by the same groups in rac-(C6H5O)P(O)[N(CH3)(cyclo-C6H11)][NH(C6H4-p-CH3)] (Pourayoubi et al., 2013).

In some molecules of structures (I)–(IV), the C—N—C angles of the –N(CH3)(C6H11) segments are smaller than the two related P—N—C angles; however, there are also the cases where the C—N—C angle is larger than one of the P—N—C angles at the same N atom. For example, in one of the molecules in structure (II), the C—N—C and two P—N—C angles are 118.96 (16), 121.69 (13) and 118.38 (14)°, respectively.

The extended structure of (I) includes four independent molecules in a one-dimensional chain aggregation (Fig. 5). In this chain, adjacent molecules are linked via (N—H···)2OP and (N—H···)OP hydrogen bonds along [001], building two different and two different C(4) motifs with an C(4)C(4) arrangement (Table 6).

In the crystal packing of (II), each PO group takes part with two N—H units in inter­molecular (N—H···)2OP hydrogen bonds, forming three different rings in a one-dimensional chain containing three independent molecules, running along [100] (Fig. 6 and Table 7).

The hydrogen-bond pattern of (III) is similar to that of (II), with adjacent molecules linked through (N—H···)2OP hydrogen bonds in a one-dimensional chain along [010], with building motifs (Fig. 7 and Table 8).

The crystal packing of (IV) is slightly different, with molecules connected through (N—H···)(N—H···)OP hydrogen bonds, forming ring motifs, into extended chains parallel to [100] (Fig. 8 and Table 9).

According to the hydrogen-bond patterns discussed, (N—H···)2OP and (N—H···)(N—H···)OP refer to the double-acceptor action of O atoms. The former notation was used when two N—H groups belong to one molecule (in a ring motif) and the latter is used for the case with two N—H groups belonging to individual molecules (forming a ring motif). On the other hand, the structure of (I) also includes a two-centred hydrogen bond, forming a C(4) motif, and there are some N—H groups which are not involved in hydrogen-bond inter­actions.

Structure description top

Phospho­ric tri­amides are attractive to study owing to their extensive applications in biochemistry (Domínguez et al., 2008) and using as O-donor ligands (Gholivand et al., 2010).

Recently, we have investigated the syntheses and crystal structures of racemic mixed-amide phosphinates with an (N1)P(O)(OC6H5)(N2) segment, where N1 and N2 belong to two different –NRxRy groups (Rx ≠ H; Ry = H or ≠ H) (Pourayoubi et al., 2011, 2013).

Racemic Cl(R1R2N)P(O)(OC6H5) phospho­rus–chlorine reagents (NR1R2 = NH-cyclo-C6H11 and NH—C6H4-4-CH3) were used in reactions with different amines (Pourayoubi et al., 2011, 2013). In these reactions, the most challenging tasks are related to the synthesis of racemic Cl(R1R2N)P(O)(OC6H5) phospho­rus–chlorine compounds [from the commercial (C6H5O)P(O)Cl2 reagent and two molar equivalents of the amine NHR1R2] and then separation of the racemic reagent from the [R1R2NH2]Cl alkyl/aryl ammonium chloride by-product.

It is necessary to select a suitable solvent with considerable differences of solubility for the phospho­rus–chlorine reagent and the amine hydro­chloride salt in order to obtain a pure product. Aceto­nitrile appears to be a good choice, with a high solubility for ClP(O)(OR)[NH(cyclo-C6H11)] or ClP(O)(OR)(NH—C6H4-4-CH3) and a low solubility for the related amine hydro­chloride salt.

Controlling the amount of precipitate formed is also necessary, which was achieved by a careful selection of the volume of solvent. A high volume of solvent leads to greater dissolution of the [R1R2NH2]Cl salt, which should be avoided as it leads to salt impurities in the aceto­nitrile solution of the phospho­rus–chlorine reagent. On the other hand, a low volume of solvent reduces the amount of phospho­rus–chlorine compound in solution, causing precipitation of a portion of the reagent, and this may also lead to the formation of the fully amide-substituted dechlorinated compound. So, in order to successfully prepare a pure phospho­rus–chlorine reagent, one needs to control the mass of precipitate formed to achieve a mass near to what is calculated for the salt from the stoichiometry of reaction.

After completion of the reaction, the [R1R2NH2]Cl by-product was removed by filtration (Pourayoubi et al., 2013; Sabbaghi et al., 2011; Ghadimi et al., 2009). It should be mentioned that, although H2O is usually used for removing the [R1R2NH2]Cl salts in the preparation of compounds such as phospho­ric tri­amide (which does not include phospho­rus–halogen bonds), it could not be used for removing the [R1R2NH2]Cl by-product in the purification of the phospho­rus–chlorine reagent.

With these elements in mind concerning the synthesis of racemic mixed-amide phosphinates, we decided to design experiments for the preparation of mixed-amide phospho­ric tri­amides, especially phospho­ric tri­amides having three differently substituted amide groups, with the P atom in a chiral environment. A search in the Cambridge Structural Database (CSD, Version 5.35, February 2014 update; Groom & Allen, 2014) for the P(O)[N]3 motif in phospho­ric tri­amides gives possible structures with the formulae P(O)[NHR1]3, P(O)[NR1R2]3, P(O)[NHR1][NR2R3]2 and P(O)[NHR1]2[NR2R3] (R1–3 = H or a hydro­carbon segment and NHR1, NR1R2 and NR2R3 ≠ NH2). For the case of P(O)[NR1R2][NR3R4][NR5R6] (NR1R2 ≠ NR3R4 ≠ NR5R6), however, no structure was found in the CSD. In other words, no structure could be found for acyclic compounds including a chiral P atom in a P(O)(N1)(N2)(N3) environment (N1, N2 and N3 indicate the N atoms of three different NRxRy groups). Some cyclic compounds have been reported; see (A) in Scheme 1 for a typical example (Denmark et al., 2006).

In the present study, we present the first structures of examples of acyclic racemic phospho­ric tri­amides having three differently substituted amide groups, with a P(O)(N1)(N2)(N3) skeleton, i.e. rac-LP(O)[N(CH3)(C6H11](NHC6H11) [L = NHC(CH3)3 in (I) and NHC6H4-p-CH3 in (II)]. Moreover, the crystal structures of the mixed-amide phospho­ric tri­amides (C6H11NH)2P(O)[N(CH3)(C6H11)], (III), and (C5H10)(NH)2P(O)[N(CH3)(C6H11)], (IV), having the same P(O)[N(CH3)(C6H11)] part as (I) and (II), were also studied.

It should be noted that the description mixed-amide phospho­ric tri­amides refers to compounds with the general formula P(O)(NR1R2)(NR3R4)(NR5R6) [R1–6 = H or a hydro­carbon segment, and NR1R2 ≠ NR3R4 ≠ NR5R6], which are also referred to as mixed tri­amide phosphine oxides.

IR (KBr disc, ν, cm−1): 3251, 2931, 2853, 1451, 1369, 1230, 1195, 1121, 1014, 972, 889, 765.MS (70 ev, EI): m/z (%) = 330 (12) [M + 1]+, 329 (73) [M]+, 327 (92) [M − 2]+, 256 (57) [M - tBuNH2]+, 231 (45) [M - C6H11NH]+, 216 (56) [M - (C6H11)NH(CH3)]+, 174 (41) [(C6H11N(CH3))P(O)NH]+, 112 (100) [C7H14N]+, 98 (82) [C6H10NH2]+, 71 (9) [C4H9N]+ [for reporting of relative intensities, the intensity of base peak in Fig. S9 (93%) (see Supporting information was changed to 100% and the intensities of the other peaks were corrected by a factor of 100/93]. 31P{1H} NMR (121.78 MHz, CDCl3, 303.2 K, 85% H3PO4): δ 15.58 (s). 1H NMR (300.85 MHz, CDCl3, 294.9 K, TMS): δ 0.836–2.16 (m, 20H, CH2), 1.29 (s, 9H, 3CH3), 2.50 (m, 3H, CH3—N), 2.60 (s, 1H, NH), 2.86 (m, 1H, NH), 2.77–2.93 (m, 2H, 1CH and 1NH of C6H11NH), 3.37–3.53 (m, 1H, CH). 13C NMR (75.65 MHz, CDCl3, 295.7 K, TMS): δ 25.24 (d, JC–P = 5.3 Hz), 25.56 (s), 25.69 (s), 26.05 (s), 27.86 (d, JC–P = 5.3 Hz), 28.91 (s), 29.75 (s) 31.75 (d, JC–P = 4.5 Hz), 36.17 (d, JC–P = 4.5 Hz), 36.32 (d, JC–P = 5.3 Hz), 50.02 (s), 54.45 (d, JC–P = 4.5 Hz).

IR (KBr disc, ν, cm−1): 3275, 2925, 2851, 1617, 1517, 1446, 1395, 1297, 1169, 1113, 1009, 976, 933, 816. MS (70 ev, EI): m/z (%) = 363 (5) [M]+, 362 (48) [M − 1]+, 361 (92) [M − 2]+, 197 (20) [{(4-CH3)C6H4NH}P(O)(NCH3)(NH)]+, 182 (17) [{(4-CH3)C6H4NH}P(O)(NCH3)]+, 168 (24) [{(4-CH3)C6H4NH}P(O)(NH)]+, 153 (10) [{(4-CH3)C6H4NH}P(O)]+, 112 (100) [C6H11N(CH3)]+, 106 (90) [(4-CH3)C6H4NH]+, 98 (70) [C6H11NH]+, 83 (89) [C6H11]+. 31P{1H} NMR (121.78 MHz, CDCl3, 303.2 K, 85% H3PO4): δ 11.00 (s). 1H NMR (300.85 MHz, CDCl3, 295.7 K, TMS): δ 0.99–2.09 (m, 20H, CH2), 2.25 (s, 3H, CH3), 2.56 (m, 3H, CH3—N), 3.04–3.09 (m, 2H, 1CH and 1NH of C6H11NH), 3.46–3.60 (m, 1H, CH), 5.05 (d, 2JH–P = 7.8 Hz, 1H, NH), 6.91 (d, 3JH–H = 8.4 Hz, 2H, Ar—H), 7.00 (d, 3JH–H = 8.1 Hz, 2H, Ar—H). 13C NMR (75.65 MHz, CDCl3, 295.7 K, TMS): δ 20.55 (s, 1 C, CH3), 25.24 (d, JC–P = 7.6 Hz), 25.46 (s), 25.61 (s), 26.00 (s), 27.72 (d, JC–P = 5.3 Hz), 31.10 (d, JC–P = 2.3 Hz), 36.12 (d, JC–P = 6.1 Hz), 36.23 (d, JC–P = 4.5 Hz), 50.01 (s), 54.72 (d, JC–P = 3.8 Hz), 117.74 (d, JC–P) = 6.8 Hz), 129.50 (s), 129.92 (s), 138.74 (s).

IR (KBr disc, ν, cm−1): 3268, 2930, 2853, 1450, 1430, 1270, 1226, 1183, 1160, 1103, 1013, 977, 898. MS (70 ev, EI): m/z (%) = 356 (20) [M + 1]+, 355 (82) [M]+, 354 (86) [M − 1]+, 256 (65) [M - C6H11NH2]+, 174 (58) [(C6H11N(CH3))P(O)NH]+, 159 (25) [(C6H11N(CH3))P(O)]+, 112 (100) [C6H11N(CH3)]+, 98 (83) [C6H11NH]+, 83 (63) [C6H11]+. 31P{1H} NMR (121.78 MHz, CDCl3, 303.2 K, 85% H3PO4): δ 15.25 (s). 1H NMR (300.85 MHz, CDCl3, 294.5 K, TMS): δ 0.94–2.02 (m, 30H, CH2), 2.51 (d, 3JH–P = 9.9 Hz, 3H, CH3), 2.95 (m, 2H, NH), 3.44–3.54 (m, 2H and 1H, CH of C6H11 groups). 13C NMR (75.65 MHz, CDCl3, 295.8 K, TMS): δ 25.21 (d, JC–P = 3.0 Hz), 25.49 (s), 25.63 (s), 25.97 (s), 27.72 (d, JC–P = 4.5 Hz), 31.18 (d, JC–P = 2.3 Hz), 36.27 (d, JC–P = 4.5 Hz), 36.50 (d, JC–P = 4.5 Hz), 49.86 (s), 54.30 (d, JC–P = 3.8 Hz).

IR (KBr disc, ν, cm−1): 3224, 3182, 2937, 2852, 1438, 1200, 1111, 1005, 962, 856, 701. MS (70 ev, EI): m/z (%) = 260 (4) [M + 1]+, 259 (40) [M]+, 258 (81) [M − 1]+, 243 (21) [M - CH4]+, 147 (81) [M - N(CH3)(C6H11)]+, 112 (100) [C6H11N(CH3)]+, 98 (29) [C6H11NH]+, 84 (27) [C6H12]+. 31P{1H} NMR (162.01 MHz, DMSO-d6, 294.9 K, 85% H3PO4): δ 14.78 (s). 1H NMR (400.22 MHz, DMSO-d6, 294.7 K, TMS): δ 0.75 (s, 3H, CH3), 0.98 (s, 3H, CH3), 1.00–1.76 (m, 10H, CH2 of cyclo­hexyl), 2.46 (d, 3JH–P = 10.7 Hz, 3H, CH3—N), 2.59 (m, 4H, CH2), 3.29 (m, 1H, CH of cyclo­hexyl), 3.99 (m, 2H, NH). 13C NMR (100.63 MHz, DMSO-d6, 295.0 K, TMS): δ 23.66 (s), 25.18 (s), 25.78 (s), 26.27 (s), 26.89 (s), 26.93 (s), 30.33 (d, JC–P = 5.6 Hz), 31.19 (d, JC–P = 3.6 Hz), 53.71 (d, JC–P = 2.9 Hz), 53.82 (d, JC–P = 3.5 Hz), 53.87 (s).

The molecular structures of tri­amides (I)–(IV) are shown in Figs. 1–4, respectively, indicating four, three, two and one molecule in the asymmetric units. In all four compounds, the P atoms display a distorted tetra­hedral environment, as (N1)P(O)(N2)(N3) for (I) and (II), and as (N1)P(O)(N2)2 for (III) and (IV), where N1, N2 and N3 in (I) and (II) denote the N atoms of three different groups. On the other hand, the two N2 atoms in (III) belong to two chemically (and not crystallographically) equivalent groups containing N atoms, and in (IV), N2 is related to a bifunctional group containing two chemically equivalent N atoms.

Selected bond lengths and angles of (I)–(IV) are given in Tables 2–5, respectively. The PO bond lengths and OP—N and P—N—C bond angles are comparable with those in similar compounds (Pourayoubi et al., 2012, 2014).

The bond-angle sums at the tertiary N atoms of the P—N(CH3)(C6H11) segment in (I)–(IV), i.e. P—N—C + C—N—C + C—N—P, confirm the sp2 character of such N atoms, for example, bond-angle sums of 358.31 (2), 359.03 (1) and 357.33 (2)° in the three independent molecules of (II).

In compound (IV), the PO bond is located in the equatorial 2-position of the 1,3,2-di­aza­phospho­rinane ring, and the P—N bond made by the –N(CH3)(C6H11) segment is in the axial position.

The P—N bonds formed by the relatively bulky –N(CH3)(C6H11) segment are longer than those formed by the tert-C4H9NH– and –NHCH2C(CH3)2CH2NH– segments. For example, we note the P—N bond in structure (IV), made by the –N(CH3)(C6H11) and –NHCH2C(CH3)2CH2NH— segments is 1.6672 (18) Å for the former and 1.6440 (18) and 1.628 (2) Å for the latter.

Moreover, among the nine molecules in the three structures including both –N(CH3)(C6H11) and –NHC6H11 segments, for eight of the molecules, longer P—N bonds were found involving –N(CH3)(C6H11). For example, note P1—N3 = 1.6405 (16) Å and P1—N11 1.6300 (16) Å involving the –N(CH3)(C6H11) and C6H11NH– segments, respectively in (II). On the other hand, in one of the independent molecules of (III), a shorter P—N bond [1.650 (4) Å] was found made by –N(CH3)(C6H11) in comparison with the two C6H11NH– segments [1.680 (6) and 1.655 (7) Å]. [bond lengths don't match Table 4]

Surprisingly, in (II), the 4-CH3—C6H4NH– segment makes a longer P—N bond with respect to the –N(CH3)(C6H11) segment, which is attributed to the different hybridization states of the C atoms attached to the N atoms in these groups (sp2 and sp3, respectively), resulting in an electron-withdrawing effect of the aromatic ring. This is similar to what was reported previously for the P—N bonds made by the same groups in rac-(C6H5O)P(O)[N(CH3)(cyclo-C6H11)][NH(C6H4-p-CH3)] (Pourayoubi et al., 2013).

In some molecules of structures (I)–(IV), the C—N—C angles of the –N(CH3)(C6H11) segments are smaller than the two related P—N—C angles; however, there are also the cases where the C—N—C angle is larger than one of the P—N—C angles at the same N atom. For example, in one of the molecules in structure (II), the C—N—C and two P—N—C angles are 118.96 (16), 121.69 (13) and 118.38 (14)°, respectively.

The extended structure of (I) includes four independent molecules in a one-dimensional chain aggregation (Fig. 5). In this chain, adjacent molecules are linked via (N—H···)2OP and (N—H···)OP hydrogen bonds along [001], building two different and two different C(4) motifs with an C(4)C(4) arrangement (Table 6).

In the crystal packing of (II), each PO group takes part with two N—H units in inter­molecular (N—H···)2OP hydrogen bonds, forming three different rings in a one-dimensional chain containing three independent molecules, running along [100] (Fig. 6 and Table 7).

The hydrogen-bond pattern of (III) is similar to that of (II), with adjacent molecules linked through (N—H···)2OP hydrogen bonds in a one-dimensional chain along [010], with building motifs (Fig. 7 and Table 8).

The crystal packing of (IV) is slightly different, with molecules connected through (N—H···)(N—H···)OP hydrogen bonds, forming ring motifs, into extended chains parallel to [100] (Fig. 8 and Table 9).

According to the hydrogen-bond patterns discussed, (N—H···)2OP and (N—H···)(N—H···)OP refer to the double-acceptor action of O atoms. The former notation was used when two N—H groups belong to one molecule (in a ring motif) and the latter is used for the case with two N—H groups belonging to individual molecules (forming a ring motif). On the other hand, the structure of (I) also includes a two-centred hydrogen bond, forming a C(4) motif, and there are some N—H groups which are not involved in hydrogen-bond inter­actions.

Synthesis and crystallization top

The starting phospho­rus–chlorine compound Cl2P(O)[N(CH3)(C6H11)] was synthesized at 273 K by the reaction of NH(CH3)(C6H11) (20 mmol) dissolved in dry aceto­nitrile (10 ml) with a solution of P(O)Cl3 (10 mmol) in the same solvent (20 ml). After stirring for 5 h, the solid which formed, i.e. (C6H11)(CH3)NH·HCl, was filtered off. The aceto­nitrile solution of Cl2P(O)[N(CH3)(C6H11)] was used for the next step. The other starting compound, i.e. rac-ClP(O)[N(CH3)(C6H11)](NHC6H11) was synthesized from Cl2P(O)[N(CH3)(C6H11)] using the same procedure, but using Cl2P(O)[N(CH3)(C6H11)] as the starting phospho­rus–chlorine compound in the reaction with NH2(C6H11).

For the synthesis of (I), a solution of tert-butyl­amine (4 mmol) in dry aceto­nitrile (10 ml) was added to a solution of ClP(O)[N(CH3)(C6H11)](NHC6H11) (2 mmol) in the same solvent (20 ml) at 273 K. After stirring for 7 h, the solvent was removed in vacuo and the solid obtained was washed with distilled water.

Compound (II) was synthesized following the same procedure but by using a mixture of p-toluidine and tri­ethyl­amine (2 mmol of each) instead of tert-butyl­amine. Colourless single crystals suitable for X-ray diffraction experiments were obtained at room temperature from CH3OH/CHCl3/DMF (4:4:1 v/v/v) for (I) and from CHCl3/C2H5OH (4:1 v/v) for (II).

For the synthesis of (III), a solution of cyclo­hexyl­amine (8 mmol) in dry aceto­nitrile (10 ml) was added to a solution of Cl2P(O)[N(CH3)(C6H11)] (2 mmol) in the same solvent (20 ml) at 273 K. After stirring for 4 h, the solvent was removed in vacuo and the solid obtained was washed with distilled water.

Compound (IV) was obtained using a similar procedure as for (III), but using 2,2-di­methyl­propane-1,3-di­amine (4 mmol) instead of cyclo­hexyl­amine. Colourless single crystals suitable for X-ray diffraction experiments were obtained at room temperature from CHCl3/C2H5OH (2:2 v/v) for (III) and from CH3OH/DMF (4:1 v/v) for (IV). The 1H NMR, 13C NMR and MS spectra of compounds (I)–(IV) are given in Figs. S1–S15 in the Supporting information.

Cl2P(O)[N(CH3)(cyclo-C6H11)] was synthesized from the reaction between Cl3P(O) and N-methyl­cyclo­hexyl­amine (1:2 molar ratio). Racemic ClP(O)[N(CH3)(cyclo-C6H11)][NH(cyclo-C6H11)] was then prepared from Cl2P(O)[N(CH3)(cyclo-C6H11)]and cyclo­hexyl­amine (1:2 molar ratio), for the first time. In each reaction, the corresponding amine acts as both a nucleophile and an HCl scavenger.

Aceto­nitrile was found to be a suitable solvent in these reactions, due to the low solubility of the [(cyclo-C6H11)NH2(CH3)]Cl (first reaction) and [(cyclo-C6H11)NH3]Cl (second reaction) salts and the good solubility of Cl2P(O)[N(CH3)(cyclo-C6H11)] and ClP(O)[N(CH3)(cyclo-C6H11)][NH(cyclo-C6H11)]. Thus, the salts formed in each reaction were simply filtered off and the pure products Cl2P(O)[N(CH3)(cyclo-C6H11)] and ClP(O)[N(CH3)(cyclo-C6H11)][NH(cyclo-C6H11)] remained in the aceto­nitrile solution.

In the final step, for the preparation of (I) and (II) (see Scheme 2), rac-ClP(O)[N(CH3)(cyclo-C6H11)][NH(cyclo-C6H11)] reacts with the corresponding amine [2 eqivalents of tert-butyl­amine for (I) and an equimolar mixture of p-toluidine and tri­ethyl­amine for (II)] to yield the racemic (RNH)P(O)[N(CH3)(cyclo-C6H11)][NH(cyclo-C6H11)] mixed phospho­ric tri­amides [R = t-Bu in (I) and 4-CH3—C6H4 in (II)], and the [tBuNH3]Cl salt for (I) and 4-CH3—C6H4NH3Cl for (II)) were removed by dissolving in H2O.

The phospho­ric tri­amides (III) and (IV) were prepared from the reaction between an aceto­nitrile solution of Cl2P(O)[N(CH3)(cyclo-C6H11)] and the corresponding amine. The salts which formed were removed with H2O (see Scheme 2).

Refinement details top

Crystal data, data collection and structure refinement details are summarized in Table 1. Non-H atoms were refined anisotropically. H atoms were all located in the difference Fourier maps for each of the title structures, but those attached to C atoms were repositioned geometrically. The H atoms were initially refined with soft restraints on the bond lengths and angles to regularize their geometry (C—H in the range 0.92 – 1.00 Å de pending on hybridization state), after which the positions of H-atoms not involved in hydrogen bonding inter­actions were refined with riding constraints (Cooper et al., 2010) and fixed isotropic displacement parameters Uiso(H) = 1.5Ueq(Ci) for CH3 groups or 1.2Ueq(Cii) for CH2 and CH groups, where Ueq(Ci) and Ueq(Cii) are the equivalent displacement parameters of the C atoms to which corresponding H atoms are bonded. The H atoms of the NH groups were allowed to refine with a restrained N—H bond distance of 0.86 (2) Å and Uiso(H) = 1.2Ueq(N). The H atoms of the NH groups were refined using soft distance and angle restraints.

In (I), the absolute configuration was arbitrarily assigned. One independent molecule of (I) appeared to be heavily disordered. This disorder was modelled with split positions. Two orientations of tert-butyl were found, and they were restrained to have a similar geometry. In addition restraints were used in order to keep reasonable C—C sp3-sp3 bond distances. The anisotropic atomic displacement parameters of adjacent atoms in the disordered fragment were restrained to be the same (Betteridge et al., 2003). The similarity restraint was not used for the two disordered parts of the cyclo­hexane group of the same molecule. Instead, only the anisotropic atomic displacement parameters of adjacent atoms were restrained to be the same, and restraints were used in order to keep reasonable C—C sp3-sp3 bond distances within the rings. The occupancies of the two parts for tert-butyl and cyclo­hexane were refined to 0.233 (9)/0.767 (9) and 0.443 (11)/0.557 (9), respectively.

In (III), disorder on all six-membered rings appeared to be impossible to model satisfactorily using split positions. For this reason restraints on angles and distances were used in order to get an acceptable geometry. It was in addition necessary to use thermal similarity restraints on all atoms within the rings.

Although the general structural features are certainly correct in (I) and (III), some caution is necessary when inter­preting the fine structural details in especially the disordered parts.

Computing details top

Data collection: GEMINI (Oxford Diffraction, 2006) for (I), (III); CrysAlis PRO (Agilent, 2011) for (II), (IV). For all compounds, cell refinement: CrysAlis PRO (Agilent, 2011); data reduction: CrysAlis PRO (Agilent, 2011). Program(s) used to solve structure: SUPERFLIP (Palatinus & Chapuis, 2007) for (I), (III); SUPERFLIP (Palatinus & Chapuis, 2007) for (II), (IV). For all compounds, program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003); molecular graphics: PLATON (Spek, 2009) and Mercury (Macrae et al., 2008); software used to prepare material for publication: CRYSTALS (Betteridge et al., 2003) and enCIFer (Allen et al., 2004).

Figures top
[Figure 1] Fig. 1. Displacement ellipsoid plots (at the 50% probability level) of the components of the asymmetric unit of (I), showing the atom-numbering schemes. H atoms are drawn as spheres of arbitrary radii.
[Figure 2] Fig. 2. Displacement ellipsoid plots (at the 50% probability level) of the components of the asymmetric unit of (II), showing the atom-numbering schemes. H atoms are drawn as spheres of arbitrary radii.
[Figure 3] Fig. 3. Displacement ellipsoid plots (at the 50% probability level) of the components of the asymmetric unit of (III), showing the atom-numbering schemes. H atoms are drawn as spheres of arbitrary radii.
[Figure 4] Fig. 4. Displacement ellipsoids (at the 50% probability level) of (IV), showing the atom-numbering scheme. H atoms are drawn as spheres of arbitrary radii.
[Figure 5] Fig. 5. A partial view of the crystal packing of (I). The one-dimensional chain, containing four independent molecules (shown as different colours), is formed by (N—H···)2OP and (N—H···)OP hydrogen bonds (black dashed lines) along the c axis building R21(6) and C(4) motifs (with an ···R21(6)R21(6)C(4)C(4)R21(6)R21(6)C(4)C(4)··· arrangement). Only H atoms involved in hydrogen bonds are shown. The P(O)(NH) and P(O)(NH)2 segments involved in hydrogen bonding are shown as `capped sticks'.
[Figure 6] Fig. 6. A partial view of the crystal packing of (II) in which the (N—H···)2OP hydrogen bonds (black dashed lines) connect symmetry-independent molecules into a one-dimensional chain along the a axis, forming an R21(6) ring motif. The symmetry-independent molecules are shown as different colours (green, yellow and purple) and H atoms bonded to C atoms have been omitted for clarity. The P(O)(NH)2 segments involved in hydrogen bonding are shown as `capped sticks'.
[Figure 7] Fig. 7. Part of the crystal packing of structure (III), showing the one-dimensional chain formed through (N—H···)2OP hydrogen bonds [building the R21(6) ring motif] along the b axis. The hydrogen bonds are shown as black dashed lines, symmetry-independent molecules are given as different colours (yellow and purple), H atoms bonded to C atoms have been omitted for clarity and the P(O)(NH)2 segments involved in hydrogen bonding are shown as `capped sticks'.
[Figure 8] Fig. 8. The extended one-dimensional chain arrangement of (IV) [containing the R22(8) ring motif] along the a axis, formed through the (N—H···)(N—H···)OP hydrogen bonds. The hydrogen bonds are shown as black dashed lines. H atoms not involved in hydrogen bonding have been omitted for clarity and the P(O)(NH)2 parts involved in hydrogen bonding are shown as `capped sticks'.
(I) rac-N-tert-Butyl-N',N''-dicyclohexyl-N''-methylphosphoric triamide top
Crystal data top
C17H36N3OPF(000) = 1456.000
Mr = 329.45Dx = 1.114 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
a = 11.9879 (4) ÅCell parameters from 12452 reflections
b = 19.1972 (6) Åθ = 1.7–27.2°
c = 17.0720 (6) ŵ = 0.15 mm1
β = 90.542 (3)°T = 175 K
V = 3928.67 (14) Å30.45 × 0.35 × 0.30 mm
Z = 8
Data collection top
Oxford Diffraction Gemini
diffractometer
14523 reflections with I > 2.0σ(I)
Graphite monochromatorRint = 0.064
ω scansθmax = 29.3°, θmin = 1.6°
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
h = 1515
Tmin = 0.95, Tmax = 0.96k = 2625
43414 measured reflectionsl = 2322
18366 independent reflections
Refinement top
Refinement on F2Hydrogen site location: difference Fourier map
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.096 Method, part 1, Chebychev polynomial, (Watkin, 1994, Prince, 1982) [weight] = 1.0/[A0*T0(x) + A1*T1(x) ··· + An-1]*Tn-1(x)]
where Ai are the Chebychev coefficients listed below and x = F /Fmax Method = Robust Weighting (Prince, 1982) W = [weight] * [1-(deltaF/6*sigmaF)2]2 Ai are: 419. 494. 196.
wR(F2) = 0.118(Δ/σ)max = 0.009
S = 1.09Δρmax = 1.77 e Å3
17831 reflectionsΔρmin = 0.83 e Å3
883 parametersAbsolute structure: Flack (1983), 9230 Friedel pairs
141 restraintsAbsolute structure parameter: 0.08 (10)
Primary atom site location: other
Crystal data top
C17H36N3OPV = 3928.67 (14) Å3
Mr = 329.45Z = 8
Monoclinic, P21Mo Kα radiation
a = 11.9879 (4) ŵ = 0.15 mm1
b = 19.1972 (6) ÅT = 175 K
c = 17.0720 (6) Å0.45 × 0.35 × 0.30 mm
β = 90.542 (3)°
Data collection top
Oxford Diffraction Gemini
diffractometer
18366 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
14523 reflections with I > 2.0σ(I)
Tmin = 0.95, Tmax = 0.96Rint = 0.064
43414 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.096H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.118Δρmax = 1.77 e Å3
S = 1.09Δρmin = 0.83 e Å3
17831 reflectionsAbsolute structure: Flack (1983), 9230 Friedel pairs
883 parametersAbsolute structure parameter: 0.08 (10)
141 restraints
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems open-flow nitrogen cryostat (Cosier & Glazer, 1986) with a nominal stability of 0.1 K.

Cosier, J. & Glazer, A·M., 1986. J. Appl. Cryst. 105–107.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
P1010.86815 (10)0.94106 (9)0.24530 (7)0.0408
O1020.7937 (3)0.9650 (2)0.30906 (19)0.0536
N1030.9881 (3)0.9840 (2)0.2551 (2)0.0441
C1040.9918 (5)1.0510 (3)0.2919 (4)0.0719
H10410.99161.08830.25500.0969*
H10420.92941.05620.32540.0969*
H10431.05801.05330.32320.0971*
C1051.0827 (3)0.9655 (3)0.2013 (3)0.0375
H10511.06950.91860.18320.0421*
C1061.0886 (4)1.0124 (3)0.1305 (3)0.0576
H10611.10281.05990.14610.0618*
H10621.01791.01190.10280.0618*
C1071.1837 (5)0.9866 (4)0.0760 (3)0.0735
H10711.16810.93950.05940.0846*
H10721.18721.01660.03140.0850*
C1081.2923 (5)0.9870 (4)0.1187 (4)0.0891
H10811.30971.03460.13300.1067*
H10821.34910.96930.08470.1070*
C1091.2873 (4)0.9414 (4)0.1898 (4)0.0739
H10911.27350.89340.17470.0869*
H10921.35740.94390.21720.0873*
C1101.1924 (4)0.9668 (3)0.2459 (3)0.0529
H11011.20771.01310.26490.0599*
H11021.18570.93460.28940.0598*
N1110.8095 (3)0.9479 (2)0.1595 (2)0.0443
H11110.841 (3)0.9256 (19)0.1239 (10)0.0501*
C1120.7273 (5)0.9985 (3)0.1331 (3)0.0559
C1130.7262 (6)1.0005 (4)0.0439 (3)0.0776
H11310.71160.95570.02210.1087*
H11320.79811.01690.02940.1091*
H11330.67091.03290.02640.1088*
C1140.6094 (5)0.9799 (5)0.1599 (4)0.0920
H11410.59200.93360.14200.1227*
H11420.55681.01260.13900.1228*
H11430.60880.98120.21630.1227*
C1150.7566 (6)1.0719 (4)0.1629 (4)0.0775
H11510.75411.07310.21920.1137*
H11520.70451.10490.14100.1141*
H11530.83061.08220.14540.1138*
N1160.9027 (4)0.8601 (3)0.2464 (2)0.0479
H11610.884 (3)0.8385 (11)0.2058 (16)0.0621*
C1170.9836 (4)0.8242 (3)0.2939 (3)0.0467
H11711.05710.84260.27980.0541*
C1180.9672 (6)0.8376 (3)0.3815 (3)0.0701
H18110.97330.88730.38940.0787*
H11820.89420.82220.39780.0790*
C1191.0538 (6)0.8015 (3)0.4307 (4)0.0717
H11911.12580.82120.41800.0877*
H11921.03920.80940.48550.0882*
C1201.0604 (6)0.7256 (4)0.4164 (4)0.0763
H12011.12220.70510.44500.0838*
H12020.99120.70560.43420.0840*
C1211.0732 (6)0.7092 (4)0.3278 (4)0.0754
H12111.14650.72390.31010.0860*
H12121.06450.65930.32010.0859*
C1220.9885 (5)0.7481 (3)0.2798 (4)0.0667
H12211.00560.73960.22510.0761*
H12230.91520.72960.29230.0759*
P2010.36355 (12)0.30472 (9)0.25482 (8)0.0464
O2020.2851 (3)0.2863 (2)0.1898 (2)0.0606
N2030.4854 (4)0.2623 (3)0.2390 (2)0.0530
C2040.4823 (5)0.1981 (3)0.1939 (4)0.0748
H20410.40890.19150.17260.1019*
H20420.50290.15980.22660.1020*
H20430.53290.20280.15160.1018*
C2050.5771 (4)0.2708 (3)0.2938 (2)0.0355
H20510.56650.31520.31880.0402*
C2060.6892 (4)0.2742 (4)0.2524 (3)0.0610
H20610.70130.22920.22610.0651*
H20620.68800.31090.21370.0653*
C2070.7838 (5)0.2869 (4)0.3097 (4)0.0793
H20710.85390.28870.28090.0878*
H20720.77250.33090.33650.0879*
C2080.7921 (4)0.2288 (4)0.3703 (3)0.0762
H20810.85210.23790.40710.0927*
H20820.80460.18430.34510.0932*
C2090.6788 (5)0.2254 (5)0.4145 (4)0.1040
H20910.66890.27170.43830.1210*
H20920.68100.19010.45510.1211*
C2100.5837 (5)0.2130 (4)0.3574 (4)0.0716
H21010.59680.16860.33120.0808*
H21020.51330.21180.38560.0809*
N2110.3118 (3)0.2907 (2)0.3391 (2)0.0459
H21110.344 (3)0.3120 (19)0.3765 (9)0.0539*
C2120.2305 (4)0.2358 (3)0.3630 (3)0.0543
C2140.1102 (4)0.2556 (4)0.3346 (4)0.0626
H21410.08700.29780.36030.0909*
H21420.06220.21770.34760.0909*
H21430.11050.26300.27940.0911*
C2130.2290 (5)0.2328 (3)0.4521 (3)0.0631
H21310.29880.21680.47060.0887*
H21320.21470.27800.47290.0884*
H21330.17270.20130.46970.0889*
C2150.2577 (5)0.1677 (3)0.3287 (4)0.0717
H21510.33190.15590.34310.1031*
H21520.20650.13330.34730.1028*
H21530.25120.17070.27300.1028*
N2160.3992 (3)0.3857 (2)0.2622 (2)0.0472
H21610.425 (2)0.3896 (12)0.3081 (10)0.0615*
C2170.4758 (4)0.4227 (3)0.2139 (3)0.0543
H21710.55040.40490.22830.0602*
C2180.4569 (6)0.4097 (3)0.1266 (3)0.0698
H21820.38200.42420.11220.0829*
H21810.46630.36010.11650.0827*
C2190.5386 (6)0.4498 (4)0.0780 (4)0.0875
H21910.61300.43040.08790.0960*
H21920.51850.44340.02310.0962*
C2200.5390 (7)0.5251 (4)0.0950 (4)0.0914
H22010.59850.54710.06600.1009*
H22020.46800.54430.07880.1011*
C2210.5600 (6)0.5403 (4)0.1810 (4)0.0865
H22110.55090.59040.19130.0960*
H22120.63640.52640.19440.0961*
C2220.4757 (5)0.4987 (3)0.2314 (4)0.0700
H22210.49440.50770.28620.0776*
H22220.40050.51610.21920.0773*
P3010.09668 (10)0.32332 (9)0.02250 (7)0.0381
O3020.0704 (3)0.3599 (2)0.0514 (2)0.0560
N3030.0048 (3)0.2667 (2)0.0372 (2)0.0454
C3040.0020 (4)0.2238 (3)0.1079 (3)0.0545
H30410.06830.22870.13270.0772*
H30420.01470.17610.09540.0771*
H30430.05830.23990.14290.0774*
C3050.1035 (4)0.2606 (3)0.0135 (3)0.0532
H30510.09390.29340.05660.0577*
C3060.2113 (4)0.2821 (3)0.0285 (4)0.0625
H30610.22310.25050.07220.0692*
H30620.20650.32980.04790.0688*
C3070.3118 (5)0.2757 (4)0.0273 (4)0.0783
H30710.37830.28600.00170.0902*
H30720.30480.30900.07000.0899*
C3080.3227 (5)0.2043 (4)0.0614 (4)0.0739
H30810.33550.17210.01980.0859*
H30820.38470.20320.09710.0860*
C3090.2156 (6)0.1841 (4)0.1035 (4)0.0905
H30910.22130.13660.12110.1052*
H30920.20390.21480.14780.1050*
C3100.1173 (5)0.1897 (4)0.0474 (4)0.0712
H31010.12700.15570.00610.0826*
H31020.05170.17810.07630.0833*
N3110.2173 (3)0.2837 (2)0.0255 (2)0.0545
H31110.240 (2)0.2765 (17)0.0725 (10)0.0592*
C3120.2608 (3)0.2321 (2)0.0278 (2)0.0617
C31310.3317 (19)0.1831 (9)0.0203 (5)0.09220.233 (8)
H31320.33580.13860.00510.1238*0.233 (8)
H31330.40570.20110.02820.1238*0.233 (8)
H31340.29600.17790.07010.1238*0.233 (8)
C31320.2256 (7)0.1620 (3)0.0030 (4)0.08440.767 (8)
H31350.25350.12640.03010.1169*0.767 (8)
H31360.25420.15570.05460.1169*0.767 (8)
H31370.14650.15990.00370.1169*0.767 (8)
C31410.1796 (7)0.1856 (9)0.0649 (11)0.09410.233 (8)
H31420.21560.15320.09830.1216*0.233 (8)
H31430.13430.21600.09550.1216*0.233 (8)
H31440.13450.16120.02870.1216*0.233 (8)
C31420.2151 (5)0.2324 (4)0.1076 (4)0.08040.767 (8)
H31450.20780.18590.12780.1133*0.767 (8)
H31460.26300.25890.14110.1133*0.767 (8)
H31470.14290.25400.10600.1133*0.767 (8)
C31510.3332 (19)0.2700 (5)0.0877 (10)0.12550.233 (8)
H31520.40880.25460.08080.1751*0.233 (8)
H31530.32930.31930.07890.1751*0.233 (8)
H31540.30870.25990.14020.1751*0.233 (8)
C31520.3865 (5)0.2377 (4)0.0263 (4)0.10540.767 (8)
H31550.41870.20460.06070.1768*0.767 (8)
H31560.40630.28340.04260.1768*0.767 (8)
H31570.41340.23000.02550.1768*0.767 (8)
N3160.1110 (3)0.3734 (2)0.0984 (2)0.0474
H31610.155 (3)0.3577 (15)0.1338 (12)0.0543*
C3170.0261 (5)0.4224 (3)0.1250 (3)0.0577
C31820.0087 (17)0.4132 (12)0.2113 (7)0.10510.443 (9)
C31810.0517 (12)0.4045 (8)0.1883 (9)0.10260.557 (9)
H31820.01120.39440.23500.1100*0.557 (9)
H31830.09060.36400.17140.1100*0.557 (9)
H31840.07640.42400.23800.1110*0.443 (9)
H31850.00890.36550.21920.1150*0.443 (9)
C31910.1351 (10)0.4608 (6)0.1996 (10)0.08800.557 (9)
H31920.18000.44470.24150.1193*0.557 (9)
H31930.18080.46900.15480.1193*0.557 (9)
H31940.07540.45040.30640.1136*0.443 (9)
C31920.0815 (16)0.4529 (6)0.2510 (9)0.08390.443 (9)
H31950.15140.43430.23460.1136*0.443 (9)
C3200.0781 (6)0.5267 (4)0.2245 (4)0.0877
H32010.13330.56160.23140.0975*0.557 (9)
H32020.03900.51970.27250.0975*0.557 (9)
H32030.14100.55120.24380.0975*0.443 (9)
H32040.01170.54750.24450.0975*0.443 (9)
C32110.0034 (13)0.5504 (6)0.1656 (10)0.10620.557 (9)
H32120.03980.59150.18350.1187*0.557 (9)
H32130.03640.56030.11850.1187*0.557 (9)
C32120.0856 (15)0.5255 (11)0.1357 (6)0.10200.443 (9)
H32140.07690.57230.11870.1249*0.443 (9)
H32150.15440.50760.11640.1249*0.443 (9)
C32210.0810 (9)0.4906 (5)0.1497 (9)0.07990.557 (9)
H32220.12740.50540.10810.0970*0.557 (9)
H32230.12520.48280.19540.0970*0.557 (9)
C32220.0114 (15)0.4927 (7)0.0947 (11)0.09180.443 (9)
H32240.07900.51600.10760.1205*0.443 (9)
H32250.00270.49060.03940.1205*0.443 (9)
P4010.61608 (9)0.92741 (8)0.48006 (6)0.0310
O4020.5975 (3)0.89586 (19)0.55880 (18)0.0436
N4030.5062 (3)0.9748 (2)0.4578 (2)0.0417
C4040.5087 (4)1.0179 (3)0.3879 (3)0.0532
H40410.43601.02820.36890.0745*
H40420.54401.06070.39940.0742*
H40430.54920.99390.34960.0741*
C4050.4086 (4)0.9844 (3)0.5103 (3)0.0461
H40510.41990.95400.55470.0521*
C4060.3997 (4)1.0583 (3)0.5393 (4)0.0600
H40610.38691.08850.49560.0719*
H40620.46651.07240.56590.0720*
C4070.2988 (5)1.0653 (5)0.5966 (4)0.0918
H40710.31221.03500.64050.1090*
H40720.29201.11320.61430.1089*
C4080.1938 (4)1.0416 (4)0.5579 (4)0.0666
H40810.17691.07240.51570.0788*
H40820.13491.04380.59560.0794*
C4090.2033 (5)0.9685 (4)0.5282 (4)0.0789
H40910.13570.95690.49880.0936*
H40920.21280.93690.57190.0939*
C4100.3018 (4)0.9613 (3)0.4717 (4)0.0584
H41010.30890.91310.45600.0689*
H41020.28870.99040.42610.0689*
N4110.7324 (3)0.9710 (3)0.4737 (2)0.0468
H41110.752 (3)0.981 (2)0.4272 (10)0.0517*
C4120.7965 (4)1.0050 (3)0.5355 (3)0.0450
C4130.8877 (5)1.0498 (3)0.4961 (3)0.0626
H41310.93411.02030.46450.0879*
H41320.93281.07200.53610.0873*
H41330.85281.08480.46320.0878*
C4140.7255 (5)1.0500 (4)0.5878 (4)0.0730
H41410.69441.08820.55790.1057*
H41420.77241.06850.62820.1060*
H41430.66831.02290.61070.1058*
C4150.8564 (5)0.9508 (4)0.5845 (4)0.0788
H41510.90390.97320.62330.1119*
H41520.80050.92330.60970.1119*
H41530.90060.92130.55120.1122*
N4160.6322 (3)0.8731 (2)0.4070 (2)0.0402
H41610.6940 (17)0.8732 (19)0.3845 (17)0.0464*
C4170.5442 (4)0.8346 (3)0.3689 (3)0.0493
H41710.49030.86820.34960.0547*
C4180.5920 (6)0.7965 (4)0.2966 (4)0.1023
H41810.62630.83040.26210.1039*
H41820.64640.76240.31470.1040*
C4190.4971 (7)0.7590 (5)0.2519 (4)0.1057
H41910.44570.79520.23320.1197*
H41920.52820.73320.20870.1200*
C4200.4350 (6)0.7115 (4)0.3024 (5)0.0810
H42010.48330.67370.31850.0919*
H42020.37250.69340.27390.0918*
C4210.3951 (7)0.7478 (5)0.3730 (5)0.1161
H42110.33770.78040.35800.1361*
H42120.36500.71280.40790.1356*
C4220.4867 (6)0.7858 (4)0.4186 (4)0.0813
H42210.45450.81070.46230.1009*
H42220.54050.75210.43850.1009*
H31710.01600.43350.07920.0622*0.557 (9)
H31720.03780.40110.10190.0622*0.443 (9)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
P1010.0352 (6)0.0506 (9)0.0367 (6)0.0070 (6)0.0093 (5)0.0016 (6)
O1020.0399 (19)0.083 (3)0.0379 (19)0.0087 (19)0.0166 (15)0.0070 (19)
N1030.040 (2)0.056 (3)0.037 (2)0.0121 (19)0.0102 (18)0.017 (2)
C1040.055 (4)0.073 (5)0.088 (5)0.024 (3)0.033 (3)0.031 (4)
C1050.029 (2)0.050 (3)0.034 (2)0.008 (2)0.0084 (19)0.008 (2)
C1060.032 (3)0.087 (5)0.054 (3)0.008 (3)0.010 (2)0.003 (3)
C1070.062 (4)0.113 (6)0.047 (3)0.001 (4)0.025 (3)0.018 (4)
C1080.043 (4)0.146 (8)0.079 (5)0.015 (4)0.035 (3)0.000 (5)
C1090.034 (3)0.111 (6)0.076 (4)0.008 (4)0.004 (3)0.025 (4)
C1100.042 (3)0.066 (4)0.050 (3)0.007 (3)0.006 (2)0.008 (3)
N1110.034 (2)0.061 (3)0.0377 (17)0.004 (2)0.0121 (14)0.003 (2)
C1120.044 (3)0.074 (4)0.050 (3)0.014 (3)0.013 (3)0.003 (3)
C1130.089 (5)0.099 (6)0.045 (4)0.024 (4)0.004 (3)0.010 (4)
C1140.044 (4)0.167 (9)0.065 (4)0.002 (4)0.019 (3)0.008 (5)
C1150.068 (4)0.079 (5)0.085 (5)0.016 (4)0.004 (4)0.010 (4)
N1160.038 (2)0.061 (2)0.044 (3)0.003 (2)0.005 (2)0.020 (2)
C1170.038 (3)0.054 (3)0.048 (3)0.011 (3)0.006 (2)0.002 (3)
C1180.091 (5)0.067 (4)0.052 (4)0.025 (4)0.007 (3)0.000 (3)
C1190.085 (5)0.072 (5)0.059 (4)0.021 (4)0.000 (3)0.004 (3)
C1200.079 (5)0.080 (5)0.070 (5)0.006 (4)0.008 (4)0.018 (4)
C1210.078 (5)0.063 (4)0.085 (5)0.016 (4)0.012 (4)0.008 (4)
C1220.070 (4)0.067 (4)0.063 (4)0.009 (3)0.015 (3)0.013 (3)
P2010.0449 (7)0.0553 (9)0.0389 (7)0.0122 (7)0.0074 (5)0.0093 (6)
O2020.048 (2)0.088 (3)0.0461 (19)0.014 (2)0.0079 (15)0.010 (2)
N2030.051 (2)0.065 (3)0.043 (2)0.020 (2)0.0087 (19)0.019 (2)
C2040.061 (4)0.074 (5)0.089 (5)0.017 (4)0.001 (4)0.034 (4)
C2050.031 (2)0.048 (3)0.028 (2)0.002 (2)0.0008 (18)0.003 (2)
C2060.047 (3)0.087 (5)0.049 (3)0.010 (3)0.010 (3)0.021 (3)
C2070.044 (3)0.103 (6)0.090 (5)0.011 (4)0.020 (3)0.008 (4)
C2080.032 (3)0.148 (7)0.049 (3)0.013 (4)0.010 (3)0.015 (4)
C2090.045 (4)0.199 (10)0.068 (5)0.002 (5)0.000 (3)0.065 (6)
C2100.041 (3)0.101 (6)0.073 (4)0.003 (3)0.005 (3)0.027 (4)
N2110.038 (2)0.056 (3)0.0435 (18)0.002 (2)0.0106 (16)0.007 (2)
C2120.046 (3)0.059 (4)0.059 (4)0.014 (3)0.004 (3)0.007 (3)
C2140.027 (3)0.085 (5)0.076 (4)0.005 (3)0.006 (3)0.009 (4)
C2130.064 (4)0.071 (4)0.054 (4)0.020 (3)0.005 (3)0.008 (3)
C2150.068 (4)0.060 (4)0.087 (5)0.014 (3)0.004 (4)0.006 (4)
N2160.040 (2)0.0606 (19)0.041 (2)0.0109 (18)0.0015 (19)0.009 (2)
C2170.040 (3)0.066 (4)0.056 (3)0.000 (3)0.002 (2)0.001 (3)
C2180.087 (5)0.073 (5)0.050 (3)0.010 (4)0.020 (3)0.002 (3)
C2190.086 (5)0.092 (6)0.084 (5)0.020 (5)0.021 (4)0.002 (5)
C2200.097 (6)0.100 (7)0.077 (5)0.027 (5)0.023 (4)0.021 (5)
C2210.071 (5)0.096 (6)0.092 (6)0.020 (4)0.013 (4)0.002 (5)
C2220.071 (4)0.073 (5)0.066 (4)0.012 (4)0.028 (3)0.025 (4)
P3010.0311 (6)0.0518 (8)0.0314 (6)0.0016 (6)0.0017 (5)0.0080 (6)
O3020.038 (2)0.079 (3)0.051 (2)0.0159 (19)0.0031 (17)0.018 (2)
N3030.047 (2)0.058 (3)0.031 (2)0.003 (2)0.0035 (18)0.020 (2)
C3040.047 (3)0.077 (4)0.039 (3)0.008 (3)0.001 (2)0.017 (3)
C3050.037 (3)0.087 (5)0.036 (3)0.015 (3)0.003 (2)0.022 (3)
C3060.042 (3)0.065 (4)0.080 (5)0.002 (3)0.012 (3)0.006 (3)
C3070.033 (3)0.090 (6)0.112 (6)0.011 (3)0.002 (3)0.024 (5)
C3080.039 (3)0.113 (6)0.069 (4)0.009 (4)0.012 (3)0.015 (4)
C3090.068 (5)0.127 (7)0.076 (5)0.007 (4)0.015 (4)0.030 (5)
C3100.040 (3)0.100 (6)0.073 (4)0.005 (3)0.006 (3)0.020 (4)
N3110.039 (2)0.087 (4)0.037 (2)0.008 (2)0.0046 (19)0.010 (2)
C3120.063 (4)0.072 (4)0.050 (3)0.022 (3)0.002 (3)0.008 (3)
C31310.116 (17)0.069 (15)0.091 (16)0.037 (13)0.005 (14)0.010 (12)
C31320.098 (8)0.076 (7)0.080 (7)0.014 (6)0.019 (6)0.007 (5)
C31410.092 (16)0.15 (2)0.040 (13)0.020 (15)0.020 (13)0.034 (14)
C31420.048 (5)0.155 (10)0.037 (4)0.014 (5)0.005 (4)0.024 (5)
C31510.081 (16)0.21 (2)0.084 (16)0.003 (15)0.050 (12)0.000 (14)
C31520.040 (5)0.195 (13)0.081 (7)0.016 (6)0.013 (4)0.052 (8)
N3160.041 (2)0.061 (3)0.040 (2)0.005 (2)0.0007 (19)0.004 (2)
C3170.065 (4)0.066 (4)0.042 (3)0.012 (3)0.001 (3)0.007 (3)
C31820.095 (15)0.097 (13)0.124 (14)0.053 (13)0.064 (12)0.023 (11)
C31810.073 (11)0.089 (9)0.147 (13)0.012 (9)0.082 (10)0.036 (10)
C31910.090 (10)0.074 (8)0.101 (11)0.022 (6)0.032 (8)0.012 (8)
C31920.125 (13)0.072 (10)0.055 (9)0.037 (9)0.020 (9)0.010 (8)
C3200.089 (5)0.083 (6)0.092 (6)0.011 (4)0.030 (4)0.012 (4)
C32110.140 (13)0.075 (10)0.104 (12)0.012 (10)0.063 (11)0.009 (8)
C32120.099 (13)0.109 (14)0.098 (13)0.044 (12)0.031 (11)0.027 (11)
C32210.066 (8)0.087 (9)0.088 (9)0.012 (7)0.045 (7)0.020 (8)
C32220.083 (11)0.107 (12)0.086 (11)0.044 (10)0.039 (9)0.028 (10)
P4010.0288 (6)0.0361 (7)0.0282 (6)0.0017 (5)0.0043 (4)0.0024 (5)
O4020.0380 (19)0.056 (2)0.0365 (18)0.0125 (16)0.0051 (15)0.0104 (16)
N4030.041 (2)0.053 (3)0.031 (2)0.006 (2)0.0057 (17)0.0107 (19)
C4040.044 (3)0.070 (4)0.045 (3)0.005 (3)0.010 (2)0.020 (3)
C4050.038 (3)0.067 (4)0.033 (3)0.011 (3)0.008 (2)0.013 (3)
C4060.030 (3)0.080 (5)0.070 (4)0.003 (3)0.011 (3)0.028 (3)
C4070.053 (4)0.157 (8)0.066 (4)0.021 (5)0.014 (3)0.027 (5)
C4080.039 (3)0.086 (5)0.075 (4)0.004 (3)0.021 (3)0.002 (4)
C4090.030 (3)0.078 (5)0.128 (6)0.005 (3)0.014 (3)0.014 (5)
C4100.039 (3)0.049 (4)0.087 (5)0.001 (3)0.010 (3)0.018 (3)
N4110.039 (2)0.067 (3)0.035 (2)0.007 (2)0.0099 (18)0.007 (2)
C4120.046 (3)0.050 (3)0.038 (3)0.005 (3)0.001 (2)0.003 (2)
C4130.051 (3)0.083 (5)0.054 (4)0.022 (3)0.014 (3)0.009 (3)
C4140.057 (4)0.092 (5)0.070 (4)0.023 (4)0.023 (3)0.043 (4)
C4150.063 (4)0.103 (6)0.070 (4)0.026 (4)0.007 (3)0.022 (4)
N4160.031 (2)0.049 (3)0.041 (2)0.0075 (19)0.0072 (17)0.004 (2)
C4170.041 (3)0.055 (4)0.051 (3)0.011 (3)0.010 (2)0.011 (3)
C4180.098 (6)0.125 (7)0.085 (5)0.053 (5)0.035 (4)0.044 (5)
C4190.132 (7)0.118 (7)0.067 (5)0.038 (6)0.009 (5)0.019 (5)
C4200.067 (4)0.061 (5)0.114 (6)0.027 (4)0.007 (4)0.022 (4)
C4210.104 (6)0.153 (9)0.092 (6)0.076 (6)0.017 (5)0.029 (6)
C4220.080 (5)0.104 (6)0.061 (4)0.042 (4)0.001 (3)0.004 (4)
Geometric parameters (Å, º) top
P101—O1021.487 (3)C305—C3101.489 (9)
P101—N1031.664 (4)C306—H30610.972
P101—N1111.623 (4)C306—H30620.976
P101—N1161.608 (5)C306—C3071.533 (8)
P201—O2021.490 (4)C307—H30710.963
P201—N2031.697 (4)C307—H30720.974
P201—N2111.595 (4)C307—C3081.496 (9)
P201—N2161.617 (5)C308—H30810.954
P301—O3021.475 (4)C308—H30820.957
P301—N3031.653 (4)C308—C3091.527 (9)
P301—N3111.635 (4)C309—H30910.962
P301—N3161.621 (4)C309—H30920.970
P401—O4021.493 (3)C309—C3101.515 (8)
P401—N4031.643 (4)C310—H31010.969
P401—N4111.631 (4)C310—H31020.958
P401—N4161.639 (4)N311—H31110.854 (16)
N103—C1041.432 (7)N311—C3121.446 (4)
N103—C1051.509 (5)C312—C31321.505 (6)
C104—H10410.954C312—C31421.464 (6)
C104—H10420.951C312—C31521.511 (6)
C104—H10430.954C312—C31311.506 (7)
C105—H10510.965C312—C31411.460 (9)
C105—C1061.509 (7)C312—C31511.533 (9)
C105—C1101.514 (6)C3131—H31320.960
C106—H10610.965C3131—H31330.960
C106—H10620.967C3131—H31340.960
C106—C1071.558 (7)C3132—H31350.950
C107—H10710.965C3132—H31360.950
C107—H10720.956C3132—H31370.949
C107—C1081.486 (9)C3141—H31420.950
C108—H10810.968C3141—H31430.950
C108—H10820.961C3141—H31440.950
C108—C1091.499 (9)C3142—H31450.960
C109—H10910.971C3142—H31460.960
C109—H10920.959C3142—H31470.960
C109—C1101.571 (7)C3151—H31520.960
C110—H11010.964C3151—H31530.960
C110—H11020.969C3151—H31540.960
N111—H11110.840 (16)C3152—H31550.950
N111—C1121.453 (7)C3152—H31560.950
C112—C1131.522 (7)C3152—H31570.950
C112—C1141.532 (7)N316—H31610.851 (16)
C112—C1151.539 (8)N316—C3171.462 (6)
C113—H11310.953C317—C31811.474 (8)
C113—H11320.953C317—C32211.523 (8)
C113—H11330.955C317—H31710.950
C114—H11410.963C317—C31821.501 (9)
C114—H11420.957C317—C32221.455 (9)
C114—H11430.962C317—H31720.950
C115—H11510.961C3182—H31840.950
C115—H11520.962C3182—H31850.950
C115—H11530.959C3182—C31921.491 (9)
N116—H11610.835 (16)C3181—H31820.950
N116—C1171.435 (6)C3181—H31830.950
C117—H11710.981C3181—C31911.487 (9)
C117—C1181.533 (7)C3191—H31920.950
C117—C1221.482 (8)C3191—H31930.950
C118—H18110.967C3191—C3201.498 (8)
C118—H11820.967H3194—C31920.950
C118—C1191.498 (8)C3192—H31950.950
C119—H11910.968C3192—C3201.489 (9)
C119—H11920.966C320—H32010.950
C119—C1201.479 (9)C320—H32020.950
C120—H12010.967C320—C32111.480 (8)
C120—H12020.965C320—H32030.950
C120—C1211.554 (8)C320—H32040.950
C121—H12110.974C320—C32121.517 (9)
C121—H12120.973C3211—H32120.950
C121—C1221.498 (8)C3211—H32130.950
C122—H12210.971C3211—C32211.504 (9)
C122—H12230.973C3212—H32140.950
N203—C2041.452 (7)C3212—H32150.950
N203—C2051.446 (6)C3212—C32221.501 (9)
C204—H20410.957C3221—H32220.950
C204—H20420.956C3221—H32230.950
C204—H20430.951C3222—H32240.950
C205—H20510.962C3222—H32250.950
C205—C2061.524 (6)N403—C4041.452 (6)
C205—C2101.554 (7)N403—C4051.492 (6)
C206—H20610.985C404—H40410.948
C206—H20620.965C404—H40420.945
C206—C2071.510 (8)C404—H40430.939
C207—H20710.978C405—H40510.967
C207—H20720.970C405—C4061.506 (8)
C207—C2081.524 (9)C405—C4101.502 (7)
C208—H20810.966C406—H40610.956
C208—H20820.970C406—H40620.956
C208—C2091.561 (8)C406—C4071.568 (7)
C209—H20910.984C407—H40710.961
C209—H20920.970C407—H40720.971
C209—C2101.512 (8)C407—C4081.488 (8)
C210—H21010.977C408—H40810.953
C210—H21020.975C408—H40820.961
N211—H21110.846 (16)C408—C4091.497 (9)
N211—C2121.496 (6)C409—H40910.975
C212—C2141.565 (7)C409—H40920.967
C212—C2131.522 (7)C409—C4101.537 (7)
C212—C2151.471 (8)C410—H41010.966
C214—H21410.962C410—H41020.969
C214—H21420.955N411—H41110.850 (16)
C214—H21430.953N411—C4121.453 (6)
C213—H21310.943C412—C4131.549 (7)
C213—H21320.954C412—C4141.513 (7)
C213—H21330.957C412—C4151.512 (8)
C215—H21510.947C413—H41310.963
C215—H21520.958C413—H41320.966
C215—H21530.956C413—H41330.969
N216—H21610.843 (16)C414—H41410.966
N216—C2171.428 (7)C414—H41420.953
C217—H21710.987C414—H41430.948
C217—C2181.525 (7)C415—H41510.972
C217—C2221.491 (8)C415—H41520.958
C218—H21820.970C415—H41530.964
C218—H21810.975N416—H41610.838 (16)
C218—C2191.502 (8)N416—C4171.439 (6)
C219—H21910.980C417—H41710.968
C219—H21920.972C417—C4181.549 (8)
C219—C2201.476 (9)C417—C4221.444 (8)
C220—H22010.968C418—H41810.973
C220—H22020.966C418—H41820.972
C220—C2211.516 (9)C418—C4191.542 (9)
C221—H22110.983C419—H41910.979
C221—H22120.979C419—H41920.966
C221—C2221.554 (8)C419—C4201.463 (9)
C222—H22210.977C420—H42010.966
C222—H22220.982C420—H42020.954
N303—C3041.461 (6)C420—C4211.475 (10)
N303—C3051.463 (6)C421—H42110.964
C304—H30410.943C421—H42120.970
C304—H30420.954C421—C4221.527 (9)
C304—H30430.957C422—H42210.969
C305—H30510.975C422—H42220.971
C305—C3061.540 (7)
O102—P101—N103107.3 (2)H3051—C305—C310108.1
O102—P101—N111112.2 (2)C306—C305—C310109.5 (5)
N103—P101—N111114.7 (2)C305—C306—H3061108.7
O102—P101—N116116.5 (2)C305—C306—H3062111.3
N103—P101—N116104.8 (2)H3061—C306—H3062109.3
N111—P101—N116101.4 (2)C305—C306—C307110.4 (5)
O202—P201—N203107.8 (2)H3061—C306—C307107.9
O202—P201—N211112.6 (2)H3062—C306—C307109.2
N203—P201—N211113.9 (2)C306—C307—H3071108.3
O202—P201—N216116.8 (2)C306—C307—H3072109.9
N203—P201—N216104.3 (2)H3071—C307—H3072109.1
N211—P201—N216101.3 (2)C306—C307—C308112.3 (6)
P101—N103—C104120.8 (4)H3071—C307—C308108.5
P101—N111—C112128.4 (4)H3072—C307—C308108.6
P201—N203—C204118.3 (4)C307—C308—H3081108.6
P201—N216—C217127.1 (4)C307—C308—H3082109.4
P301—N303—C304119.0 (3)H3081—C308—H3082109.3
P301—N311—C312128.6 (2)C307—C308—C309110.2 (6)
P401—N403—C404118.9 (3)H3081—C308—C309109.2
P401—N411—C412129.0 (3)H3082—C308—C309110.2
O302—P301—N303107.0 (2)C308—C309—H3091109.2
O302—P301—N311115.5 (2)C308—C309—H3092109.9
N303—P301—N311110.0 (2)H3091—C309—H3092110.1
O302—P301—N316114.9 (2)C308—C309—C310109.7 (5)
N303—P301—N316110.0 (2)H3091—C309—C310108.5
N311—P301—N31699.4 (2)H3092—C309—C310109.4
O402—P401—N403107.88 (19)C309—C310—C305113.2 (6)
O402—P401—N411113.7 (2)C309—C310—H3101108.4
N403—P401—N411112.6 (2)C305—C310—H3101110.3
O402—P401—N416116.5 (2)C309—C310—H3102107.2
N403—P401—N416106.1 (2)C305—C310—H3102108.8
N411—P401—N41699.7 (2)H3101—C310—H3102108.9
P101—N103—C105118.4 (3)P301—N311—H3111111.9 (12)
P101—N116—C117130.0 (4)H3111—N311—C312111.7 (12)
P201—N203—C205119.5 (3)N311—C312—C3132106.78 (9)
P201—N211—C212128.7 (4)N311—C312—C3142116.67 (9)
P301—N303—C305123.6 (3)C3132—C312—C3142103.05 (9)
P301—N316—C317124.1 (4)N311—C312—C3152107.78 (9)
P401—N403—C405124.2 (3)C3132—C312—C3152109.93 (9)
P401—N416—C417125.4 (3)C3142—C312—C3152112.31 (9)
C104—N103—C105117.2 (4)N311—C312—C3131106.81 (9)
N103—C104—H1041112.6N311—C312—C3141116.72 (9)
N103—C104—H1042109.6C3131—C312—C3141103.09 (9)
H1041—C104—H1042108.8N311—C312—C3151107.68 (9)
N103—C104—H1043108.0C3131—C312—C3151109.90 (9)
H1041—C104—H1043109.5C3141—C312—C3151112.32 (9)
H1042—C104—H1043108.3C312—C3131—H3132109.8
N103—C105—H1051106.9C312—C3131—H3133111.7
N103—C105—C106112.9 (4)H3132—C3131—H3133109.4
H1051—C105—C106108.0C312—C3131—H3134107.1
N103—C105—C110110.1 (4)H3132—C3131—H3134109.4
H1051—C105—C110108.4H3133—C3131—H3134109.4
C106—C105—C110110.3 (4)C312—C3132—H3135109.6
C105—C106—H1061110.5C312—C3132—H3136109.8
C105—C106—H1062109.7H3135—C3132—H3136109.5
H1061—C106—H1062107.3C312—C3132—H3137109.0
C105—C106—C107109.2 (5)H3135—C3132—H3137109.5
H1061—C106—C107109.7H3136—C3132—H3137109.5
H1062—C106—C107110.4C312—C3141—H3142110.9
C106—C107—H1071109.4C312—C3141—H3143103.8
C106—C107—H1072108.8H3142—C3141—H3143109.4
H1071—C107—H1072109.8C312—C3141—H3144113.5
C106—C107—C108110.4 (5)H3142—C3141—H3144109.5
H1071—C107—C108108.4H3143—C3141—H3144109.5
H1072—C107—C108110.1C312—C3142—H3145111.2
C107—C108—H1081108.4C312—C3142—H3146109.6
C107—C108—H1082108.9H3145—C3142—H3146109.4
H1081—C108—H1082109.5C312—C3142—H3147107.7
C107—C108—C109110.7 (5)H3145—C3142—H3147109.4
H1081—C108—C109110.9H3146—C3142—H3147109.4
H1082—C108—C109108.4C312—C3151—H3152108.2
C108—C109—H1091110.3C312—C3151—H3153109.6
C108—C109—H1092109.0H3152—C3151—H3153109.4
H1091—C109—H1092108.8C312—C3151—H3154110.9
C108—C109—C110110.3 (6)H3152—C3151—H3154109.4
H1091—C109—C110109.5H3153—C3151—H3154109.4
H1092—C109—C110108.9C312—C3152—H3155110.6
C105—C110—C109108.6 (4)C312—C3152—H3156108.2
C105—C110—H1101110.2H3155—C3152—H3156109.5
C109—C110—H1101110.7C312—C3152—H3157109.5
C105—C110—H1102107.3H3155—C3152—H3157109.5
C109—C110—H1102109.5H3156—C3152—H3157109.5
H1101—C110—H1102110.4P301—N316—H3161114.7 (12)
P101—N111—H1111114.6 (10)H3161—N316—C317115.7 (11)
H1111—N111—C112115.4 (10)N316—C317—C3181121.7 (7)
N111—C112—C113109.1 (4)N316—C317—C3221109.8 (6)
N111—C112—C114112.1 (5)C3181—C317—C3221105.7 (9)
C113—C112—C114107.8 (5)N316—C317—H3171104.8
N111—C112—C115111.0 (5)C3181—C317—H3171108.7
C113—C112—C115107.9 (5)C3221—C317—H3171105.1
C114—C112—C115108.8 (5)N316—C317—C3182109.4 (7)
C112—C113—H1131111.6N316—C317—C3222124.7 (6)
C112—C113—H1132105.7C3182—C317—C3222116.1 (11)
H1131—C113—H1132111.1N316—C317—H317299.0
C112—C113—H1133109.2C3182—C317—H3172103.8
H1131—C113—H1133109.9C3222—C317—H317299.0
H1132—C113—H1133109.2C317—C3182—H3184108.7
C112—C114—H1141108.5C317—C3182—H3185106.6
C112—C114—H1142110.1H3184—C3182—H3185109.5
H1141—C114—H1142110.3C317—C3182—C3192119.6 (12)
C112—C114—H1143108.0H3184—C3182—C3192106.8
H1141—C114—H1143109.7H3185—C3182—C3192105.4
H1142—C114—H1143110.2C317—C3181—H3182110.0
C112—C115—H1151110.0C317—C3181—H3183106.3
C112—C115—H1152109.2H3182—C3181—H3183109.5
H1151—C115—H1152110.3C317—C3181—C3191110.9 (10)
C112—C115—H1153107.1H3182—C3181—C3191112.2
H1151—C115—H1153110.1H3183—C3181—C3191107.7
H1152—C115—H1153110.1C3181—C3191—H3192104.4
P101—N116—H1161113.9 (11)C3181—C3191—H3193113.5
H1161—N116—C117113.6 (11)H3192—C3191—H3193109.5
N116—C117—H1171107.0C3181—C3191—C320110.2 (11)
N116—C117—C118112.3 (4)H3192—C3191—C320108.8
H1171—C117—C118107.6H3193—C3191—C320110.3
N116—C117—C122114.2 (5)C3182—C3192—H3194112.1
H1171—C117—C122106.1C3182—C3192—H3195108.4
C118—C117—C122109.2 (5)H3194—C3192—H3195109.5
C117—C118—H1811106.9C3182—C3192—C320109.1 (13)
C117—C118—H1182110.8H3194—C3192—C320110.4
H1811—C118—H1182109.3H3195—C3192—C320107.2
C117—C118—C119112.0 (5)C3191—C320—H3201108.2
H1811—C118—C119109.1C3191—C320—H3202110.1
H1182—C118—C119108.8H3201—C320—H3202109.4
C118—C119—H1191108.1C3191—C320—C3211111.7 (10)
C118—C119—H1192109.9H3201—C320—C3211109.5
H1191—C119—H1192109.0H3202—C320—C3211107.9
C118—C119—C120113.6 (6)C3192—C320—H3203109.9
H1191—C119—C120107.3C3192—C320—H3204108.4
H1192—C119—C120108.8H3203—C320—H3204109.4
C119—C120—H1201111.1C3192—C320—C3212106.7 (11)
C119—C120—H1202107.1H3203—C320—C3212108.4
H1201—C120—H1202109.6H3204—C320—C3212114.0
C119—C120—C121111.4 (6)C320—C3211—H3212109.8
H1201—C120—C121109.0C320—C3211—H3213107.8
H1202—C120—C121108.6H3212—C3211—H3213109.5
C120—C121—H1211110.0C320—C3211—C3221107.5 (9)
C120—C121—H1212108.7H3212—C3211—C3221114.2
H1211—C121—H1212109.8H3213—C3211—C3221107.9
C120—C121—C122111.0 (5)C320—C3212—H3214106.5
H1211—C121—C122107.1C320—C3212—H3215113.3
H1212—C121—C122110.2H3214—C3212—H3215109.5
C121—C122—C117115.5 (5)C320—C3212—C3222115.7 (12)
C121—C122—H1221107.2H3214—C3212—C322299.6
C117—C122—H1221109.2H3215—C3212—C3222111.1
C121—C122—H1223107.9C317—C3221—C3211116.1 (10)
C117—C122—H1223106.7C317—C3221—H3222107.7
H1221—C122—H1223110.3C3211—C3221—H3222105.9
C204—N203—C205117.0 (4)C317—C3221—H3223109.2
N203—C204—H2041109.5C3211—C3221—H3223108.3
N203—C204—H2042109.7H3222—C3221—H3223109.5
H2041—C204—H2042110.5C3212—C3222—C317108.4 (11)
N203—C204—H2043108.0C3212—C3222—H3224110.9
H2041—C204—H2043108.4C317—C3222—H3224104.8
H2042—C204—H2043110.6C3212—C3222—H3225113.8
N203—C205—H2051106.5C317—C3222—H3225109.0
N203—C205—C206111.9 (4)H3224—C3222—H3225109.5
H2051—C205—C206106.7P401—N403—C404118.9 (3)
N203—C205—C210113.8 (4)C404—N403—C405116.4 (4)
H2051—C205—C210109.1N403—C404—H4041112.0
C206—C205—C210108.4 (4)N403—C404—H4042109.7
C205—C206—H2061107.9H4041—C404—H4042107.4
C205—C206—H2062109.9N403—C404—H4043107.9
H2061—C206—H2062109.1H4041—C404—H4043110.1
C205—C206—C207111.5 (4)H4042—C404—H4043109.6
H2061—C206—C207108.9N403—C405—H4051106.9
H2062—C206—C207109.4N403—C405—C406111.9 (4)
C206—C207—H2071108.9H4051—C405—C406108.8
C206—C207—H2072109.8N403—C405—C410111.7 (4)
H2071—C207—H2072109.3H4051—C405—C410106.2
C206—C207—C208111.4 (5)C406—C405—C410111.1 (4)
H2071—C207—C208108.4C405—C406—H4061109.0
H2072—C207—C208109.0C405—C406—H4062111.2
C207—C208—H2081110.7H4061—C406—H4062109.0
C207—C208—H2082110.7C405—C406—C407110.1 (5)
H2081—C208—H2082109.3H4061—C406—C407108.5
C207—C208—C209107.9 (5)H4062—C406—C407109.0
H2081—C208—C209109.8C406—C407—H4071108.2
H2082—C208—C209108.4C406—C407—H4072110.1
C208—C209—H2091105.7H4071—C407—H4072110.1
C208—C209—H2092110.9C406—C407—C408110.5 (5)
H2091—C209—H2092109.8H4071—C407—C408107.1
C208—C209—C210110.4 (5)H4072—C407—C408110.8
H2091—C209—C210108.4C407—C408—H4081108.5
H2092—C209—C210111.4C407—C408—H4082108.3
C205—C210—C209111.8 (6)H4081—C408—H4082109.0
C205—C210—H2101108.1C407—C408—C409111.8 (6)
C209—C210—H2101108.0H4081—C408—C409110.1
C205—C210—H2102108.9H4082—C408—C409109.1
C209—C210—H2102109.6C408—C409—H4091108.8
H2101—C210—H2102110.4C408—C409—H4092109.5
P201—N211—H2111115.0 (10)H4091—C409—H4092110.2
H2111—N211—C212115.2 (10)C408—C409—C410111.0 (5)
N211—C212—C214110.2 (5)H4091—C409—C410107.3
N211—C212—C213108.2 (4)H4092—C409—C410110.0
C214—C212—C213107.5 (5)C409—C410—C405110.8 (5)
N211—C212—C215111.7 (5)C409—C410—H4101109.3
C214—C212—C215107.5 (5)C405—C410—H4101109.1
C213—C212—C215111.7 (5)C409—C410—H4102109.4
C212—C214—H2141109.4C405—C410—H4102108.1
C212—C214—H2142107.3H4101—C410—H4102110.1
H2141—C214—H2142110.9P401—N411—H4111114.5 (10)
C212—C214—H2143109.3H4111—N411—C412115.6 (10)
H2141—C214—H2143109.2N411—C412—C413107.8 (4)
H2142—C214—H2143110.6N411—C412—C414112.9 (4)
C212—C213—H2131109.1C413—C412—C414110.0 (5)
C212—C213—H2132110.0N411—C412—C415109.7 (5)
H2131—C213—H2132109.6C413—C412—C415106.8 (5)
C212—C213—H2133110.5C414—C412—C415109.5 (5)
H2131—C213—H2133108.4C412—C413—H4131109.3
H2132—C213—H2133109.2C412—C413—H4132109.4
C212—C215—H2151108.7H4131—C413—H4132109.5
C212—C215—H2152109.6C412—C413—H4133109.5
H2151—C215—H2152110.7H4131—C413—H4133109.3
C212—C215—H2153109.1H4132—C413—H4133109.9
H2151—C215—H2153109.9C412—C414—H4141109.7
H2152—C215—H2153109.0C412—C414—H4142107.9
P201—N216—H2161104.6 (13)H4141—C414—H4142108.8
H2161—N216—C217105.2 (13)C412—C414—H4143110.1
N216—C217—H2171105.7H4141—C414—H4143111.0
N216—C217—C218113.2 (5)H4142—C414—H4143109.3
H2171—C217—C218108.3C412—C415—H4151110.1
N216—C217—C222111.6 (5)C412—C415—H4152107.3
H2171—C217—C222106.9H4151—C415—H4152110.2
C218—C217—C222110.8 (5)C412—C415—H4153109.8
C217—C218—H2182109.3H4151—C415—H4153109.9
C217—C218—H2181108.5H4152—C415—H4153109.5
H2182—C218—H2181110.1P401—N416—H4161117.3 (10)
C217—C218—C219111.4 (6)H4161—N416—C417116.2 (10)
H2182—C218—C219108.6N416—C417—H4171107.3
H2181—C218—C219109.0N416—C417—C418109.1 (4)
C218—C219—H2191107.9H4171—C417—C418107.1
C218—C219—H2192108.1N416—C417—C422114.8 (5)
H2191—C219—H2192109.7H4171—C417—C422108.2
C218—C219—C220113.2 (6)C418—C417—C422110.1 (5)
H2191—C219—C220109.6C417—C418—H4181109.2
H2192—C219—C220108.2C417—C418—H4182108.5
C219—C220—H2201109.1H4181—C418—H4182111.0
C219—C220—H2202108.5C417—C418—C419109.7 (6)
H2201—C220—H2202109.9H4181—C418—C419109.1
C219—C220—C221112.3 (7)H4182—C418—C419109.4
H2201—C220—C221107.2C418—C419—H4191106.9
H2202—C220—C221109.9C418—C419—H4192109.1
C220—C221—H2211110.1H4191—C419—H4192111.1
C220—C221—H2212108.7C418—C419—C420112.1 (6)
H2211—C221—H2212109.2H4191—C419—C420108.2
C220—C221—C222109.6 (6)H4192—C419—C420109.4
H2211—C221—C222109.2C419—C420—H4201109.2
H2212—C221—C222110.0C419—C420—H4202109.1
C221—C222—C217113.0 (5)H4201—C420—H4202109.7
C221—C222—H2221107.2C419—C420—C421111.0 (7)
C217—C222—H2221111.4H4201—C420—C421108.6
C221—C222—H2222108.0H4202—C420—C421109.2
C217—C222—H2222107.0C420—C421—H4211109.0
H2221—C222—H2222110.2C420—C421—H4212107.6
C304—N303—C305117.2 (4)H4211—C421—H4212110.1
N303—C304—H3041109.1C420—C421—C422113.9 (6)
N303—C304—H3042110.6H4211—C421—C422109.5
H3041—C304—H3042109.7H4212—C421—C422106.6
N303—C304—H3043108.8C421—C422—C417110.7 (6)
H3041—C304—H3043108.7C421—C422—H4221109.8
H3042—C304—H3043109.8C417—C422—H4221109.1
N303—C305—H3051107.1C421—C422—H4222109.4
N303—C305—C306112.4 (5)C417—C422—H4222108.6
H3051—C305—C306106.5H4221—C422—H4222109.2
N303—C305—C310112.9 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N111—H1111···O302i0.842.062.896 (11)170 (2)
N211—H2111···O402ii0.852.072.873 (11)158 (4)
N216—H2161···O402ii0.842.293.062 (11)152 (2)
N311—H3111···O2020.852.082.914 (11)165 (3)
C3142—H3147···O3020.962.403.155 (11)135 (1)
N316—H3161···O2020.852.283.086 (11)158 (1)
N411—H4111···O1020.852.112.915 (11)159 (4)
N416—H4161···O1020.842.503.118 (11)132 (4)
Symmetry codes: (i) x+1, y+1/2, z; (ii) x+1, y1/2, z+1.
(II) rac-N,N'-Dicyclohexyl-N'-methyl-N''-(p-tolyl)phosphoric triamide top
Crystal data top
C20H34N3OPF(000) = 2376
Mr = 363.47Dx = 1.144 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 9910 reflections
a = 10.9207 (4) Åθ = 1.9–29.1°
b = 24.0557 (7) ŵ = 0.14 mm1
c = 24.3993 (8) ÅT = 175 K
β = 98.980 (3)°Prism, colourless
V = 6331.3 (4) Å30.45 × 0.35 × 0.32 mm
Z = 12
Data collection top
Agilent Xcalibur (Sapphire3, Gemini)
diffractometer
14733 independent reflections
Radiation source: Enhance (Mo) X-ray Source10640 reflections with I > 2.0σ(I)
Graphite monochromatorRint = 0.047
Detector resolution: 16.0143 pixels mm-1θmax = 29.1°, θmin = 1.7°
ω scansh = 1413
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
k = 3032
Tmin = 0.915, Tmax = 1.000l = 3331
44340 measured reflections
Refinement top
Refinement on F2Primary atom site location: iterative
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.058H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.152 Method, part 1, Chebychev polynomial, (Watkin, 1994, Prince, 1982) [weight] = 1.0/[A0*T0(x) + A1*T1(x) ··· + An-1]*Tn-1(x)]
where Ai are the Chebychev coefficients listed below and x = F /Fmax Method = Robust Weighting (Prince, 1982) W = [weight] * [1-(deltaF/6*sigmaF)2]2 Ai are: 0.275E + 04 0.448E + 04 0.294E + 04 0.134E + 04 368.
S = 0.90(Δ/σ)max = 0.001
13613 reflectionsΔρmax = 0.41 e Å3
694 parametersΔρmin = 0.40 e Å3
18 restraints
Crystal data top
C20H34N3OPV = 6331.3 (4) Å3
Mr = 363.47Z = 12
Monoclinic, P21/cMo Kα radiation
a = 10.9207 (4) ŵ = 0.14 mm1
b = 24.0557 (7) ÅT = 175 K
c = 24.3993 (8) Å0.45 × 0.35 × 0.32 mm
β = 98.980 (3)°
Data collection top
Agilent Xcalibur (Sapphire3, Gemini)
diffractometer
14733 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
10640 reflections with I > 2.0σ(I)
Tmin = 0.915, Tmax = 1.000Rint = 0.047
44340 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.05818 restraints
wR(F2) = 0.152H atoms treated by a mixture of independent and constrained refinement
S = 0.90Δρmax = 0.41 e Å3
13613 reflectionsΔρmin = 0.40 e Å3
694 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems open-flow nitrogen cryostat (Cosier & Glazer, 1986) with a nominal stability of 0.1 K.

Cosier, J. & Glazer, A·M., 1986. J. Appl. Cryst. 105–107.

Absorption correction: CrysAlis PRO, Agilent Technologies, Version 1.171.36.28 (release 01–02-2013 CrysAlis171. NET) (compiled Feb 1 2013,16:14:44) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
P10.47559 (5)0.94135 (2)0.20928 (2)0.0249
O20.60692 (15)0.93762 (7)0.23589 (7)0.0361
N30.44706 (17)1.00683 (8)0.19333 (9)0.0302
C40.3219 (2)1.02441 (10)0.16849 (10)0.0318
C50.2511 (3)1.05149 (13)0.21048 (12)0.0447
C60.1201 (3)1.06757 (15)0.18380 (14)0.0572
C70.1223 (3)1.10541 (16)0.13472 (17)0.0669
C80.1920 (3)1.07814 (16)0.09204 (15)0.0624
C90.3235 (3)1.06174 (14)0.11803 (13)0.0509
H910.36831.09530.12980.0616*
H920.36481.04250.09150.0610*
H820.19421.10340.06160.0743*
H810.14761.04510.07720.0731*
H720.16511.13950.14740.0814*
H710.03911.11530.11780.0816*
H620.07801.08730.21070.0685*
H610.07391.03400.17130.0687*
H520.29521.08640.22320.0552*
H510.25121.02590.24270.0546*
H410.27660.99110.15580.0364*
C100.5346 (3)1.04985 (11)0.21573 (14)0.0477
H1020.54441.07620.18750.0735*
H1010.50401.06940.24520.0725*
H1030.61421.03340.22940.0721*
N110.43436 (19)0.90457 (8)0.15331 (8)0.0303
C120.5056 (2)0.90347 (10)0.10721 (9)0.0302
C130.5845 (3)0.85158 (13)0.10809 (12)0.0448
C140.6525 (3)0.84820 (15)0.05808 (12)0.0512
C150.5636 (3)0.85252 (16)0.00434 (13)0.0587
C160.4904 (5)0.9055 (2)0.00350 (13)0.0929
C170.4191 (3)0.90816 (19)0.05253 (12)0.0670
H1710.37830.94350.05250.0791*
H1720.35830.87970.05130.0794*
H1620.54620.93670.00620.1096*
H1610.43240.90690.03050.1099*
H1520.61020.85210.02650.0699*
H1510.51110.82100.00140.0701*
H1410.71360.87730.06050.0627*
H1420.69270.81160.05800.0617*
H1320.64360.85060.14220.0546*
H1310.53100.82060.10730.0546*
H1210.56040.93630.11180.0364*
H1110.384 (2)0.8782 (9)0.1547 (8)0.0374*
N180.3755 (2)0.91658 (9)0.24739 (8)0.0341
C190.3678 (2)0.92806 (9)0.30296 (9)0.0298
C200.2756 (2)0.90175 (10)0.32726 (10)0.0326
C210.2653 (3)0.91139 (11)0.38199 (11)0.0385
C220.3427 (3)0.94824 (11)0.41453 (10)0.0396
C230.4329 (3)0.97454 (12)0.39018 (11)0.0451
C240.4470 (3)0.96481 (11)0.33542 (10)0.0409
H2410.51110.98400.32120.0486*
H2310.48531.00030.41090.0545*
C250.3293 (4)0.95894 (16)0.47434 (12)0.0623
H2510.38690.98570.49120.0933*
H2530.25080.97380.47580.0934*
H2520.33880.92680.49520.0941*
H2110.20440.89350.39740.0463*
H2010.22130.87740.30560.0391*
H1810.324 (2)0.8915 (10)0.2320 (8)0.0412*
P260.12843 (5)0.80954 (2)0.19056 (2)0.0254
O270.25851 (15)0.82610 (7)0.18767 (7)0.0343
N280.11142 (19)0.77271 (8)0.24504 (8)0.0329
C290.1925 (2)0.72674 (10)0.26575 (10)0.0298
C300.1156 (2)0.67664 (11)0.27648 (14)0.0464
C310.1963 (3)0.62814 (12)0.30068 (16)0.0551
C320.2817 (3)0.64564 (15)0.35279 (14)0.0604
C330.3615 (3)0.69409 (14)0.34139 (15)0.0630
C340.2813 (3)0.74315 (12)0.31767 (13)0.0514
H3410.33120.77440.30920.0621*
H3420.23310.75540.34530.0617*
H3320.41490.70640.37470.0749*
H3310.41360.68100.31500.0732*
H3220.23220.65580.38140.0715*
H3210.33410.61490.36650.0714*
H3110.24960.61630.27400.0650*
H3120.14580.59790.30830.0665*
H3020.06270.68810.30300.0566*
H3010.06460.66680.24230.0549*
H2910.24170.71820.23640.0324*
N350.0312 (2)0.85998 (9)0.19863 (8)0.0349
C360.0188 (2)0.90067 (9)0.16032 (9)0.0289
C370.1209 (2)0.93104 (10)0.17107 (10)0.0317
C380.1720 (2)0.97176 (11)0.13485 (11)0.0364
C390.1261 (3)0.98252 (11)0.08579 (11)0.0405
C400.0260 (3)0.95154 (11)0.07537 (11)0.0412
C410.0299 (2)0.91158 (10)0.11192 (10)0.0349
H4110.09940.89160.10410.0423*
H4010.00590.95810.04330.0486*
C420.1837 (4)1.02623 (16)0.04606 (14)0.0648
H4210.19821.01290.00890.0955*
H4220.12881.05790.04600.0965*
H4230.25901.03930.05520.0972*
H3810.23980.99150.14300.0436*
H3710.15360.92440.20280.0385*
N430.07556 (18)0.77679 (9)0.13289 (8)0.0327
C440.1571 (2)0.76066 (11)0.09300 (10)0.0360
C450.1043 (3)0.77792 (14)0.03383 (11)0.0521
C460.1946 (4)0.76192 (19)0.00602 (13)0.0745
C470.2271 (3)0.7005 (2)0.00211 (16)0.0770
C480.2785 (3)0.6843 (2)0.05683 (16)0.0775
C490.1876 (3)0.69947 (14)0.09567 (13)0.0510
H4910.22250.69010.13310.0607*
H4920.11110.67850.08420.0609*
H4820.35450.70440.06770.0926*
H4810.29620.64420.05880.0930*
H4720.28610.69170.02630.0897*
H4710.15070.67940.01410.0882*
H4610.27010.78360.00330.0887*
H4620.15500.77100.04250.0882*
H4520.08750.81680.03240.0642*
H4510.02520.75880.02240.0625*
H4410.23270.78070.10340.0406*
C500.0504 (2)0.75433 (14)0.12585 (13)0.0486
H5020.09460.76150.08970.0733*
H5010.09420.77000.15350.0718*
H5030.04630.71510.13030.0737*
P510.16156 (5)0.35488 (2)0.17845 (2)0.0271
O520.04339 (16)0.33972 (8)0.19768 (7)0.0359
N530.15794 (19)0.32748 (9)0.11670 (8)0.0346
C540.2602 (2)0.33834 (11)0.08553 (10)0.0350
C550.3472 (3)0.28929 (13)0.08412 (13)0.0490
C560.4551 (3)0.30484 (16)0.05468 (15)0.0621
C570.4111 (4)0.32655 (16)0.00309 (15)0.0646
C580.3223 (3)0.37490 (16)0.00219 (14)0.0595
C590.2136 (3)0.35907 (15)0.02723 (12)0.0499
H5910.15840.39030.02820.0595*
H5920.16760.32980.00590.0601*
H5820.36680.40590.01760.0707*
H5810.29300.38780.03950.0699*
H5720.48090.33810.02070.0773*
H5710.36680.29670.02560.0777*
H5610.50410.33360.07620.0733*
H5620.50730.27300.05280.0731*
H5510.37890.27920.12190.0584*
H5520.30190.25840.06570.0588*
H5410.30810.36780.10500.0418*
C600.0778 (3)0.28042 (15)0.09958 (13)0.0558
H6010.05770.27860.05980.0835*
H6030.00480.28170.11650.0826*
H6020.12270.24720.11310.0833*
N610.2885 (2)0.33601 (9)0.21993 (9)0.0355
C620.3181 (2)0.28391 (10)0.24467 (10)0.0320
C630.2314 (2)0.24265 (11)0.24819 (13)0.0432
C640.2656 (3)0.19387 (11)0.27714 (13)0.0444
C650.3853 (3)0.18482 (11)0.30357 (11)0.0407
C660.4720 (3)0.22605 (12)0.29817 (12)0.0448
C670.4405 (2)0.27428 (11)0.26935 (11)0.0388
H6710.50200.30140.26820.0479*
H6610.55400.22110.31490.0523*
C680.4195 (4)0.13368 (14)0.33823 (14)0.0593
H6820.50440.12100.33710.0912*
H6810.41350.13980.37690.0902*
H6830.36470.10370.32570.0902*
H6410.20460.16610.27940.0531*
H6310.14960.24790.23050.0513*
H6110.329 (2)0.3632 (7)0.2353 (10)0.0429*
N690.18987 (19)0.42091 (9)0.17339 (9)0.0335
C700.0980 (2)0.46032 (10)0.14556 (10)0.0344
C710.0302 (3)0.49059 (12)0.18642 (11)0.0413
C720.0618 (3)0.53364 (13)0.15800 (15)0.0549
C730.0003 (3)0.57399 (13)0.12328 (15)0.0571
C740.0667 (4)0.54369 (15)0.08228 (15)0.0679
C750.1599 (3)0.50162 (14)0.11134 (14)0.0558
H7510.22320.52150.13600.0679*
H7520.19780.48230.08390.0683*
H7420.10840.57010.06300.0810*
H7410.00310.52250.05640.0803*
H7320.06050.59600.14800.0674*
H7310.06110.59850.10310.0675*
H7210.10100.55360.18590.0668*
H7220.12520.51390.13380.0676*
H7120.09240.50930.21300.0492*
H7110.01210.46490.20590.0497*
H7010.03790.43890.12000.0430*
H6910.246 (2)0.4347 (7)0.1979 (9)0.0395*
H3510.002 (2)0.8591 (10)0.2275 (9)0.0517*
H2810.071 (2)0.7876 (9)0.2672 (8)0.0397*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
P10.0255 (3)0.0256 (3)0.0232 (2)0.0003 (2)0.00278 (19)0.0004 (2)
O20.0292 (8)0.0375 (9)0.0387 (9)0.0048 (7)0.0037 (7)0.0011 (7)
N30.0245 (9)0.0251 (9)0.0401 (11)0.0027 (7)0.0024 (8)0.0018 (8)
C40.0279 (11)0.0287 (11)0.0374 (12)0.0019 (9)0.0005 (9)0.0023 (10)
C50.0375 (14)0.0478 (16)0.0475 (15)0.0107 (12)0.0030 (11)0.0070 (13)
C60.0406 (16)0.068 (2)0.0610 (19)0.0199 (15)0.0008 (14)0.0112 (16)
C70.0536 (19)0.059 (2)0.081 (3)0.0237 (16)0.0127 (17)0.0015 (18)
C80.059 (2)0.062 (2)0.060 (2)0.0070 (16)0.0095 (16)0.0199 (17)
C90.0478 (16)0.0528 (17)0.0498 (16)0.0029 (13)0.0009 (13)0.0187 (14)
C100.0380 (14)0.0314 (13)0.071 (2)0.0113 (11)0.0000 (13)0.0012 (13)
N110.0332 (10)0.0314 (10)0.0272 (9)0.0063 (8)0.0079 (7)0.0033 (8)
C120.0327 (11)0.0337 (12)0.0251 (10)0.0006 (9)0.0068 (8)0.0004 (9)
C130.0461 (15)0.0505 (16)0.0397 (14)0.0129 (13)0.0127 (11)0.0030 (12)
C140.0486 (16)0.0632 (19)0.0446 (15)0.0120 (14)0.0159 (13)0.0047 (14)
C150.0578 (19)0.081 (2)0.0404 (15)0.0024 (17)0.0178 (14)0.0204 (16)
C160.106 (3)0.148 (4)0.0258 (14)0.069 (3)0.0110 (17)0.007 (2)
C170.061 (2)0.109 (3)0.0294 (14)0.043 (2)0.0010 (13)0.0028 (16)
N180.0428 (12)0.0355 (11)0.0248 (9)0.0145 (9)0.0082 (8)0.0045 (8)
C190.0389 (12)0.0274 (11)0.0233 (10)0.0022 (9)0.0049 (9)0.0008 (8)
C200.0397 (13)0.0293 (11)0.0291 (11)0.0040 (10)0.0060 (9)0.0019 (9)
C210.0457 (14)0.0354 (13)0.0370 (13)0.0022 (11)0.0146 (11)0.0031 (10)
C220.0543 (16)0.0398 (14)0.0253 (11)0.0002 (12)0.0079 (10)0.0011 (10)
C230.0580 (17)0.0455 (15)0.0309 (13)0.0140 (13)0.0047 (12)0.0083 (11)
C240.0510 (15)0.0419 (14)0.0306 (12)0.0174 (12)0.0088 (11)0.0041 (11)
C250.095 (3)0.067 (2)0.0282 (13)0.0119 (19)0.0191 (15)0.0106 (14)
P260.0262 (3)0.0247 (3)0.0260 (3)0.0003 (2)0.0062 (2)0.0019 (2)
O270.0318 (8)0.0407 (9)0.0314 (8)0.0118 (7)0.0079 (7)0.0099 (7)
N280.0359 (11)0.0319 (10)0.0333 (10)0.0097 (8)0.0129 (8)0.0057 (8)
C290.0284 (11)0.0286 (11)0.0335 (11)0.0053 (9)0.0079 (9)0.0010 (9)
C300.0297 (13)0.0339 (13)0.075 (2)0.0031 (10)0.0049 (12)0.0092 (13)
C310.0397 (15)0.0308 (13)0.095 (3)0.0049 (11)0.0112 (15)0.0165 (15)
C320.077 (2)0.0584 (19)0.0480 (17)0.0305 (17)0.0174 (16)0.0192 (15)
C330.069 (2)0.0479 (17)0.059 (2)0.0089 (16)0.0285 (17)0.0030 (15)
C340.0574 (18)0.0373 (14)0.0521 (17)0.0037 (13)0.0146 (14)0.0039 (13)
N350.0456 (12)0.0321 (10)0.0296 (10)0.0096 (9)0.0143 (9)0.0043 (8)
C360.0334 (11)0.0246 (10)0.0290 (11)0.0003 (9)0.0056 (9)0.0019 (9)
C370.0325 (12)0.0331 (12)0.0301 (11)0.0011 (9)0.0070 (9)0.0014 (9)
C380.0329 (12)0.0367 (13)0.0386 (13)0.0076 (10)0.0028 (10)0.0045 (10)
C390.0459 (14)0.0386 (14)0.0353 (13)0.0086 (11)0.0006 (11)0.0021 (11)
C400.0522 (16)0.0391 (14)0.0340 (12)0.0061 (12)0.0118 (11)0.0091 (11)
C410.0415 (13)0.0313 (12)0.0342 (12)0.0078 (10)0.0130 (10)0.0010 (10)
C420.081 (2)0.069 (2)0.0427 (16)0.0335 (19)0.0051 (16)0.0153 (16)
N430.0240 (9)0.0413 (11)0.0334 (10)0.0055 (8)0.0060 (8)0.0112 (9)
C440.0306 (12)0.0473 (14)0.0312 (11)0.0114 (10)0.0086 (9)0.0155 (11)
C450.071 (2)0.0527 (17)0.0326 (13)0.0154 (15)0.0062 (13)0.0090 (12)
C460.081 (3)0.111 (3)0.0364 (16)0.048 (2)0.0221 (16)0.0247 (19)
C470.055 (2)0.119 (4)0.062 (2)0.012 (2)0.0260 (17)0.050 (2)
C480.0496 (19)0.112 (3)0.071 (2)0.016 (2)0.0093 (17)0.048 (2)
C490.0458 (16)0.0568 (18)0.0501 (16)0.0104 (13)0.0062 (13)0.0160 (14)
C500.0268 (12)0.070 (2)0.0496 (16)0.0099 (12)0.0061 (11)0.0192 (14)
P510.0258 (3)0.0308 (3)0.0250 (3)0.0028 (2)0.0045 (2)0.0021 (2)
O520.0321 (9)0.0428 (10)0.0351 (9)0.0051 (7)0.0124 (7)0.0024 (7)
N530.0316 (10)0.0434 (12)0.0298 (10)0.0102 (9)0.0075 (8)0.0105 (9)
C540.0321 (12)0.0434 (14)0.0307 (11)0.0013 (10)0.0090 (9)0.0050 (10)
C550.0518 (17)0.0466 (16)0.0521 (17)0.0101 (13)0.0197 (13)0.0063 (13)
C560.0555 (19)0.068 (2)0.070 (2)0.0229 (16)0.0328 (17)0.0102 (18)
C570.072 (2)0.074 (2)0.0576 (19)0.0147 (19)0.0401 (18)0.0065 (17)
C580.070 (2)0.070 (2)0.0455 (16)0.0147 (17)0.0288 (15)0.0146 (15)
C590.0509 (16)0.0641 (19)0.0367 (14)0.0121 (14)0.0133 (12)0.0017 (13)
C600.0543 (18)0.071 (2)0.0428 (15)0.0298 (16)0.0099 (13)0.0221 (15)
N610.0361 (11)0.0299 (10)0.0368 (11)0.0077 (8)0.0063 (8)0.0008 (9)
C620.0327 (12)0.0332 (12)0.0295 (11)0.0008 (9)0.0026 (9)0.0035 (9)
C630.0314 (13)0.0373 (13)0.0588 (17)0.0007 (10)0.0008 (11)0.0011 (12)
C640.0408 (14)0.0321 (13)0.0603 (17)0.0022 (11)0.0082 (12)0.0012 (12)
C650.0515 (16)0.0340 (13)0.0370 (13)0.0064 (11)0.0082 (11)0.0043 (10)
C660.0392 (14)0.0503 (16)0.0413 (14)0.0095 (12)0.0057 (11)0.0042 (12)
C670.0322 (12)0.0436 (14)0.0389 (13)0.0026 (10)0.0005 (10)0.0027 (11)
C680.081 (2)0.0458 (17)0.0469 (17)0.0110 (16)0.0018 (16)0.0057 (14)
N690.0316 (10)0.0329 (10)0.0349 (10)0.0022 (8)0.0020 (8)0.0012 (8)
C700.0403 (13)0.0309 (12)0.0309 (11)0.0005 (10)0.0020 (10)0.0012 (10)
C710.0442 (14)0.0408 (14)0.0412 (14)0.0026 (11)0.0136 (11)0.0038 (11)
C720.0528 (18)0.0441 (16)0.069 (2)0.0124 (14)0.0147 (15)0.0052 (15)
C730.070 (2)0.0373 (15)0.063 (2)0.0110 (14)0.0086 (16)0.0087 (14)
C740.106 (3)0.0485 (18)0.0524 (19)0.0108 (19)0.0227 (19)0.0170 (15)
C750.074 (2)0.0477 (17)0.0532 (18)0.0092 (15)0.0324 (16)0.0118 (14)
Geometric parameters (Å, º) top
P1—O21.4818 (17)C37—C381.378 (3)
P1—N31.641 (2)C37—H3710.916
P1—N111.630 (2)C38—C391.392 (4)
P1—N181.653 (2)C38—H3810.927
P26—O271.4876 (17)C39—C401.379 (4)
P26—N281.632 (2)C39—C421.500 (4)
P26—N351.644 (2)C40—C411.387 (4)
P26—N431.637 (2)C40—H4010.919
P51—O521.4857 (17)C41—H4110.943
P51—N531.639 (2)C42—H4210.951
P51—N611.647 (2)C42—H4220.969
P51—N691.627 (2)C42—H4230.940
N3—C41.468 (3)N43—C441.470 (3)
N3—C101.456 (3)N43—C501.463 (3)
C4—C51.523 (4)C44—C451.526 (4)
C4—C91.526 (4)C44—C491.508 (4)
C4—H410.967C44—H4410.955
C5—C61.527 (4)C45—C461.538 (5)
C5—H520.993C45—H4520.952
C5—H510.998C45—H4510.980
C6—C71.507 (5)C46—C471.519 (6)
C6—H620.980C46—H4610.972
C6—H610.976C46—H4620.951
C7—C81.530 (5)C47—C481.511 (6)
C7—H720.970C47—H4720.963
C7—H710.967C47—H4710.981
C8—C91.529 (4)C48—C491.520 (4)
C8—H820.963C48—H4820.961
C8—H810.970C48—H4810.985
C9—H910.963C49—H4910.961
C9—H920.962C49—H4920.979
C10—H1020.954C50—H5020.953
C10—H1010.962C50—H5010.962
C10—H1030.966C50—H5030.951
N11—C121.464 (3)N53—C541.469 (3)
N11—H1110.842 (17)N53—C601.452 (3)
C12—C131.515 (4)C54—C551.519 (4)
C12—C171.514 (4)C54—C591.518 (4)
C12—H1210.988C54—H5410.962
C13—C141.526 (4)C55—C561.519 (4)
C13—H1320.971C55—H5510.964
C13—H1310.946C55—H5520.965
C14—C151.508 (4)C56—C571.510 (5)
C14—H1410.963C56—H5610.976
C14—H1420.985C56—H5620.961
C15—C161.504 (5)C57—C581.517 (5)
C15—H1520.973C57—H5720.973
C15—H1510.947C57—H5710.984
C16—C171.527 (5)C58—C591.528 (4)
C16—H1620.961C58—H5820.974
C16—H1610.963C58—H5810.968
C17—H1710.959C59—H5910.965
C17—H1720.952C59—H5920.969
N18—C191.399 (3)C60—H6010.961
N18—H1810.865 (17)C60—H6030.954
C19—C201.398 (3)C60—H6020.967
C19—C241.394 (3)N61—C621.407 (3)
C20—C211.377 (3)N61—H6110.845 (17)
C20—H2010.936C62—C631.383 (4)
C21—C221.386 (4)C62—C671.397 (3)
C21—H2110.920C63—C641.390 (4)
C22—C231.381 (4)C63—H6310.939
C22—C251.511 (3)C64—C651.382 (4)
C23—C241.388 (4)C64—H6410.952
C23—H2310.936C65—C661.392 (4)
C24—H2410.948C65—C681.507 (4)
C25—H2510.948C66—C671.372 (4)
C25—H2530.934C66—H6610.932
C25—H2520.923C67—H6710.940
N28—C291.457 (3)C68—H6820.980
N28—H2810.831 (17)C68—H6810.968
C29—C301.515 (3)C68—H6830.957
C29—C341.523 (4)N69—C701.468 (3)
C29—H2910.982N69—H6910.855 (17)
C30—C311.524 (4)C70—C711.518 (4)
C30—H3020.972C70—C751.522 (4)
C30—H3010.958C70—H7010.979
C31—C321.514 (5)C71—C721.531 (4)
C31—H3110.982C71—H7120.974
C31—H3120.948C71—H7110.942
C32—C331.507 (5)C72—C731.516 (5)
C32—H3220.977C72—H7210.985
C32—H3210.963C72—H7220.962
C33—C341.528 (4)C73—C741.512 (5)
C33—H3320.971C73—H7320.977
C33—H3310.976C73—H7310.968
C34—H3410.970C74—C751.529 (5)
C34—H3420.964C74—H7420.947
N35—C361.404 (3)C74—H7411.001
N35—H3510.841 (17)C75—H7510.968
C36—C371.392 (3)C75—H7520.962
C36—C411.394 (3)
O2—P1—N3107.28 (10)C37—C36—C41119.0 (2)
O2—P1—N11117.13 (11)C36—C37—C38120.5 (2)
N3—P1—N11107.76 (11)C36—C37—H371119.8
O2—P1—N18114.30 (11)C38—C37—H371119.7
N3—P1—N18111.20 (11)C37—C38—C39121.3 (2)
N11—P1—N1898.92 (10)C37—C38—H381119.0
O27—P26—N28114.51 (11)C39—C38—H381119.7
O27—P26—N35116.58 (11)C38—C39—C40117.4 (2)
N28—P26—N3598.36 (10)C38—C39—C42121.0 (3)
P1—N3—C4120.31 (15)C40—C39—C42121.6 (3)
P1—N11—C12122.88 (16)C39—C40—C41122.6 (2)
P26—N28—C29123.66 (16)C39—C40—H401118.8
P26—N43—C44121.82 (15)C41—C40—H401118.7
P51—N53—C60120.33 (18)C36—C41—C40119.2 (2)
P51—N61—C62128.63 (17)C36—C41—H411120.1
O27—P26—N43107.42 (10)C40—C41—H411120.7
N28—P26—N43111.66 (11)C39—C42—H421111.8
N35—P26—N43108.07 (11)C39—C42—H422110.8
O52—P51—N53107.09 (10)H421—C42—H422105.9
O52—P51—N61115.30 (11)C39—C42—H423112.0
N53—P51—N61110.55 (11)H421—C42—H423108.5
P1—N3—C10120.27 (17)H422—C42—H423107.5
P1—N18—C19128.23 (17)C44—N43—C50118.7 (2)
P26—N35—C36128.78 (17)N43—C44—C45112.1 (2)
P26—N43—C50118.53 (17)N43—C44—C49112.4 (2)
P51—N53—C54119.54 (16)C45—C44—C49110.8 (2)
P51—N69—C70122.79 (17)N43—C44—H441106.2
C4—N3—C10117.7 (2)C45—C44—H441107.2
N3—C4—C5112.5 (2)C49—C44—H441107.7
N3—C4—C9112.1 (2)C44—C45—C46110.2 (3)
C5—C4—C9111.2 (2)C44—C45—H452110.2
N3—C4—H41106.9C46—C45—H452111.1
C5—C4—H41106.4C44—C45—H451109.1
C9—C4—H41107.4C46—C45—H451109.1
C4—C5—C6111.2 (2)H452—C45—H451107.0
C4—C5—H52107.4C45—C46—C47111.7 (3)
C6—C5—H52107.2C45—C46—H461108.8
C4—C5—H51109.2C47—C46—H461109.0
C6—C5—H51112.2C45—C46—H462106.9
H52—C5—H51109.6C47—C46—H462110.5
C5—C6—C7111.2 (3)H461—C46—H462109.9
C5—C6—H62110.1C46—C47—C48111.0 (3)
C7—C6—H62107.9C46—C47—H472110.3
C5—C6—H61109.2C48—C47—H472110.0
C7—C6—H61108.8C46—C47—H471107.7
H62—C6—H61109.6C48—C47—H471108.9
C6—C7—C8110.7 (3)H472—C47—H471108.8
C6—C7—H72109.0C47—C48—C49110.5 (3)
C8—C7—H72108.2C47—C48—H482108.1
C6—C7—H71110.9C49—C48—H482109.1
C8—C7—H71110.4C47—C48—H481109.9
H72—C7—H71107.5C49—C48—H481110.3
C7—C8—C9111.3 (3)H482—C48—H481108.9
C7—C8—H82109.3C48—C49—C44111.6 (3)
C9—C8—H82110.3C48—C49—H491109.6
C7—C8—H81109.5C44—C49—H491108.8
C9—C8—H81109.0C48—C49—H492108.1
H82—C8—H81107.4C44—C49—H492108.6
C8—C9—C4111.0 (3)H491—C49—H492110.1
C8—C9—H91108.0N43—C50—H502111.8
C4—C9—H91108.7N43—C50—H501109.6
C8—C9—H92110.7H502—C50—H501110.0
C4—C9—H92108.9N43—C50—H503109.1
H91—C9—H92109.5H502—C50—H503107.2
N3—C10—H102109.9H501—C50—H503109.1
N3—C10—H101110.1O52—P51—N69116.65 (11)
H102—C10—H101107.8N53—P51—N69107.49 (11)
N3—C10—H103110.0N61—P51—N6999.44 (11)
H102—C10—H103108.9C54—N53—C60117.5 (2)
H101—C10—H103110.0N53—C54—C55113.7 (2)
P1—N11—H111118.2 (12)N53—C54—C59111.9 (2)
C12—N11—H111116.3 (12)C55—C54—C59110.7 (2)
N11—C12—C13111.9 (2)N53—C54—H541105.9
N11—C12—C17110.1 (2)C55—C54—H541106.9
C13—C12—C17110.4 (2)C59—C54—H541107.3
N11—C12—H121106.5C54—C55—C56110.7 (2)
C13—C12—H121108.9C54—C55—H551107.8
C17—C12—H121108.9C56—C55—H551109.0
C12—C13—C14112.3 (2)C54—C55—H552109.4
C12—C13—H132109.4C56—C55—H552110.4
C14—C13—H132110.1H551—C55—H552109.5
C12—C13—H131107.5C55—C56—C57111.7 (3)
C14—C13—H131108.6C55—C56—H561108.7
H132—C13—H131108.9C57—C56—H561108.9
C13—C14—C15111.4 (2)C55—C56—H562109.6
C13—C14—H141109.3C57—C56—H562109.7
C15—C14—H141110.5H561—C56—H562108.1
C13—C14—H142108.8C56—C57—C58111.3 (3)
C15—C14—H142106.6C56—C57—H572110.8
H141—C14—H142110.3C58—C57—H572109.5
C14—C15—C16109.8 (3)C56—C57—H571109.0
C14—C15—H152109.2C58—C57—H571107.9
C16—C15—H152109.8H572—C57—H571108.2
C14—C15—H151108.2C57—C58—C59111.2 (3)
C16—C15—H151111.3C57—C58—H582108.8
H152—C15—H151108.5C59—C58—H582108.8
C15—C16—C17111.1 (3)C57—C58—H581110.5
C15—C16—H162109.2C59—C58—H581110.8
C17—C16—H162108.0H582—C58—H581106.6
C15—C16—H161108.5C58—C59—C54110.5 (3)
C17—C16—H161109.1C58—C59—H591110.6
H162—C16—H161111.0C54—C59—H591110.5
C16—C17—C12111.3 (3)C58—C59—H592107.8
C16—C17—H171109.2C54—C59—H592109.5
C12—C17—H171107.0H591—C59—H592107.8
C16—C17—H172112.6N53—C60—H601111.0
C12—C17—H172108.1N53—C60—H603110.9
H171—C17—H172108.4H601—C60—H603111.3
P1—N18—H181116.5 (12)N53—C60—H602107.1
C19—N18—H181115.1 (12)H601—C60—H602109.2
N18—C19—C20118.5 (2)H603—C60—H602107.0
N18—C19—C24123.4 (2)P51—N61—H611113.3 (12)
C20—C19—C24118.1 (2)C62—N61—H611115.3 (12)
C19—C20—C21120.5 (2)N61—C62—C63123.5 (2)
C19—C20—H201118.7N61—C62—C67118.2 (2)
C21—C20—H201120.8C63—C62—C67118.2 (2)
C20—C21—C22121.9 (2)C62—C63—C64120.4 (2)
C20—C21—H211119.4C62—C63—H631119.1
C22—C21—H211118.7C64—C63—H631120.5
C21—C22—C23117.3 (2)C63—C64—C65122.0 (3)
C21—C22—C25121.3 (3)C63—C64—H641119.2
C23—C22—C25121.4 (3)C65—C64—H641118.8
C22—C23—C24122.0 (2)C64—C65—C66116.9 (3)
C22—C23—H231119.1C64—C65—C68121.7 (3)
C24—C23—H231118.8C66—C65—C68121.4 (3)
C19—C24—C23120.1 (2)C65—C66—C67122.1 (3)
C19—C24—H241121.9C65—C66—H661119.3
C23—C24—H241118.0C67—C66—H661118.6
C22—C25—H251112.1C62—C67—C66120.5 (3)
C22—C25—H253109.3C62—C67—H671120.8
H251—C25—H253105.9C66—C67—H671118.6
C22—C25—H252111.8C65—C68—H682113.0
H251—C25—H252108.7C65—C68—H681111.9
H253—C25—H252108.9H682—C68—H681106.5
P26—N28—H281115.8 (12)C65—C68—H683110.3
C29—N28—H281117.3 (12)H682—C68—H683107.7
N28—C29—C30109.90 (19)H681—C68—H683107.1
N28—C29—C34111.4 (2)P51—N69—H691116.7 (12)
C30—C29—C34111.2 (2)C70—N69—H691116.0 (12)
N28—C29—H291106.1N69—C70—C71112.0 (2)
C30—C29—H291110.0N69—C70—C75110.2 (2)
C34—C29—H291108.1C71—C70—C75110.6 (2)
C29—C30—C31111.9 (2)N69—C70—H701107.2
C29—C30—H302107.0C71—C70—H701108.9
C31—C30—H302109.0C75—C70—H701107.8
C29—C30—H301108.0C70—C71—C72112.3 (2)
C31—C30—H301111.8C70—C71—H712107.4
H302—C30—H301109.0C72—C71—H712109.2
C30—C31—C32110.8 (3)C70—C71—H711110.1
C30—C31—H311109.3C72—C71—H711109.5
C32—C31—H311106.7H712—C71—H711108.2
C30—C31—H312110.2C71—C72—C73111.6 (3)
C32—C31—H312110.4C71—C72—H721110.0
H311—C31—H312109.4C73—C72—H721110.8
C31—C32—C33111.0 (3)C71—C72—H722107.6
C31—C32—H322109.4C73—C72—H722108.4
C33—C32—H322109.8H721—C72—H722108.4
C31—C32—H321109.5C72—C73—C74111.3 (3)
C33—C32—H321109.2C72—C73—H732108.6
H322—C32—H321108.0C74—C73—H732108.9
C32—C33—C34110.7 (3)C72—C73—H731109.9
C32—C33—H332111.7C74—C73—H731108.9
C34—C33—H332108.4H732—C73—H731109.2
C32—C33—H331106.6C73—C74—C75111.5 (3)
C34—C33—H331110.9C73—C74—H742108.9
H332—C33—H331108.5C75—C74—H742109.7
C33—C34—C29111.6 (2)C73—C74—H741107.7
C33—C34—H341111.9C75—C74—H741107.6
C29—C34—H341109.2H742—C74—H741111.6
C33—C34—H342108.3C74—C75—C70111.5 (3)
C29—C34—H342108.3C74—C75—H751108.7
H341—C34—H342107.4C70—C75—H751108.4
P26—N35—H351116.9 (12)C74—C75—H752109.0
C36—N35—H351113.7 (12)C70—C75—H752110.1
N35—C36—C37118.7 (2)H751—C75—H752109.2
N35—C36—C41122.3 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N11—H111···O270.842.112.908 (4)158 (2)
N18—H181···O270.871.982.813 (4)161 (2)
C63—H631···O520.942.563.225 (4)128 (1)
N61—H611···O2i0.852.012.838 (4)167 (2)
N69—H691···O2i0.862.092.907 (4)159 (2)
N35—H351···O52ii0.842.002.819 (4)163 (2)
N28—H281···O52ii0.832.052.854 (4)163 (2)
Symmetry codes: (i) x+1, y1/2, z+1/2; (ii) x, y+1/2, z+1/2.
(III) N,N',N''-Tricyclohexyl-N''-methylphosphoric triamide top
Crystal data top
C19H38N3OP2Dx = 1.182 Mg m3
Mr = 355.51Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, Pna21Cell parameters from 8077 reflections
a = 21.9179 (10) Åθ = 2.0–28.1°
b = 8.9546 (4) ŵ = 0.15 mm1
c = 20.3544 (14) ÅT = 175 K
V = 3994.9 (3) Å3Block, colourless
Z = 80.35 × 0.35 × 0.18 mm
F(000) = 1568
Data collection top
Oxford Diffraction Gemini
diffractometer
6779 reflections with I > 2.0σ(I)
Graphite monochromatorRint = 0.050
ω scansθmax = 29.0°, θmin = 1.9°
Absorption correction: ψ scan
(CrysAlis PRO; Agilent, 2011)
h = 2927
Tmin = 0.95, Tmax = 0.97k = 1112
33932 measured reflectionsl = 2526
9291 independent reflections
Refinement top
Refinement on F2Hydrogen site location: difference Fourier map
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.124 Method = Modified Sheldrick w = 1/[σ2(F2) + ( 0.2P)2 + 0.0P] ,
where P = (max(Fo2,0) + 2Fc2)/3
wR(F2) = 0.326(Δ/σ)max = 0.004
S = 1.22Δρmax = 2.27 e Å3
8783 reflectionsΔρmin = 0.55 e Å3
437 parametersAbsolute structure: Flack (1983), 4252 Friedel-pairs
444 restraintsAbsolute structure parameter: 0.3 (2)
Primary atom site location: other
Crystal data top
C19H38N3OP2V = 3994.9 (3) Å3
Mr = 355.51Z = 8
Orthorhombic, Pna21Mo Kα radiation
a = 21.9179 (10) ŵ = 0.15 mm1
b = 8.9546 (4) ÅT = 175 K
c = 20.3544 (14) Å0.35 × 0.35 × 0.18 mm
Data collection top
Oxford Diffraction Gemini
diffractometer
9291 independent reflections
Absorption correction: ψ scan
(CrysAlis PRO; Agilent, 2011)
6779 reflections with I > 2.0σ(I)
Tmin = 0.95, Tmax = 0.97Rint = 0.050
33932 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.124H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.326Δρmax = 2.27 e Å3
S = 1.22Δρmin = 0.55 e Å3
8783 reflectionsAbsolute structure: Flack (1983), 4252 Friedel-pairs
437 parametersAbsolute structure parameter: 0.3 (2)
444 restraints
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems open-flow nitrogen cryostat (Cosier & Glazer, 1986) with a nominal stability of 0.1 K.

Cosier, J. & Glazer, A·M., 1986. J. Appl. Cryst. 105–107.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
P10.32604 (6)0.11891 (13)1.01846 (11)0.0371
O20.37209 (14)0.0066 (4)0.9992 (2)0.0402
N30.3401 (3)0.2366 (5)1.0762 (3)0.0477
C40.3511 (3)0.1924 (7)1.1455 (3)0.0661
C90.3245 (5)0.2991 (12)1.1951 (3)0.1046
C50.4157 (3)0.1623 (12)1.1640 (4)0.1055
C60.4213 (5)0.1103 (9)1.2337 (4)0.1451
C70.3973 (4)0.2247 (11)1.2799 (4)0.1341
C80.3322 (4)0.2576 (12)1.2659 (4)0.1244
N100.3046 (2)0.2389 (5)0.9593 (3)0.0437
C110.2861 (2)0.1887 (7)0.8966 (3)0.0566
C120.2263 (3)0.2569 (12)0.8780 (4)0.1028
C130.1949 (4)0.220 (2)0.8159 (5)0.1761
C140.2364 (6)0.240 (2)0.7595 (4)0.1982
C150.2980 (5)0.1793 (18)0.7746 (4)0.1514
C160.3263 (4)0.2228 (14)0.8390 (3)0.0999
H1010.30580.34320.96790.0506*
N170.26418 (19)0.0240 (4)1.0414 (3)0.0453
C180.2597 (2)0.1394 (5)1.0346 (3)0.0434
C190.2147 (3)0.1828 (6)0.9814 (3)0.0578
C200.2134 (3)0.3503 (7)0.9759 (4)0.0665
C210.1959 (3)0.4276 (7)1.0378 (3)0.0693
C220.2421 (3)0.3856 (6)1.0895 (4)0.0646
C230.2440 (3)0.2188 (6)1.0971 (3)0.0568
C240.2110 (3)0.1093 (7)1.0618 (5)0.0684
P250.42115 (6)0.61800 (13)0.97976 (12)0.0383
O260.37220 (14)0.5047 (4)0.9974 (2)0.0396
N270.4382 (2)0.7374 (5)1.0366 (3)0.0456
C280.4678 (2)0.6901 (6)1.0979 (3)0.0540
C290.4245 (3)0.7038 (14)1.1546 (3)0.0970
C300.4579 (4)0.6768 (16)1.2178 (4)0.1216
C310.5206 (3)0.7435 (11)1.2202 (3)0.0945
C320.5622 (2)0.7183 (17)1.1628 (3)0.1463
C330.5306 (3)0.7564 (15)1.0997 (3)0.1389
H2710.421 (2)0.824 (3)1.0357 (15)0.0467*
N340.4020 (2)0.7366 (5)0.9194 (3)0.0470
C350.3950 (3)0.6946 (7)0.8532 (2)0.0741
C360.3317 (3)0.6708 (14)0.8285 (3)0.1328
C370.3322 (4)0.6359 (12)0.7563 (3)0.1444
C380.3649 (5)0.7543 (15)0.7190 (4)0.1842
C390.4292 (4)0.7680 (17)0.7418 (4)0.1795
C400.4317 (5)0.8045 (13)0.8136 (4)0.1507
N410.48286 (19)0.5289 (4)0.9574 (3)0.0464
C420.4901 (2)0.3653 (5)0.9632 (2)0.0409
C430.5064 (4)0.2978 (7)0.8970 (3)0.0671
C440.5104 (3)0.1292 (7)0.9047 (4)0.0689
C450.5544 (3)0.0803 (7)0.9577 (4)0.0756
C460.5396 (4)0.1504 (7)1.0229 (4)0.0823
C470.5358 (4)0.3204 (7)1.0159 (4)0.0768
C480.5371 (3)0.6096 (6)0.9358 (5)0.0712
H4210.45130.32760.97590.0514*
H4310.54440.33540.88180.0861*
H4320.47550.32060.86590.0861*
H4420.52370.08790.86420.1041*
H310.33880.34061.06690.0483*
H410.32910.10221.15220.0825*
H910.34810.38791.19180.1649*
H920.28360.31971.18260.1649*
H510.43800.25271.16000.1168*
H520.43340.08821.13660.1168*
H610.46220.08921.24610.1692*
H620.39740.02231.23770.1692*
H710.39950.19261.32440.1757*
H720.41960.31501.27490.1757*
H810.31370.32841.29430.1815*
H820.31090.16551.26860.1815*
H1110.28200.08320.89830.0631*
H1210.20060.23050.91380.1402*
H1220.23090.36240.87660.1402*
H1310.18360.11740.81900.2131*
H1320.15920.27910.81110.2131*
H1410.23590.34190.74720.2450*
H1420.22120.18060.72430.2450*
H1610.36250.16530.84270.1297*
H1620.33630.32600.83950.1297*
H1810.29870.17481.02160.0502*
H1910.17520.14620.99190.0747*
H1920.22760.14180.94070.0747*
H2010.25260.38430.96250.0743*
H2020.18400.37760.94390.0743*
H2110.19700.53291.03220.0827*
H2120.15610.39811.05090.0827*
H2210.23070.42941.13020.0747*
H2220.28140.42021.07720.0747*
H2310.27390.19391.12900.0690*
H2320.20510.18481.11140.0690*
H2810.47780.58751.09310.0661*
H2910.40870.80261.15550.1239*
H2920.39180.63471.15010.1239*
H3010.43590.72201.25280.1593*
H3020.46060.57221.22520.1593*
H3510.41220.59770.84910.0892*
H3610.31040.76170.83570.1591*
H3620.31230.59260.85210.1591*
H3710.35300.54430.74910.1925*
H3720.29100.62650.74230.1925*
H3810.34700.84770.72980.2521*
H3820.35940.73510.67350.2521*
H3910.44750.84510.71660.2047*
H3920.44710.67490.73060.2047*
H4010.47340.78580.82340.1840*
H4020.42250.90620.82250.1840*
H4410.47140.08980.91520.0872*
H4510.59430.11080.94540.0900*
H4520.55360.02500.96310.0900*
H4610.56860.12481.05570.0986*
H4620.50040.11531.03560.0986*
H4710.52360.36211.05680.0812*
H4720.57510.35671.00450.0812*
H3310.52650.86641.09710.2047*
H3320.55380.72581.06370.2047*
H3110.54220.70101.25450.0982*
H3120.51720.84691.22340.0982*
H2410.22000.21301.06360.0866*
H2420.19910.07531.10410.0866*
H2430.17880.09271.03150.0866*
H4810.52750.71290.93300.0934*
H4820.56870.59530.96710.0934*
H4830.55030.57480.89410.0934*
H1510.29520.07400.76930.2334*
H1520.32670.21830.74410.2334*
H3210.59700.78121.16660.1559*
H3220.57500.61721.16000.1559*
H3410.40100.84060.92860.0646*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
P10.0345 (6)0.0299 (6)0.0468 (7)0.0022 (4)0.0023 (5)0.0018 (6)
O20.0279 (14)0.0331 (14)0.060 (2)0.0005 (10)0.0015 (12)0.0028 (13)
N30.058 (3)0.035 (2)0.050 (2)0.0096 (19)0.001 (2)0.0041 (15)
C40.093 (4)0.048 (4)0.057 (2)0.011 (3)0.013 (3)0.003 (2)
C90.124 (7)0.138 (8)0.052 (3)0.017 (6)0.001 (4)0.019 (4)
C50.102 (5)0.105 (6)0.110 (5)0.018 (5)0.019 (5)0.020 (6)
C60.195 (11)0.140 (10)0.100 (6)0.044 (8)0.055 (7)0.001 (5)
C70.207 (9)0.086 (6)0.109 (7)0.009 (7)0.074 (7)0.016 (5)
C80.198 (9)0.113 (7)0.063 (3)0.013 (7)0.024 (6)0.009 (5)
N100.050 (3)0.027 (2)0.055 (2)0.0045 (16)0.015 (2)0.0017 (14)
C110.071 (3)0.041 (3)0.057 (2)0.000 (2)0.021 (2)0.001 (2)
C120.080 (4)0.117 (7)0.111 (6)0.010 (4)0.059 (4)0.001 (5)
C130.165 (9)0.233 (15)0.131 (8)0.010 (11)0.096 (6)0.021 (10)
C140.210 (12)0.265 (18)0.119 (7)0.007 (12)0.084 (7)0.024 (12)
C150.203 (10)0.199 (13)0.052 (4)0.002 (10)0.037 (5)0.008 (7)
C160.114 (6)0.134 (8)0.051 (3)0.004 (6)0.011 (3)0.011 (5)
N170.0353 (18)0.0318 (16)0.069 (3)0.0010 (13)0.0088 (18)0.0012 (18)
C180.024 (2)0.0353 (17)0.070 (3)0.0023 (16)0.0037 (19)0.001 (2)
C190.053 (3)0.053 (2)0.067 (3)0.003 (2)0.012 (3)0.002 (3)
C200.062 (4)0.057 (3)0.080 (4)0.020 (3)0.001 (4)0.013 (3)
C210.062 (4)0.041 (3)0.106 (5)0.011 (3)0.016 (3)0.000 (3)
C220.077 (4)0.039 (2)0.077 (4)0.005 (3)0.015 (3)0.007 (3)
C230.059 (3)0.043 (2)0.068 (3)0.006 (3)0.001 (3)0.007 (3)
C240.044 (3)0.049 (3)0.112 (6)0.009 (2)0.021 (3)0.009 (4)
P250.0322 (6)0.0320 (6)0.0507 (8)0.0012 (4)0.0006 (5)0.0005 (6)
O260.0278 (13)0.0327 (14)0.058 (2)0.0025 (10)0.0014 (12)0.0002 (13)
N270.047 (3)0.040 (2)0.049 (2)0.0020 (17)0.008 (2)0.0013 (15)
C280.075 (3)0.036 (3)0.051 (2)0.007 (2)0.014 (2)0.001 (2)
C290.099 (5)0.137 (8)0.055 (3)0.032 (6)0.002 (3)0.001 (5)
C300.103 (5)0.214 (11)0.047 (3)0.063 (7)0.005 (3)0.015 (6)
C310.070 (4)0.118 (7)0.095 (5)0.006 (4)0.008 (3)0.016 (5)
C320.068 (5)0.296 (16)0.075 (5)0.020 (8)0.004 (3)0.007 (7)
C330.062 (4)0.251 (14)0.104 (5)0.025 (6)0.021 (4)0.019 (8)
N340.056 (3)0.032 (2)0.053 (2)0.0052 (18)0.010 (2)0.0013 (15)
C350.109 (5)0.055 (4)0.058 (3)0.028 (4)0.023 (3)0.010 (3)
C360.127 (6)0.213 (12)0.059 (4)0.044 (8)0.029 (4)0.013 (6)
C370.114 (8)0.259 (16)0.060 (5)0.011 (8)0.028 (5)0.002 (6)
C380.149 (9)0.335 (17)0.069 (6)0.052 (12)0.020 (6)0.002 (8)
C390.137 (8)0.309 (18)0.092 (5)0.028 (11)0.028 (7)0.007 (9)
C400.116 (8)0.254 (14)0.081 (5)0.031 (8)0.007 (6)0.041 (8)
N410.0356 (17)0.0338 (17)0.070 (3)0.0031 (14)0.0084 (18)0.0029 (18)
C420.039 (2)0.0359 (18)0.047 (3)0.0021 (17)0.0032 (18)0.0017 (18)
C430.080 (4)0.064 (3)0.058 (3)0.019 (3)0.013 (3)0.005 (3)
C440.056 (4)0.059 (3)0.092 (4)0.010 (3)0.015 (3)0.024 (3)
C450.036 (3)0.049 (3)0.142 (6)0.006 (2)0.007 (3)0.003 (3)
C460.077 (5)0.055 (3)0.115 (5)0.017 (3)0.037 (5)0.008 (4)
C470.078 (4)0.056 (3)0.097 (5)0.029 (3)0.033 (4)0.002 (3)
C480.044 (3)0.042 (3)0.127 (7)0.001 (2)0.024 (4)0.011 (4)
Geometric parameters (Å, º) top
P1—O21.478 (4)C23—H2320.950
P1—N31.608 (5)C24—H2410.950
P1—N101.680 (5)C24—H2420.950
P1—N171.667 (4)C24—H2430.950
P25—O261.520 (4)N27—C281.468 (7)
P25—N271.619 (5)N27—H2710.859 (19)
P25—N341.677 (5)C28—C291.5000 (10)
P25—N411.635 (4)C28—C331.5002 (10)
N3—C41.485 (9)C28—H2810.950
N3—H310.950C29—C301.5000 (10)
C4—C91.507 (5)C29—H2910.950
C4—C51.490 (5)C29—H2920.950
C4—H410.950C30—C311.4999 (10)
C9—C81.500 (5)C30—H3010.950
C9—H910.950C30—H3020.950
C9—H920.950C31—C321.4994 (10)
C5—C61.498 (5)C31—H3110.924
C5—H510.950C31—H3120.931
C5—H520.950C32—C331.4992 (10)
C6—C71.488 (5)C32—H3210.950
C6—H610.950C32—H3220.950
C6—H620.950C33—H3310.990
C7—C81.484 (5)C33—H3320.933
C7—H710.950N34—C351.407 (8)
C7—H720.950N34—H3410.950
C8—H810.950C35—C361.491 (5)
C8—H820.950C35—C401.506 (5)
N10—C111.413 (8)C35—H3510.950
N10—H1010.950C36—C371.502 (5)
C11—C121.497 (4)C36—H3610.950
C11—C161.498 (5)C36—H3620.950
C11—H1110.950C37—C381.489 (5)
C12—C131.477 (5)C37—H3710.950
C12—H1210.950C37—H3720.950
C12—H1220.950C38—C391.489 (5)
C13—C141.477 (5)C38—H3810.950
C13—H1310.950C38—H3820.950
C13—H1320.950C39—C401.498 (5)
C14—C151.485 (5)C39—H3910.950
C14—H1410.950C39—H3920.950
C14—H1420.950C40—H4010.950
C15—C161.502 (5)C40—H4020.950
C15—H1510.950N41—C421.478 (6)
C15—H1520.950N41—C481.459 (7)
C16—H1610.950C42—C431.520 (6)
C16—H1620.950C42—C471.522 (7)
N17—C181.474 (6)C42—H4210.950
N17—C241.453 (7)C43—C441.521 (7)
C18—C191.514 (6)C43—H4310.950
C18—C231.497 (7)C43—H4320.950
C18—H1810.950C44—C451.512 (8)
C19—C201.504 (6)C44—H4420.950
C19—H1910.950C44—H4410.950
C19—H1920.950C45—C461.504 (8)
C20—C211.487 (7)C45—H4510.950
C20—H2010.950C45—H4520.950
C20—H2020.950C46—C471.531 (7)
C21—C221.509 (7)C46—H4610.950
C21—H2110.950C46—H4620.950
C21—H2120.950C47—H4710.950
C22—C231.502 (6)C47—H4720.950
C22—H2210.950C48—H4810.950
C22—H2220.950C48—H4820.950
C23—H2310.950C48—H4830.950
O2—P1—N3120.6 (3)C18—C23—H231108.2
O2—P1—N10115.9 (3)C22—C23—H232109.0
N3—P1—N1099.1 (2)C18—C23—H232108.4
O2—P1—N17106.44 (19)H231—C23—H232109.5
N3—P1—N17106.5 (3)N17—C24—H241111.0
N10—P1—N17107.4 (2)N17—C24—H242108.1
P1—N3—C4123.4 (4)H241—C24—H242109.5
P1—N17—C24117.7 (4)N17—C24—H243109.3
P25—N27—C28121.2 (4)H241—C24—H243109.5
P25—N41—C48121.0 (3)H242—C24—H243109.5
O26—P25—N27115.7 (3)P25—N27—H271118.8 (15)
O26—P25—N34114.8 (2)C28—N27—H271117.9 (15)
N27—P25—N3499.4 (2)N27—C28—C29110.5 (5)
O26—P25—N41108.9 (2)N27—C28—C33108.2 (4)
N27—P25—N41109.3 (2)C29—C28—C33122.0 (6)
N34—P25—N41108.2 (3)N27—C28—H281107.1
P1—N10—C11121.6 (4)C29—C28—H281107.7
P1—N17—C18122.3 (3)C33—C28—H281100.0
P25—N34—C35124.0 (4)C28—C29—C30109.8 (6)
P25—N41—C42123.4 (4)C28—C29—H291108.8
P1—N3—H31119.4C30—C29—H291108.2
C4—N3—H31117.1C28—C29—H292110.4
N3—C4—C9113.8 (5)C30—C29—H292110.2
N3—C4—C5116.3 (6)H291—C29—H292109.5
C9—C4—C5108.3 (7)C29—C30—C31114.3 (7)
N3—C4—H41106.3C29—C30—H301109.1
C9—C4—H41104.3C31—C30—H301105.6
C5—C4—H41107.0C29—C30—H302109.0
C4—C9—C8116.3 (7)C31—C30—H302109.3
C4—C9—H91105.9H301—C30—H302109.5
C8—C9—H91102.2C30—C31—C32118.2 (7)
C4—C9—H92108.1C30—C31—H311109.3
C8—C9—H92114.3C32—C31—H311102.4
H91—C9—H92109.5C30—C31—H312109.0
C4—C5—C6111.9 (7)C32—C31—H312104.6
C4—C5—H51108.3H311—C31—H312113.4
C6—C5—H51107.7C31—C32—C33110.66 (19)
C4—C5—H52111.5C31—C32—H321109.6
C6—C5—H52107.8C33—C32—H321107.7
H51—C5—H52109.5C31—C32—H322111.7
C5—C6—C7110.9 (2)C33—C32—H322107.5
C5—C6—H61113.0H321—C32—H322109.5
C7—C6—H61107.6C28—C33—C32110.82 (19)
C5—C6—H62107.0C28—C33—H331107.9
C7—C6—H62108.8C32—C33—H331108.3
H61—C6—H62109.5C28—C33—H332111.4
C6—C7—C8110.8 (2)C32—C33—H332110.8
C6—C7—H71112.1H331—C33—H332107.5
C8—C7—H71106.9P25—N34—H341118.9
C6—C7—H72109.7C35—N34—H341116.5
C8—C7—H72107.7N34—C35—C36117.6 (5)
H71—C7—H72109.5N34—C35—C40106.3 (5)
C9—C8—C7110.1 (7)C36—C35—C40114.2 (6)
C9—C8—H81111.8N34—C35—H351106.6
C7—C8—H81115.3C36—C35—H351102.0
C9—C8—H82102.4C40—C35—H351109.8
C7—C8—H82106.9C35—C36—C37110.71 (19)
H81—C8—H82109.5C35—C36—H361106.4
P1—N10—H101119.3C37—C36—H361109.5
C11—N10—H101119.1C35—C36—H362110.6
N10—C11—C12110.5 (5)C37—C36—H362110.1
N10—C11—C16118.3 (5)H361—C36—H362109.5
C12—C11—C16103.5 (7)C36—C37—C38110.8 (2)
N10—C11—H111108.1C36—C37—H371109.5
C12—C11—H111109.4C38—C37—H371107.8
C16—C11—H111106.7C36—C37—H372107.8
C11—C12—C13122.2 (8)C38—C37—H372111.5
C11—C12—H121102.8H371—C37—H372109.5
C13—C12—H121108.9C37—C38—C39110.8 (2)
C11—C12—H122108.7C37—C38—H381108.0
C13—C12—H122104.4C39—C38—H381104.2
H121—C12—H122109.5C37—C38—H382107.9
C12—C13—C14110.5 (2)C39—C38—H382116.1
C12—C13—H131106.4H381—C38—H382109.5
C14—C13—H131109.2C38—C39—C40110.9 (2)
C12—C13—H132110.1C38—C39—H391106.9
C14—C13—H132111.0C40—C39—H391110.7
H131—C13—H132109.5C38—C39—H392104.1
C13—C14—C15110.8 (2)C40—C39—H392114.3
C13—C14—H141108.4H391—C39—H392109.5
C15—C14—H141114.6C35—C40—C39111.1 (2)
C13—C14—H142107.6C35—C40—H401106.6
C15—C14—H142105.8C39—C40—H401101.6
H141—C14—H142109.5C35—C40—H402114.2
C14—C15—C16117.5 (10)C39—C40—H402112.8
C14—C15—H151106.3H401—C40—H402109.5
C16—C15—H151112.4C42—N41—C48115.3 (4)
C14—C15—H152109.4N41—C42—C43110.4 (4)
C16—C15—H152101.6N41—C42—C47112.8 (4)
H151—C15—H152109.5C43—C42—C47111.4 (5)
C15—C16—C11112.8 (7)N41—C42—H421106.1
C15—C16—H161106.0C43—C42—H421108.1
C11—C16—H161108.5C47—C42—H421107.7
C15—C16—H162110.9C42—C43—C44108.5 (5)
C11—C16—H162109.0C42—C43—H431110.8
H161—C16—H162109.5C44—C43—H431109.6
C18—N17—C24119.7 (4)C42—C43—H432109.7
N17—C18—C19111.5 (4)C44—C43—H432108.8
N17—C18—C23114.0 (4)H431—C43—H432109.5
C19—C18—C23109.6 (4)C43—C44—C45113.4 (6)
N17—C18—H181107.3C43—C44—H442108.3
C19—C18—H181107.6C45—C44—H442108.1
C23—C18—H181106.6C43—C44—H441109.9
C18—C19—C20108.7 (5)C45—C44—H441107.8
C18—C19—H191110.2H442—C44—H441109.1
C20—C19—H191110.2C44—C45—C46111.8 (5)
C18—C19—H192109.2C44—C45—H451108.5
C20—C19—H192109.0C46—C45—H451108.1
H191—C19—H192109.5C44—C45—H452111.0
C19—C20—C21113.9 (6)C46—C45—H452108.0
C19—C20—H201109.0H451—C45—H452109.5
C21—C20—H201109.1C45—C46—C47110.2 (7)
C19—C20—H202108.7C45—C46—H461112.1
C21—C20—H202106.6C47—C46—H461110.0
H201—C20—H202109.5C45—C46—H462107.3
C20—C21—C22107.5 (5)C47—C46—H462107.8
C20—C21—H211110.7H461—C46—H462109.5
C22—C21—H211108.2C46—C47—C42111.3 (5)
C20—C21—H212110.2C46—C47—H471108.9
C22—C21—H212110.6C42—C47—H471109.2
H211—C21—H212109.5C46—C47—H472108.3
C21—C22—C23109.7 (6)C42—C47—H472109.6
C21—C22—H221109.2H471—C47—H472109.5
C23—C22—H221109.2N41—C48—H481108.7
C21—C22—H222110.2N41—C48—H482109.0
C23—C22—H222109.1H481—C48—H482109.5
H221—C22—H222109.5N41—C48—H483110.8
C22—C23—C18113.0 (5)H481—C48—H483109.5
C22—C23—H231108.8H482—C48—H483109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N10—H101···O260.952.142.908 (11)137 (1)
N27—H271···O2i0.862.102.913 (11)159 (2)
N3—H31···O260.952.172.971 (11)142 (1)
N34—H341···O2i0.952.162.984 (11)144 (1)
Symmetry code: (i) x, y+1, z.
(IV) 2-[Cyclohexyl(methyl)amino]-5,5-dimethyl-1,3,2λ5-diazaphosphinan-2-one top
Crystal data top
C12H26N3OPF(000) = 568
Mr = 259.33Dx = 1.140 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 4337 reflections
a = 6.3318 (3) Åθ = 2.2–28.8°
b = 10.3065 (5) ŵ = 0.17 mm1
c = 23.1616 (10) ÅT = 175 K
V = 1511.48 (13) Å3Prism, colourless
Z = 40.43 × 0.34 × 0.25 mm
Data collection top
Agilent Xcalibur (Sapphire3 Gemini)
diffractometer
3678 independent reflections
Radiation source: Enhance (Mo) X-ray Source2989 reflections with I > 2.0σ(I)
Graphite monochromatorRint = 0.071
Detector resolution: 16.0143 pixels mm-1θmax = 29.1°, θmin = 1.8°
ω scansh = 88
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
k = 1113
Tmin = 0.918, Tmax = 1.000l = 2930
13647 measured reflections
Refinement top
Refinement on F2Hydrogen site location: difference Fourier map
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.049 Method, part 1, Chebychev polynomial, (Watkin, 1994, Prince, 1982) [weight] = 1.0/[A0*T0(x) + A1*T1(x) ··· + An-1]*Tn-1(x)]
where Ai are the Chebychev coefficients listed below and x = F /Fmax Method = Robust Weighting (Prince, 1982) W = [weight] * [1-(deltaF/6*sigmaF)2]2 Ai are: 0.167E + 04 0.247E + 04 0.143E + 04 638. 36.7
wR(F2) = 0.121(Δ/σ)max = 0.009
S = 0.97Δρmax = 0.47 e Å3
3625 reflectionsΔρmin = 0.36 e Å3
161 parametersAbsolute structure: Flack (1983), 1519 Friedel-pairs
6 restraintsAbsolute structure parameter: 0.03 (16)
Primary atom site location: other
Crystal data top
C12H26N3OPV = 1511.48 (13) Å3
Mr = 259.33Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 6.3318 (3) ŵ = 0.17 mm1
b = 10.3065 (5) ÅT = 175 K
c = 23.1616 (10) Å0.43 × 0.34 × 0.25 mm
Data collection top
Agilent Xcalibur (Sapphire3 Gemini)
diffractometer
3678 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
2989 reflections with I > 2.0σ(I)
Tmin = 0.918, Tmax = 1.000Rint = 0.071
13647 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.049H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.121Δρmax = 0.47 e Å3
S = 0.97Δρmin = 0.36 e Å3
3625 reflectionsAbsolute structure: Flack (1983), 1519 Friedel-pairs
161 parametersAbsolute structure parameter: 0.03 (16)
6 restraints
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems open-flow nitrogen cryostat (Cosier & Glazer, 1986) with a nominal stability of 0.1 K.

Cosier, J. & Glazer, A·M., 1986. J. Appl. Cryst. 105–107.

Absorption correction: CrysAlis PRO, Agilent Technologies, Version 1.171.36.24 (release 03–12-2012 CrysAlis171. NET) (compiled Dec 3 2012,18:21:49) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Refinement. Friedif = 72.6 Estimated Friedel difference = 3.2602 f computed from scattering factors, including f-prime

No of Reflections processed = 3011 No of Friedel Pairs found = 1210 No of Friedel Pairs used = 1210 No of Unpaired Reflections = 141 No of Centric Reflections = 450 Flack parameter obtained from original refinement Hooft parameter obtained with Flack x set to zero Reflections only used if /Fo+ - Fo-/ < 99999.00 * /Fc+ - Fc-/ Friedif = 72.64 Acta A63, (2007), 257–265 Flack & Shmueli (2007) recommend a value >200 for general structures and >80 for enantiopure crystals

Flack Parameter & su −0.0287 0.1094 Hooft Parameter & su −0.0562 0.0971 Ton G & su 1.1123 0.1943

For an enantiopure material, there are 2 choices, P2 P2(correct) 1.0000 i.e. 0.100000E+01

If 50:50 twinning is possible, there are 3 choices, P3 P3(correct) 1.0000 i.e. 0.100000E+01 P3(rac-twin) 0.0000 i.e. 0.898414E-07 P3(inverse) 0.0000 i.e. 0.251084E-25 G 1.1123 G S·U. 0.1943 FLEQ −0.0562 FLEQ S·U. 0.0971 i.e. 0.971323E-01

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
P10.92222 (12)0.71433 (7)0.56767 (3)0.0199
O20.9220 (4)0.8287 (2)0.52819 (8)0.0261
N31.0803 (5)0.6007 (2)0.54533 (11)0.0284
C41.0607 (5)0.4687 (3)0.56811 (14)0.0280
C50.8327 (5)0.4184 (3)0.56513 (14)0.0280
C60.6864 (5)0.5142 (3)0.59713 (13)0.0263
N70.6874 (4)0.6472 (2)0.57413 (10)0.0219
H710.611 (4)0.654 (2)0.5442 (9)0.0279*
H620.73220.51690.63700.0309*
H610.54360.48000.59530.0305*
C80.7623 (7)0.4021 (3)0.50247 (14)0.0390
H810.61460.37610.50160.0590*
H830.77650.48230.48190.0586*
H820.84670.33510.48400.0584*
C90.8230 (6)0.2877 (4)0.59695 (16)0.0424
H910.68320.25370.59530.0619*
H930.86370.29830.63700.0615*
H920.91680.22680.57900.0614*
H411.10960.46820.60770.0328*
H421.14980.41240.54550.0330*
H311.180 (4)0.6198 (19)0.5226 (13)0.0344*
N100.9891 (4)0.7447 (2)0.63597 (10)0.0231
C110.8364 (5)0.8141 (3)0.67295 (12)0.0234
C120.8545 (6)0.9622 (3)0.66928 (13)0.0337
C130.6835 (7)1.0266 (4)0.70579 (16)0.0426
C140.6949 (7)0.9818 (4)0.76827 (15)0.0414
C150.6814 (7)0.8348 (4)0.77232 (14)0.0390
C160.8514 (6)0.7691 (3)0.73561 (12)0.0338
H1610.98650.79340.75130.0409*
H1620.83700.67690.73740.0406*
H1510.69500.80760.81230.0458*
H1520.54470.80650.75870.0458*
H1420.82931.00980.78500.0501*
H1410.58011.02130.78970.0500*
H1320.70551.11950.70400.0509*
H1310.54841.00390.68940.0511*
H1210.99680.98910.68350.0407*
H1220.84260.98820.62980.0412*
H1110.69790.79060.65910.0276*
C171.2130 (5)0.7761 (4)0.64523 (14)0.0333
H1721.24670.77050.68600.0495*
H1711.24520.86050.63210.0499*
H1731.29770.71520.62420.0497*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
P10.0209 (3)0.0218 (3)0.0168 (3)0.0006 (3)0.0010 (3)0.0003 (3)
O20.0295 (11)0.0273 (10)0.0215 (9)0.0008 (9)0.0003 (9)0.0045 (8)
N30.0313 (13)0.0243 (12)0.0296 (12)0.0006 (12)0.0140 (12)0.0031 (10)
C40.0316 (15)0.0251 (13)0.0273 (13)0.0045 (12)0.0057 (15)0.0028 (13)
C50.0359 (16)0.0228 (13)0.0253 (14)0.0007 (12)0.0002 (14)0.0041 (13)
C60.0304 (16)0.0259 (15)0.0226 (13)0.0043 (12)0.0026 (12)0.0022 (12)
N70.0214 (11)0.0264 (12)0.0180 (11)0.0016 (9)0.0005 (9)0.0009 (10)
C80.054 (2)0.0305 (17)0.0325 (16)0.0012 (16)0.0032 (16)0.0087 (14)
C90.047 (2)0.0307 (17)0.050 (2)0.0035 (17)0.0078 (17)0.0116 (17)
N100.0242 (12)0.0262 (12)0.0187 (11)0.0014 (9)0.0023 (9)0.0002 (9)
C110.0277 (14)0.0245 (15)0.0181 (12)0.0026 (11)0.0006 (11)0.0010 (10)
C120.052 (2)0.0248 (15)0.0240 (15)0.0014 (14)0.0090 (14)0.0006 (12)
C130.056 (2)0.0323 (18)0.0397 (19)0.0076 (17)0.0088 (18)0.0080 (16)
C140.052 (2)0.041 (2)0.0308 (17)0.0116 (17)0.0112 (16)0.0142 (15)
C150.052 (2)0.0429 (19)0.0221 (15)0.0140 (17)0.0081 (15)0.0032 (14)
C160.0471 (19)0.0346 (17)0.0196 (13)0.0011 (15)0.0002 (13)0.0051 (12)
C170.0251 (15)0.0410 (18)0.0339 (16)0.0033 (14)0.0062 (12)0.0017 (15)
Geometric parameters (Å, º) top
P1—O21.492 (2)N10—C111.476 (4)
P1—N31.625 (3)N10—C171.470 (4)
P1—N71.647 (3)C11—C121.534 (4)
P1—N101.667 (2)C11—C161.527 (4)
N3—C41.464 (3)C11—H1110.965
N3—H310.845 (18)C12—C131.525 (5)
C4—C51.536 (5)C12—H1210.999
C4—H410.969C12—H1220.955
C4—H420.964C13—C141.521 (5)
C5—C61.544 (4)C13—H1320.968
C5—C81.527 (4)C13—H1310.965
C5—C91.537 (4)C14—C151.521 (5)
C6—N71.471 (4)C14—H1420.978
C6—H620.968C14—H1410.970
C6—H610.971C15—C161.529 (5)
N7—H710.850 (17)C15—H1510.972
C8—H810.973C15—H1520.967
C8—H830.958C16—H1610.963
C8—H820.972C16—H1620.955
C9—H910.953C17—H1720.970
C9—H930.968C17—H1710.944
C9—H920.958C17—H1730.958
O2—P1—N3112.03 (13)C11—N10—C17116.1 (2)
O2—P1—N7112.76 (13)N10—C11—C12113.7 (3)
N3—P1—N7106.39 (14)N10—C11—C16111.3 (2)
P1—N3—C4120.2 (2)C12—C11—C16110.5 (2)
P1—N10—C11118.37 (19)N10—C11—H111106.3
O2—P1—N10115.69 (12)C12—C11—H111107.4
N3—P1—N10106.32 (14)C16—C11—H111107.3
N7—P1—N10102.82 (13)C11—C12—C13110.5 (3)
C6—N7—P1115.3 (2)C11—C12—H121109.0
P1—N10—C17115.1 (2)C13—C12—H121109.7
P1—N3—H31119.3 (12)C11—C12—H122109.0
C4—N3—H31120.3 (13)C13—C12—H122110.7
N3—C4—C5112.2 (3)H121—C12—H122108.0
N3—C4—H41108.6C12—C13—C14111.2 (3)
C5—C4—H41110.0C12—C13—H132107.7
N3—C4—H42108.3C14—C13—H132109.6
C5—C4—H42108.8C12—C13—H131107.8
H41—C4—H42108.9C14—C13—H131110.0
C4—C5—C6109.0 (2)H132—C13—H131110.5
C4—C5—C8110.7 (3)C13—C14—C15111.0 (3)
C6—C5—C8110.6 (3)C13—C14—H142109.2
C4—C5—C9108.2 (3)C15—C14—H142108.5
C6—C5—C9107.9 (3)C13—C14—H141108.9
C8—C5—C9110.4 (3)C15—C14—H141110.2
C5—C6—N7114.8 (2)H142—C14—H141109.0
C5—C6—H62107.3C14—C15—C16111.6 (3)
N7—C6—H62108.5C14—C15—H151109.9
C5—C6—H61107.8C16—C15—H151109.9
N7—C6—H61109.0C14—C15—H152109.3
H62—C6—H61109.3C16—C15—H152108.3
C6—N7—H71111.8 (14)H151—C15—H152107.7
P1—N7—H71114.0 (14)C15—C16—C11110.5 (3)
C5—C8—H81109.3C15—C16—H161107.4
C5—C8—H83110.5C11—C16—H161109.6
H81—C8—H83108.4C15—C16—H162110.4
C5—C8—H82109.6C11—C16—H162109.8
H81—C8—H82108.9H161—C16—H162109.1
H83—C8—H82110.1N10—C17—H172110.0
C5—C9—H91109.9N10—C17—H171111.3
C5—C9—H93110.5H172—C17—H171108.7
H91—C9—H93109.1N10—C17—H173108.8
C5—C9—H92110.0H172—C17—H173109.4
H91—C9—H92108.5H171—C17—H173108.6
H93—C9—H92108.9
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N7—H71···O2i0.852.072.916 (5)180 (3)
N3—H31···O2ii0.852.002.848 (5)177 (3)
Symmetry codes: (i) x1/2, y+3/2, z+1; (ii) x+1/2, y+3/2, z+1.

Experimental details

(I)(II)(III)(IV)
Crystal data
Chemical formulaC17H36N3OPC20H34N3OPC19H38N3OP2C12H26N3OP
Mr329.45363.47355.51259.33
Crystal system, space groupMonoclinic, P21Monoclinic, P21/cOrthorhombic, Pna21Orthorhombic, P212121
Temperature (K)175175175175
a, b, c (Å)11.9879 (4), 19.1972 (6), 17.0720 (6)10.9207 (4), 24.0557 (7), 24.3993 (8)21.9179 (10), 8.9546 (4), 20.3544 (14)6.3318 (3), 10.3065 (5), 23.1616 (10)
α, β, γ (°)90, 90.542 (3), 9090, 98.980 (3), 9090, 90, 9090, 90, 90
V3)3928.67 (14)6331.3 (4)3994.9 (3)1511.48 (13)
Z81284
Radiation typeMo KαMo KαMo KαMo Kα
µ (mm1)0.150.140.150.17
Crystal size (mm)0.45 × 0.35 × 0.300.45 × 0.35 × 0.320.35 × 0.35 × 0.180.43 × 0.34 × 0.25
Data collection
DiffractometerOxford Diffraction GeminiAgilent Xcalibur (Sapphire3, Gemini)Oxford Diffraction GeminiAgilent Xcalibur (Sapphire3 Gemini)
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2011)
Multi-scan
(CrysAlis PRO; Agilent, 2011)
ψ scan
(CrysAlis PRO; Agilent, 2011)
Multi-scan
(CrysAlis PRO; Agilent, 2011)
Tmin, Tmax0.95, 0.960.915, 1.0000.95, 0.970.918, 1.000
No. of measured, independent and
observed [I > 2.0σ(I)] reflections
43414, 18366, 14523 44340, 14733, 10640 33932, 9291, 6779 13647, 3678, 2989
Rint0.0640.0470.0500.071
(sin θ/λ)max1)0.6880.6840.6820.683
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.096, 0.118, 1.09 0.058, 0.152, 0.90 0.124, 0.326, 1.22 0.049, 0.121, 0.97
No. of reflections178311361387833625
No. of parameters883694437161
No. of restraints141184446
H-atom treatmentH atoms treated by a mixture of independent and constrained refinementH atoms treated by a mixture of independent and constrained refinementH atoms treated by a mixture of independent and constrained refinementH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)1.77, 0.830.41, 0.402.27, 0.550.47, 0.36
Absolute structureFlack (1983), 9230 Friedel pairs?Flack (1983), 4252 Friedel-pairsFlack (1983), 1519 Friedel-pairs
Absolute structure parameter0.08 (10)?0.3 (2)0.03 (16)

Computer programs: GEMINI (Oxford Diffraction, 2006), CrysAlis PRO (Agilent, 2011), SUPERFLIP (Palatinus & Chapuis, 2007), SUPERFLIP (Palatinus & Chapuis, 2007), PLATON (Spek, 2009) and Mercury (Macrae et al., 2008), CRYSTALS (Betteridge et al., 2003) and enCIFer (Allen et al., 2004).

Selected geometric parameters (Å, º) for (I) top
P101—O1021.487 (3)P301—O3021.475 (4)
P101—N1031.664 (4)P301—N3031.653 (4)
P101—N1111.623 (4)P301—N3111.635 (4)
P101—N1161.608 (5)P301—N3161.621 (4)
P201—O2021.490 (4)P401—O4021.493 (3)
P201—N2031.697 (4)P401—N4031.643 (4)
P201—N2111.595 (4)P401—N4111.631 (4)
P201—N2161.617 (5)P401—N4161.639 (4)
O102—P101—N103107.3 (2)O302—P301—N303107.0 (2)
O102—P101—N111112.2 (2)O302—P301—N311115.5 (2)
N103—P101—N111114.7 (2)N303—P301—N311110.0 (2)
O102—P101—N116116.5 (2)O302—P301—N316114.9 (2)
N103—P101—N116104.8 (2)N303—P301—N316110.0 (2)
N111—P101—N116101.4 (2)N311—P301—N31699.4 (2)
O202—P201—N203107.8 (2)O402—P401—N403107.88 (19)
O202—P201—N211112.6 (2)O402—P401—N411113.7 (2)
N203—P201—N211113.9 (2)N403—P401—N411112.6 (2)
O202—P201—N216116.8 (2)O402—P401—N416116.5 (2)
N203—P201—N216104.3 (2)N403—P401—N416106.1 (2)
N211—P201—N216101.3 (2)N411—P401—N41699.7 (2)
P101—N103—C104120.8 (4)P101—N103—C105118.4 (3)
P101—N111—C112128.4 (4)P101—N116—C117130.0 (4)
P201—N203—C204118.3 (4)P201—N203—C205119.5 (3)
P201—N216—C217127.1 (4)P201—N211—C212128.7 (4)
P301—N303—C304119.0 (3)P301—N303—C305123.6 (3)
P301—N311—C312128.6 (2)P301—N316—C317124.1 (4)
P401—N403—C404118.9 (3)P401—N403—C405124.2 (3)
P401—N411—C412129.0 (3)P401—N416—C417125.4 (3)
Selected geometric parameters (Å, º) for (II) top
P1—O21.4818 (17)P26—N351.644 (2)
P1—N31.641 (2)P26—N431.637 (2)
P1—N111.630 (2)P51—O521.4857 (17)
P1—N181.653 (2)P51—N531.639 (2)
P26—O271.4876 (17)P51—N611.647 (2)
P26—N281.632 (2)P51—N691.627 (2)
O2—P1—N3107.28 (10)P51—N61—C62128.63 (17)
O2—P1—N11117.13 (11)O27—P26—N43107.42 (10)
N3—P1—N11107.76 (11)N28—P26—N43111.66 (11)
O2—P1—N18114.30 (11)N35—P26—N43108.07 (11)
N3—P1—N18111.20 (11)O52—P51—N53107.09 (10)
N11—P1—N1898.92 (10)O52—P51—N61115.30 (11)
O27—P26—N28114.51 (11)N53—P51—N61110.55 (11)
O27—P26—N35116.58 (11)P1—N3—C10120.27 (17)
N28—P26—N3598.36 (10)P1—N18—C19128.23 (17)
P1—N3—C4120.31 (15)P26—N35—C36128.78 (17)
P1—N11—C12122.88 (16)P26—N43—C50118.53 (17)
P26—N28—C29123.66 (16)P51—N53—C54119.54 (16)
P26—N43—C44121.82 (15)P51—N69—C70122.79 (17)
P51—N53—C60120.33 (18)
Selected geometric parameters (Å, º) for (III) top
P1—O21.478 (4)P25—O261.520 (4)
P1—N31.608 (5)P25—N271.619 (5)
P1—N101.680 (5)P25—N341.677 (5)
P1—N171.667 (4)P25—N411.635 (4)
O2—P1—N3120.6 (3)O26—P25—N27115.7 (3)
O2—P1—N10115.9 (3)O26—P25—N34114.8 (2)
N3—P1—N1099.1 (2)N27—P25—N3499.4 (2)
O2—P1—N17106.44 (19)O26—P25—N41108.9 (2)
N3—P1—N17106.5 (3)N27—P25—N41109.3 (2)
N10—P1—N17107.4 (2)N34—P25—N41108.2 (3)
P1—N3—C4123.4 (4)P1—N10—C11121.6 (4)
P1—N17—C24117.7 (4)P1—N17—C18122.3 (3)
P25—N27—C28121.2 (4)P25—N34—C35124.0 (4)
P25—N41—C48121.0 (3)P25—N41—C42123.4 (4)
Selected geometric parameters (Å, º) for (IV) top
P1—O21.492 (2)P1—N71.647 (3)
P1—N31.625 (3)P1—N101.667 (2)
O2—P1—N3112.03 (13)O2—P1—N10115.69 (12)
O2—P1—N7112.76 (13)N3—P1—N10106.32 (14)
N3—P1—N7106.39 (14)N7—P1—N10102.82 (13)
P1—N3—C4120.2 (2)C6—N7—P1115.3 (2)
P1—N10—C11118.37 (19)P1—N10—C17115.1 (2)
Hydrogen-bond geometry (Å, º) for (I) top
D—H···AD—HH···AD···AD—H···A
N111—H1111···O302i0.8402.0642.896 (11)170.3 (20)
N211—H2111···O402ii0.8462.0722.873 (11)158 (4)
N216—H2161···O402ii0.8432.2933.062 (11)152 (2)
N311—H3111···O2020.8542.0802.914 (11)165 (3)
C3142—H3147···O3020.9602.4033.155 (11)134.92 (18)
N316—H3161···O2020.8512.2823.086 (11)157.6 (13)
N411—H4111···O1020.8502.1062.915 (11)159 (4)
N416—H4161···O1020.8382.4953.118 (11)132 (4)
Symmetry codes: (i) x+1, y+1/2, z; (ii) x+1, y1/2, z+1.
Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD—HH···AD···AD—H···A
N11—H111···O270.8422.1092.908 (4)158.2 (16)
N18—H181···O270.8651.9812.813 (4)161 (2)
C63—H631···O520.9392.5643.225 (4)127.69 (7)
N61—H611···O2i0.8452.0082.838 (4)167.0 (18)
N69—H691···O2i0.8552.0932.907 (4)159.1 (16)
N35—H351···O52ii0.8412.0032.819 (4)163.2 (17)
N28—H281···O52ii0.8312.0492.854 (4)163.1 (16)
Symmetry codes: (i) x+1, y1/2, z+1/2; (ii) x, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) for (III) top
D—H···AD—HH···AD···AD—H···A
N10—H101···O260.9502.1382.908 (11)137.24 (15)
N27—H271···O2i0.8592.0952.913 (11)159.0 (19)
N3—H31···O260.9502.1672.971 (11)141.66 (16)
N34—H341···O2i0.9502.1622.984 (11)144.14 (17)
Symmetry code: (i) x, y+1, z.
Hydrogen-bond geometry (Å, º) for (IV) top
D—H···AD—HH···AD···AD—H···A
N7—H71···O2i0.8502.0662.916 (5)180 (3)
N3—H31···O2ii0.8452.0042.848 (5)177 (3)
Symmetry codes: (i) x1/2, y+3/2, z+1; (ii) x+1/2, y+3/2, z+1.
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds