Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The crystal structures of six halobismuth(III) salts of variously substituted amino­pyridinium cations display discrete mononuclear [BiCl6]3− and dinuclear [Bi2X10]4− anions (X = Cl or Br), and polymeric cis-double-halo-bridged [BinX4n]n anionic chains (X = Br or I). Bis(2-amino-3-ammonio­pyridinium) hexa­chlorido­bis­muth(III) chloride monohydrate, (C5H9N3)2[BiCl6]Cl·H2O, (1), contains discrete mononuclear [BiCl6]3− and chloride anions. Tetra­kis(2-amino-3-methyl­pyridinium) di-μ-chlorido-bis­[tetra­chlorido­bis­muth(III)], (C6H9N2)4[Bi2Cl10], (2), tetra­kis­(2-amino-3-methyl­pyridinium) di-μ-bromido-bis­[tetra­bro­mido­bis­muth(III)], (C6H9N2)4[Bi2Br10], (3), and bis­(4-amino-3-ammonio­pyri­din­ium) di-μ-chlorido-bis­[tetra­chlorido­bis­muth(III)] dihydrate, (C5H9N3)2[Bi2Cl10]·2H2O, (4), incorporate discrete [Bi2X10]4− anions (X = Cl or Br), while catena-poly[2,6-di­amino­pyridinium [[cis-di­iodido­bis­muth(III)]-di-μ-iodido]], {(C5H8N3)[BiI4]}n, (5), and catena-poly[2,6-di­amino­pyridinium [[cis-di­bromido­bis­muth(III)]-di-μ-bromido]], {(C5H7N2)[BiBr4]}n, (6), include [BinX4n]n anionic chains (X = Br or I). Structures (2) and (3) are isostructural, while that of (5) is a pseudomerohedral twin. There is no discernible correlation between the type of anionic species obtained and the cation or halide ligand used. The BiIII centres always have a slightly distorted octa­hedral geometry and there is a correlation between the Bi—X bond lengths and the number of classic N—H...X hydrogen bonds that the X ligand accepts, with a greater number of inter­actions corresponding with slightly longer Bi—X distances. The supra­molecular networks formed by classic N—H...X hydrogen bonds include ladders, bilayers and three-dimensional frameworks.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S2053229620006130/fp3085sup1.cif
Contains datablocks 1, 2, 3, 4, 5, 6, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229620006130/fp30851sup2.hkl
Contains datablock 1

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229620006130/fp30852sup3.hkl
Contains datablock 2

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229620006130/fp30853sup4.hkl
Contains datablock 3

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229620006130/fp30854sup5.hkl
Contains datablock 4

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229620006130/fp30855sup6.hkl
Contains datablock 5

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229620006130/fp30856sup7.hkl
Contains datablock 6

CCDC references: 2001365; 2001364; 2001363; 2001362; 2001361; 2001360

Computing details top

For all structures, data collection: CrysAlis PRO (Rigaku OD, 2018); cell refinement: CrysAlis PRO (Rigaku OD, 2018); data reduction: CrysAlis PRO (Rigaku OD, 2018); program(s) used to solve structure: SHELXT2018 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009) and Mercury (Macrae et al., 2020); software used to prepare material for publication: SHELXL2018 (Sheldrick, 2015b) and PLATON (Spek, 2015, 2020).

Bis(2-amino-3-ammoniopyridinium) hexachloridobismuth(III) chloride monohydrate (1) top
Crystal data top
(C5H9N3)2[BiCl6]Cl·H2OZ = 2
Mr = 697.45F(000) = 664
Triclinic, P1Dx = 2.135 Mg m3
a = 9.1612 (4) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.8591 (6) ÅCell parameters from 5333 reflections
c = 11.7273 (7) Åθ = 3.5–29.2°
α = 94.303 (4)°µ = 9.00 mm1
β = 101.914 (4)°T = 160 K
γ = 106.254 (4)°Prism, red
V = 1084.89 (10) Å30.25 × 0.20 × 0.10 mm
Data collection top
Oxford Diffraction SuperNova dual radiation
diffractometer
5056 independent reflections
Radiation source: micro-focus sealed X-ray tube, SuperNova (Mo) X-ray source4589 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.040
Detector resolution: 10.3801 pixels mm-1θmax = 29.4°, θmin = 2.9°
ω scansh = 119
Absorption correction: gaussian
(CrysAlis PRO; Rigaku OD, 2018)
k = 1414
Tmin = 0.551, Tmax = 1.000l = 1613
8459 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: geom & difmap
R[F2 > 2σ(F2)] = 0.036H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.075 w = 1/[σ2(Fo2) + (0.0172P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.002
5054 reflectionsΔρmax = 3.53 e Å3
237 parametersΔρmin = 1.74 e Å3
2 restraintsExtinction correction: SHELXL2018 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: dualExtinction coefficient: 0.00175 (19)
Special details top

Experimental. Data collection and full structure determination done by Prof. Anthony Linden: anthony.linden@chem.uzh.ch

Solvent used: 2M HCl Cooling Device: Oxford Instruments Cryojet XL Crystal mount: on a glass fibre Frames collected: 272 Seconds exposure per frame: 1.5 Degrees rotation per frame: 1.0 Crystal-detector distance (mm): 55.0 Client: Levi Senior Sample code: LS009

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. The water H-atoms were refined isotropically with O-H distance restraints of 0.84 (1) Å. All other H atoms were placed in calculated positions and allowed to ride on their parent atoms.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Bi10.33379 (2)0.65001 (2)0.77021 (2)0.01333 (8)
Cl10.30114 (15)0.87093 (12)0.86367 (13)0.0217 (3)
Cl20.62022 (15)0.67918 (13)0.92734 (13)0.0205 (3)
Cl30.13301 (14)0.50002 (12)0.90309 (12)0.0197 (3)
Cl40.35744 (16)0.43435 (12)0.65545 (13)0.0234 (3)
Cl50.06380 (14)0.62274 (12)0.62347 (12)0.0165 (3)
Cl60.47286 (14)0.77900 (12)0.62570 (13)0.0190 (3)
Cl71.20723 (15)0.98098 (13)0.50220 (13)0.0216 (3)
O10.7385 (4)0.6577 (4)0.6206 (4)0.0200 (8)
H110.714 (7)0.619 (5)0.552 (2)0.033 (19)*
H120.666 (5)0.687 (6)0.630 (6)0.039 (19)*
N11.0249 (5)1.1946 (4)0.8540 (4)0.0219 (11)
H11.0777681.2774900.8639920.026*
N21.1604 (5)1.1615 (4)0.7142 (4)0.0239 (11)
H211.2106561.2450350.7259120.029*
H221.1800741.1093620.6623070.029*
N30.9957 (5)0.8895 (4)0.6795 (4)0.0207 (11)
H311.0134120.9264010.6145330.031*
H320.9106230.8177320.6581480.031*
H331.0808940.8667560.7142390.031*
C11.0544 (6)1.1142 (5)0.7748 (5)0.0163 (11)
C20.9672 (6)0.9818 (5)0.7621 (5)0.0138 (10)
C30.8594 (6)0.9399 (5)0.8260 (5)0.0166 (11)
H30.8017130.8506470.8163540.020*
C40.8338 (7)1.0302 (5)0.9070 (5)0.0237 (13)
H410.7582161.0024000.9517310.028*
C50.9173 (6)1.1551 (5)0.9200 (5)0.0227 (13)
H50.9020741.2164420.9748940.027*
N40.6479 (5)0.1627 (4)0.6711 (4)0.0182 (10)
H40.6603300.1117620.6142190.022*
N50.8359 (5)0.3288 (4)0.6238 (4)0.0236 (11)
H510.8476720.2735050.5702430.028*
H520.8921550.4108100.6346290.028*
N60.7879 (5)0.5058 (4)0.7981 (4)0.0163 (10)
H610.7644220.5401810.7307780.024*
H620.8928720.5181140.8191740.024*
H630.7583810.5454600.8566540.024*
C60.7327 (6)0.2881 (5)0.6888 (5)0.0147 (11)
C70.7050 (6)0.3677 (5)0.7784 (5)0.0139 (10)
C80.6028 (5)0.3158 (5)0.8446 (5)0.0163 (11)
H80.5859250.3699550.9048680.020*
C90.5238 (6)0.1843 (5)0.8239 (5)0.0205 (12)
H90.4557410.1470670.8716210.025*
C100.5452 (6)0.1091 (5)0.7341 (5)0.0191 (12)
H100.4880220.0195230.7160780.023*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Bi10.01174 (11)0.01138 (11)0.01661 (13)0.00237 (7)0.00483 (8)0.00072 (8)
Cl10.0263 (7)0.0161 (7)0.0216 (8)0.0048 (5)0.0082 (6)0.0046 (6)
Cl20.0183 (6)0.0211 (7)0.0211 (8)0.0060 (5)0.0035 (6)0.0002 (6)
Cl30.0194 (6)0.0190 (7)0.0191 (8)0.0026 (5)0.0055 (6)0.0032 (6)
Cl40.0300 (7)0.0165 (7)0.0251 (8)0.0083 (5)0.0090 (6)0.0004 (6)
Cl50.0154 (6)0.0157 (6)0.0166 (7)0.0032 (5)0.0028 (5)0.0004 (5)
Cl60.0194 (6)0.0180 (7)0.0231 (8)0.0070 (5)0.0096 (6)0.0057 (6)
Cl70.0239 (7)0.0247 (7)0.0199 (8)0.0109 (5)0.0088 (6)0.0025 (6)
O10.0153 (19)0.024 (2)0.022 (3)0.0085 (16)0.0050 (18)0.0008 (19)
N10.023 (2)0.012 (2)0.030 (3)0.0060 (18)0.004 (2)0.002 (2)
N20.028 (3)0.011 (2)0.030 (3)0.0012 (19)0.014 (2)0.004 (2)
N30.027 (3)0.010 (2)0.026 (3)0.0038 (18)0.013 (2)0.002 (2)
C10.014 (2)0.016 (3)0.021 (3)0.006 (2)0.004 (2)0.004 (2)
C20.016 (2)0.015 (3)0.011 (3)0.007 (2)0.001 (2)0.001 (2)
C30.015 (2)0.019 (3)0.013 (3)0.002 (2)0.002 (2)0.000 (2)
C40.022 (3)0.030 (3)0.023 (4)0.011 (2)0.012 (3)0.005 (3)
C50.023 (3)0.031 (3)0.017 (3)0.013 (2)0.006 (3)0.001 (3)
N40.019 (2)0.015 (2)0.017 (3)0.0016 (18)0.004 (2)0.003 (2)
N50.030 (3)0.018 (2)0.025 (3)0.0024 (19)0.016 (2)0.001 (2)
N60.016 (2)0.013 (2)0.019 (3)0.0041 (17)0.005 (2)0.0023 (19)
C60.013 (2)0.016 (3)0.012 (3)0.004 (2)0.001 (2)0.003 (2)
C70.013 (2)0.013 (3)0.014 (3)0.0051 (19)0.000 (2)0.002 (2)
C80.013 (2)0.019 (3)0.016 (3)0.004 (2)0.002 (2)0.000 (2)
C90.016 (3)0.017 (3)0.029 (4)0.002 (2)0.011 (3)0.002 (3)
C100.016 (3)0.016 (3)0.023 (3)0.000 (2)0.005 (2)0.005 (2)
Geometric parameters (Å, º) top
Bi1—Cl12.6812 (12)C3—H30.9500
Bi1—Cl22.7986 (14)C4—C51.337 (8)
Bi1—Cl32.8899 (12)C4—H410.9500
Bi1—Cl42.6970 (13)C5—H50.9500
Bi1—Cl52.6312 (13)N4—C61.342 (6)
Bi1—Cl62.5896 (12)N4—C101.348 (6)
O1—H110.837 (10)N4—H40.8800
O1—H120.836 (10)N5—C61.335 (6)
N1—C11.346 (7)N5—H510.8800
N1—C51.373 (7)N5—H520.8800
N1—H10.8800N6—C71.455 (6)
N2—C11.331 (6)N6—H610.9100
N2—H210.8800N6—H620.9100
N2—H220.8800N6—H630.9100
N3—C21.454 (6)C6—C71.418 (7)
N3—H310.9100C7—C81.367 (6)
N3—H320.9100C8—C91.385 (7)
N3—H330.9100C8—H80.9500
C1—C21.415 (7)C9—C101.364 (7)
C2—C31.360 (7)C9—H90.9500
C3—C41.414 (7)C10—H100.9500
Cl6—Bi1—Cl588.69 (4)C2—C3—H3120.3
Cl6—Bi1—Cl188.51 (4)C4—C3—H3120.3
Cl5—Bi1—Cl185.39 (4)C5—C4—C3119.3 (5)
Cl6—Bi1—Cl487.53 (4)C5—C4—H41120.4
Cl5—Bi1—Cl490.58 (4)C3—C4—H41120.4
Cl1—Bi1—Cl4174.42 (4)C4—C5—N1120.0 (5)
Cl6—Bi1—Cl291.56 (4)C4—C5—H5120.0
Cl5—Bi1—Cl2179.68 (4)N1—C5—H5120.0
Cl1—Bi1—Cl294.42 (4)C6—N4—C10124.7 (5)
Cl4—Bi1—Cl289.62 (4)C6—N4—H4117.6
Cl6—Bi1—Cl3170.83 (4)C10—N4—H4117.6
Cl5—Bi1—Cl382.16 (4)C6—N5—H51120.0
Cl1—Bi1—Cl391.37 (4)C6—N5—H52120.0
Cl4—Bi1—Cl391.91 (4)H51—N5—H52120.0
Cl2—Bi1—Cl397.59 (4)C7—N6—H61109.5
H11—O1—H12108 (6)C7—N6—H62109.5
C1—N1—C5123.9 (5)H61—N6—H62109.5
C1—N1—H1118.1C7—N6—H63109.5
C5—N1—H1118.1H61—N6—H63109.5
C1—N2—H21120.0H62—N6—H63109.5
C1—N2—H22120.0N5—C6—N4119.2 (5)
H21—N2—H22120.0N5—C6—C7125.0 (5)
C2—N3—H31109.5N4—C6—C7115.8 (4)
C2—N3—H32109.5C8—C7—C6120.7 (5)
H31—N3—H32109.5C8—C7—N6120.8 (4)
C2—N3—H33109.5C6—C7—N6118.4 (4)
H31—N3—H33109.5C7—C8—C9120.0 (5)
H32—N3—H33109.5C7—C8—H8120.0
N2—C1—N1119.7 (5)C9—C8—H8120.0
N2—C1—C2124.3 (5)C10—C9—C8119.1 (5)
N1—C1—C2116.0 (4)C10—C9—H9120.5
C3—C2—C1121.4 (5)C8—C9—H9120.5
C3—C2—N3119.9 (5)N4—C10—C9119.5 (5)
C1—C2—N3118.7 (4)N4—C10—H10120.3
C2—C3—C4119.4 (5)C9—C10—H10120.3
C5—N1—C1—N2179.5 (5)C10—N4—C6—N5177.1 (5)
C5—N1—C1—C20.3 (8)C10—N4—C6—C72.2 (8)
N2—C1—C2—C3179.3 (5)N5—C6—C7—C8176.4 (5)
N1—C1—C2—C30.5 (8)N4—C6—C7—C82.8 (7)
N2—C1—C2—N31.3 (8)N5—C6—C7—N63.6 (8)
N1—C1—C2—N3178.9 (5)N4—C6—C7—N6177.2 (5)
C1—C2—C3—C40.1 (8)C6—C7—C8—C90.6 (8)
N3—C2—C3—C4179.3 (5)N6—C7—C8—C9179.4 (5)
C2—C3—C4—C50.6 (8)C7—C8—C9—C102.5 (8)
C3—C4—C5—N10.8 (9)C6—N4—C10—C90.8 (8)
C1—N1—C5—C40.4 (9)C8—C9—C10—N43.2 (8)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···Cl3i0.882.313.154 (5)160
N2—H21···Cl4i0.882.433.215 (4)150
N2—H22···Cl70.882.353.223 (5)171
N3—H31···Cl7ii0.912.683.202 (5)118
N3—H32···O10.911.942.848 (6)176
N3—H33···Cl1iii0.912.373.228 (5)157
N4—H4···Cl7iv0.882.353.181 (4)158
N5—H51···Cl7iv0.882.703.453 (5)144
N5—H52···Cl5iii0.882.433.290 (5)167
N6—H61···O10.911.912.794 (6)163
N6—H62···Cl3iii0.912.293.167 (4)163
N6—H63···Cl20.912.383.218 (4)153
O1—H11···Cl4v0.84 (1)2.36 (2)3.177 (5)165 (6)
O1—H12···Cl60.84 (1)2.26 (2)3.083 (4)170 (6)
Symmetry codes: (i) x+1, y+1, z; (ii) x+2, y+2, z+1; (iii) x+1, y, z; (iv) x+2, y+1, z+1; (v) x+1, y+1, z+1.
Tetrakis(2-amino-3-methylpyridinium) di-µ-chlorido-bis[tetrachloridobismuth(III)] (2) top
Crystal data top
(C6H9N2)4[Bi2Cl10]Z = 1
Mr = 1209.07F(000) = 572
Triclinic, P1Dx = 2.109 Mg m3
a = 8.8144 (3) ÅMo Kα radiation, λ = 0.71073 Å
b = 8.9982 (3) ÅCell parameters from 6026 reflections
c = 12.3440 (4) Åθ = 3.2–29.2°
α = 76.784 (3)°µ = 9.96 mm1
β = 87.111 (3)°T = 160 K
γ = 88.514 (3)°Block, colourless
V = 951.80 (6) Å30.25 × 0.15 × 0.07 mm
Data collection top
Oxford Diffraction SuperNova dual radiation
diffractometer
4463 independent reflections
Radiation source: micro-focus sealed X-ray tube, SuperNova (Mo) X-ray source4137 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.026
Detector resolution: 10.3801 pixels mm-1θmax = 29.5°, θmin = 2.8°
ω scansh = 1111
Absorption correction: gaussian
(CrysAlis PRO; Rigaku OD, 2018)
k = 1011
Tmin = 0.660, Tmax = 1.000l = 1116
8469 measured reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.024Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.049H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.015P)2]
where P = (Fo2 + 2Fc2)/3
4463 reflections(Δ/σ)max < 0.001
201 parametersΔρmax = 0.89 e Å3
54 restraintsΔρmin = 1.03 e Å3
Special details top

Experimental. Data collection and full structure determination done by Prof. Anthony Linden: anthony.linden@chem.uzh.ch

Solvent used: 2M HCl Cooling Device: Oxford Instruments Cryojet XL Crystal mount: on a glass fibre Frames collected: 312 Seconds exposure per frame: 3.0 Degrees rotation per frame: 1.0 Crystal-detector distance (mm): 55.0 Client: Levi Senior Sample code: LS010

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Rigid body restraints were applied to the atoms of the cation containing atom N3.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Bi10.50769 (2)0.39447 (2)0.17732 (2)0.01904 (5)
Cl10.50021 (11)0.12800 (10)0.30547 (8)0.0342 (2)
Cl20.53940 (10)0.53069 (11)0.33900 (8)0.0316 (2)
Cl30.80433 (10)0.36762 (11)0.14781 (9)0.0311 (2)
Cl40.19902 (10)0.42985 (10)0.20710 (8)0.0275 (2)
Cl50.47878 (12)0.29835 (11)0.02343 (8)0.0339 (2)
N10.1469 (3)0.6424 (3)0.3902 (2)0.0236 (7)
H10.1900040.5883250.3457390.028*
N20.0854 (3)0.5797 (3)0.3363 (2)0.0241 (7)
H210.0377830.5264350.2930250.029*
H220.1853340.5848090.3394720.029*
C10.0069 (4)0.6519 (4)0.3964 (3)0.0201 (7)
C20.0762 (4)0.7402 (4)0.4683 (3)0.0220 (8)
C30.0177 (4)0.8060 (4)0.5287 (3)0.0270 (8)
H310.0265000.8629910.5784470.032*
C40.1757 (4)0.7925 (4)0.5199 (3)0.0314 (9)
H40.2381060.8390190.5629100.038*
C50.2381 (4)0.7110 (4)0.4482 (3)0.0296 (9)
H50.3453840.7024260.4389240.036*
C60.2452 (4)0.7578 (4)0.4745 (3)0.0290 (9)
H610.2803180.8092610.4010560.044*
H620.2749010.8187800.5286820.044*
H630.2913210.6568530.4977260.044*
N30.1583 (4)0.8106 (4)0.0943 (3)0.0449 (10)
H30.2076120.7480100.0591750.054*
N40.0581 (4)0.7233 (4)0.0399 (3)0.0435 (9)
H410.0025860.6638430.0055400.052*
H420.1577500.7229710.0384040.052*
C70.0078 (5)0.8122 (4)0.0933 (3)0.0361 (9)
C80.0776 (5)0.9127 (4)0.1492 (3)0.0274 (8)
C90.0085 (5)1.0004 (5)0.1983 (4)0.0380 (10)
H90.0436561.0696260.2353170.046*
C100.1659 (6)0.9968 (5)0.1985 (4)0.0499 (12)
H100.2187041.0612390.2345520.060*
C110.2436 (6)0.8974 (5)0.1452 (4)0.0447 (11)
H110.3513360.8894220.1437170.054*
C120.2428 (5)0.9150 (5)0.1498 (4)0.0398 (10)
H1210.2755460.9390590.0729590.060*
H1220.2829580.9928590.1880670.060*
H1230.2810620.8147590.1887480.060*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Bi10.01407 (8)0.02466 (8)0.01962 (8)0.00037 (5)0.00009 (5)0.00777 (5)
Cl10.0329 (6)0.0299 (5)0.0370 (6)0.0011 (4)0.0011 (4)0.0027 (4)
Cl20.0246 (5)0.0464 (6)0.0298 (5)0.0023 (4)0.0013 (4)0.0209 (4)
Cl30.0145 (4)0.0381 (5)0.0427 (6)0.0007 (4)0.0013 (4)0.0142 (4)
Cl40.0141 (4)0.0353 (5)0.0360 (6)0.0007 (4)0.0006 (4)0.0143 (4)
Cl50.0458 (6)0.0310 (5)0.0280 (5)0.0058 (4)0.0029 (4)0.0126 (4)
N10.0229 (17)0.0233 (15)0.0240 (17)0.0039 (13)0.0030 (13)0.0054 (12)
N20.0221 (16)0.0282 (16)0.0238 (17)0.0011 (13)0.0025 (13)0.0101 (13)
C10.0217 (19)0.0178 (17)0.0170 (18)0.0010 (14)0.0022 (14)0.0032 (13)
C20.026 (2)0.0184 (17)0.0192 (19)0.0037 (15)0.0026 (15)0.0012 (13)
C30.034 (2)0.0233 (19)0.025 (2)0.0027 (16)0.0008 (17)0.0080 (15)
C40.028 (2)0.029 (2)0.040 (3)0.0005 (17)0.0092 (18)0.0118 (17)
C50.021 (2)0.027 (2)0.038 (2)0.0004 (16)0.0019 (17)0.0014 (17)
C60.025 (2)0.031 (2)0.032 (2)0.0051 (16)0.0019 (17)0.0095 (16)
N30.033 (2)0.035 (2)0.054 (3)0.0113 (15)0.0176 (18)0.0107 (16)
N40.061 (3)0.0355 (19)0.036 (2)0.0048 (18)0.0116 (18)0.0150 (16)
C70.047 (2)0.024 (2)0.032 (2)0.0013 (17)0.0063 (19)0.0032 (16)
C80.034 (2)0.0230 (18)0.023 (2)0.0018 (16)0.0053 (16)0.0009 (14)
C90.039 (2)0.033 (2)0.038 (3)0.0009 (18)0.003 (2)0.0019 (18)
C100.052 (3)0.049 (3)0.045 (3)0.016 (2)0.015 (2)0.002 (2)
C110.046 (3)0.036 (2)0.043 (3)0.002 (2)0.004 (2)0.0077 (19)
C120.037 (2)0.043 (3)0.039 (3)0.001 (2)0.001 (2)0.010 (2)
Geometric parameters (Å, º) top
Bi1—Cl12.5533 (10)C6—H610.9800
Bi1—Cl22.5992 (9)C6—H620.9800
Bi1—Cl32.6342 (9)C6—H630.9800
Bi1—Cl42.7471 (8)N3—C71.327 (5)
Bi1—Cl52.8300 (9)N3—C111.368 (6)
Bi1—Cl5i2.9760 (10)N3—H30.8800
N1—C51.351 (5)N4—C71.310 (5)
N1—C11.356 (4)N4—H410.8800
N1—H10.8800N4—H420.8800
N2—C11.323 (4)C7—C81.435 (5)
N2—H210.8800C8—C91.364 (6)
N2—H220.8800C8—C121.455 (6)
C1—C21.426 (5)C9—C101.387 (6)
C2—C31.372 (5)C9—H90.9500
C2—C61.494 (5)C10—C111.377 (6)
C3—C41.396 (5)C10—H100.9500
C3—H310.9500C11—H110.9500
C4—C51.360 (5)C12—H1210.9800
C4—H40.9500C12—H1220.9800
C5—H50.9500C12—H1230.9800
Cl1—Bi1—Cl293.93 (3)N1—C5—H5120.1
Cl1—Bi1—Cl390.08 (3)C4—C5—H5120.1
Cl2—Bi1—Cl391.38 (3)C2—C6—H61109.5
Cl1—Bi1—Cl491.13 (3)C2—C6—H62109.5
Cl2—Bi1—Cl487.92 (3)H61—C6—H62109.5
Cl3—Bi1—Cl4178.64 (3)C2—C6—H63109.5
Cl1—Bi1—Cl596.18 (3)H61—C6—H63109.5
Cl2—Bi1—Cl5169.86 (3)H62—C6—H63109.5
Cl3—Bi1—Cl587.88 (3)C7—N3—C11125.8 (4)
Cl4—Bi1—Cl592.59 (3)C7—N3—H3117.1
Cl1—Bi1—Cl5i178.47 (3)C11—N3—H3117.1
Cl2—Bi1—Cl5i87.27 (3)C7—N4—H41120.0
Cl3—Bi1—Cl5i88.94 (3)C7—N4—H42120.0
Cl4—Bi1—Cl5i89.86 (3)H41—N4—H42120.0
Cl5—Bi1—Cl5i82.60 (3)N4—C7—N3118.8 (4)
Bi1—Cl5—Bi1i97.40 (3)N4—C7—C8122.1 (4)
C5—N1—C1124.0 (3)N3—C7—C8119.1 (4)
C5—N1—H1118.0C9—C8—C7114.6 (4)
C1—N1—H1118.0C9—C8—C12125.5 (4)
C1—N2—H21120.0C7—C8—C12119.8 (4)
C1—N2—H22120.0C8—C9—C10125.4 (4)
H21—N2—H22120.0C8—C9—H9117.3
N2—C1—N1119.0 (3)C10—C9—H9117.3
N2—C1—C2123.1 (3)C11—C10—C9118.2 (5)
N1—C1—C2117.9 (3)C11—C10—H10120.9
C3—C2—C1117.5 (3)C9—C10—H10120.9
C3—C2—C6123.1 (3)N3—C11—C10116.8 (4)
C1—C2—C6119.5 (3)N3—C11—H11121.6
C2—C3—C4122.6 (3)C10—C11—H11121.6
C2—C3—H31118.7C8—C12—H121109.5
C4—C3—H31118.7C8—C12—H122109.5
C5—C4—C3118.3 (4)H121—C12—H122109.5
C5—C4—H4120.8C8—C12—H123109.5
C3—C4—H4120.8H121—C12—H123109.5
N1—C5—C4119.7 (3)H122—C12—H123109.5
C5—N1—C1—N2179.8 (3)C11—N3—C7—N4179.3 (4)
C5—N1—C1—C20.2 (5)C11—N3—C7—C80.2 (6)
N2—C1—C2—C3178.2 (3)N4—C7—C8—C9178.4 (4)
N1—C1—C2—C31.8 (5)N3—C7—C8—C90.7 (6)
N2—C1—C2—C62.1 (5)N4—C7—C8—C121.5 (6)
N1—C1—C2—C6177.9 (3)N3—C7—C8—C12179.4 (4)
C1—C2—C3—C41.6 (5)C7—C8—C9—C100.9 (6)
C6—C2—C3—C4178.1 (3)C12—C8—C9—C10179.3 (4)
C2—C3—C4—C50.2 (6)C8—C9—C10—C110.1 (7)
C1—N1—C5—C41.6 (6)C7—N3—C11—C101.0 (7)
C3—C4—C5—N11.8 (6)C9—C10—C11—N30.9 (6)
Symmetry code: (i) x+1, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···Cl40.882.463.287 (3)156
N2—H21···Cl40.882.523.324 (3)153
N2—H22···Cl2ii0.882.493.345 (3)165
N3—H3···Cl5i0.882.813.451 (4)131
N4—H41···Cl3i0.882.573.360 (3)150
N4—H42···Cl5iii0.882.863.737 (4)175
Symmetry codes: (i) x+1, y+1, z; (ii) x1, y, z; (iii) x, y+1, z.
Tetrakis(2-amino-3-methylpyridinium) di-µ-bromido-bis[tetrabromidobismuth(III)] (3) top
Crystal data top
(C6H9N2)4[Bi2Br10]Z = 1
Mr = 1653.67F(000) = 752
Triclinic, P1Dx = 2.692 Mg m3
a = 9.2145 (3) ÅMo Kα radiation, λ = 0.71073 Å
b = 9.0678 (2) ÅCell parameters from 11813 reflections
c = 12.6314 (4) Åθ = 3.2–29.1°
α = 75.476 (3)°µ = 18.43 mm1
β = 86.926 (3)°T = 160 K
γ = 89.221 (2)°Needle, yellow
V = 1020.22 (5) Å30.15 × 0.14 × 0.07 mm
Data collection top
Oxford Diffraction SuperNova dual radiation
diffractometer
5122 independent reflections
Radiation source: micro-focus sealed X-ray tube, SuperNova (Mo) X-ray source4575 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.046
Detector resolution: 10.3801 pixels mm-1θmax = 29.6°, θmin = 2.8°
ω scansh = 1212
Absorption correction: multi-scan
(CrysAlis PRO; Rigaku OD, 2018)
k = 1211
Tmin = 0.274, Tmax = 1.000l = 1717
22534 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.028H-atom parameters constrained
wR(F2) = 0.059 w = 1/[σ2(Fo2) + (0.0239P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max = 0.001
5122 reflectionsΔρmax = 1.52 e Å3
202 parametersΔρmin = 1.77 e Å3
0 restraintsExtinction correction: SHELXL2018 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: dualExtinction coefficient: 0.00191 (12)
Special details top

Experimental. Data collection and full structure determination done by Prof. Anthony Linden: anthony.linden@chem.uzh.ch

Solvent used: 2M HBr Cooling Device: Oxford Instruments Cryojet XL Crystal mount: on a glass fibre Frames collected: 779 Seconds exposure per frame: 4.0 Degrees rotation per frame: 1.0 Crystal-detector distance (mm): 55.0 Client: Levi Senior Sample code: LS015

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Bi10.50924 (2)0.39135 (2)0.18009 (2)0.01729 (6)
Br10.49907 (5)0.10892 (4)0.31794 (3)0.03099 (11)
Br20.54101 (5)0.53721 (5)0.34378 (3)0.03024 (11)
Br30.80913 (4)0.36706 (5)0.14958 (4)0.02761 (10)
Br40.19658 (4)0.42565 (5)0.20682 (3)0.02398 (10)
Br50.47475 (5)0.28502 (5)0.02029 (3)0.02953 (11)
N10.1423 (4)0.6474 (4)0.3917 (3)0.0233 (7)
H10.1821060.5949380.3477170.028*
N20.0819 (4)0.5842 (4)0.3417 (3)0.0236 (7)
H210.0381400.5319090.2993120.028*
H220.1774400.5892170.3462060.028*
C10.0037 (4)0.6559 (4)0.3992 (3)0.0186 (8)
C20.0686 (4)0.7419 (4)0.4696 (3)0.0203 (8)
C30.0223 (5)0.8057 (4)0.5276 (3)0.0261 (9)
H310.0188200.8603280.5769990.031*
C40.1735 (5)0.7937 (5)0.5173 (4)0.0307 (10)
H40.2339700.8401330.5582820.037*
C50.2323 (5)0.7145 (5)0.4475 (4)0.0302 (10)
H50.3347780.7061450.4378820.036*
C60.2303 (5)0.7586 (5)0.4778 (3)0.0287 (10)
H610.2649790.8089260.4055920.043*
H620.2566720.8202360.5295370.043*
H630.2751920.6577670.5036420.043*
N30.1565 (5)0.8165 (4)0.0970 (3)0.0442 (11)
H30.2030060.7554420.0625520.053*
N40.0543 (5)0.7318 (4)0.0450 (3)0.0449 (11)
H410.0037960.6731300.0106580.054*
H420.1497600.7328840.0447560.054*
C70.0126 (6)0.8173 (5)0.0962 (4)0.0335 (11)
C80.0674 (5)0.9164 (4)0.1518 (3)0.0259 (9)
C90.0146 (5)1.0014 (5)0.1998 (4)0.0341 (11)
H90.0344061.0680180.2370360.041*
C100.1645 (6)0.9982 (6)0.1983 (4)0.0490 (15)
H100.2159781.0618510.2328090.059*
C110.2389 (6)0.9005 (5)0.1457 (4)0.0445 (13)
H110.3418890.8928610.1439440.053*
C120.2276 (5)0.9185 (5)0.1540 (4)0.0398 (12)
H1210.2596770.9443930.0788550.060*
H1220.2643950.9946300.1917370.060*
H1230.2651090.8177500.1929190.060*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Bi10.01270 (9)0.02202 (9)0.01806 (9)0.00003 (6)0.00008 (6)0.00686 (6)
Br10.0271 (3)0.0268 (2)0.0350 (3)0.00156 (19)0.0008 (2)0.00079 (19)
Br20.0243 (2)0.0457 (3)0.0272 (2)0.0019 (2)0.00147 (18)0.02122 (19)
Br30.0127 (2)0.0323 (2)0.0384 (2)0.00028 (17)0.00157 (18)0.01046 (19)
Br40.0124 (2)0.0303 (2)0.0308 (2)0.00217 (16)0.00031 (17)0.01082 (17)
Br50.0410 (3)0.0264 (2)0.0239 (2)0.00511 (19)0.00182 (19)0.01101 (17)
N10.022 (2)0.0224 (17)0.0241 (17)0.0033 (14)0.0047 (15)0.0044 (14)
N20.023 (2)0.0247 (17)0.0255 (18)0.0037 (14)0.0000 (15)0.0101 (14)
C10.022 (2)0.0142 (18)0.0164 (18)0.0039 (16)0.0002 (16)0.0020 (14)
C20.022 (2)0.0163 (18)0.0195 (19)0.0019 (16)0.0004 (17)0.0000 (15)
C30.034 (3)0.020 (2)0.023 (2)0.0015 (18)0.0022 (19)0.0051 (17)
C40.026 (3)0.030 (2)0.038 (3)0.0017 (19)0.011 (2)0.010 (2)
C50.022 (2)0.030 (2)0.035 (2)0.0020 (19)0.004 (2)0.0022 (19)
C60.026 (3)0.034 (2)0.029 (2)0.0040 (19)0.0025 (19)0.0127 (19)
N30.039 (3)0.033 (2)0.049 (3)0.0100 (19)0.018 (2)0.0064 (19)
N40.064 (3)0.037 (2)0.036 (2)0.010 (2)0.014 (2)0.0153 (19)
C70.044 (3)0.023 (2)0.027 (2)0.006 (2)0.008 (2)0.0039 (18)
C80.036 (3)0.021 (2)0.019 (2)0.0014 (19)0.0012 (19)0.0025 (16)
C90.029 (3)0.033 (2)0.037 (3)0.004 (2)0.006 (2)0.001 (2)
C100.056 (4)0.036 (3)0.050 (3)0.012 (3)0.021 (3)0.004 (2)
C110.044 (3)0.032 (3)0.048 (3)0.002 (2)0.008 (3)0.005 (2)
C120.033 (3)0.044 (3)0.041 (3)0.001 (2)0.001 (2)0.009 (2)
Geometric parameters (Å, º) top
Bi1—Br12.7114 (4)C6—H610.9800
Bi1—Br22.7491 (4)C6—H620.9800
Bi1—Br32.7830 (4)C6—H630.9800
Bi1—Br42.9043 (4)N3—C71.327 (6)
Bi1—Br52.9590 (4)N3—C111.355 (7)
Bi1—Br5i3.1172 (4)N3—H30.8800
N1—C11.347 (5)N4—C71.306 (6)
N1—C51.360 (5)N4—H410.8800
N1—H10.8800N4—H420.8800
N2—C11.331 (5)C7—C81.445 (6)
N2—H210.8800C8—C91.354 (6)
N2—H220.8800C8—C121.475 (6)
C1—C21.426 (5)C9—C101.381 (7)
C2—C31.366 (6)C9—H90.9500
C2—C61.497 (6)C10—C111.388 (8)
C3—C41.397 (6)C10—H100.9500
C3—H310.9500C11—H110.9500
C4—C51.357 (6)C12—H1210.9800
C4—H40.9500C12—H1220.9800
C5—H50.9500C12—H1230.9800
Br1—Bi1—Br294.306 (14)C4—C5—H5120.5
Br1—Bi1—Br390.383 (13)N1—C5—H5120.5
Br2—Bi1—Br391.286 (13)C2—C6—H61109.5
Br1—Bi1—Br491.388 (13)C2—C6—H62109.5
Br2—Bi1—Br488.747 (13)H61—C6—H62109.5
Br3—Bi1—Br4178.221 (12)C2—C6—H63109.5
Br1—Bi1—Br595.067 (13)H61—C6—H63109.5
Br2—Bi1—Br5170.620 (13)H62—C6—H63109.5
Br3—Bi1—Br589.036 (13)C7—N3—C11126.4 (5)
Br4—Bi1—Br590.642 (13)C7—N3—H3116.8
Br1—Bi1—Br5i179.186 (13)C11—N3—H3116.8
Br2—Bi1—Br5i85.969 (13)C7—N4—H41120.0
Br3—Bi1—Br5i88.844 (13)C7—N4—H42120.0
Br4—Bi1—Br5i89.383 (13)H41—N4—H42120.0
Br5—Bi1—Br5i84.665 (12)N4—C7—N3120.5 (5)
Bi1—Br5—Bi1i95.335 (12)N4—C7—C8121.2 (5)
C1—N1—C5124.3 (4)N3—C7—C8118.3 (4)
C1—N1—H1117.9C9—C8—C7115.4 (4)
C5—N1—H1117.9C9—C8—C12124.8 (4)
C1—N2—H21120.0C7—C8—C12119.8 (4)
C1—N2—H22120.0C8—C9—C10124.6 (5)
H21—N2—H22120.0C8—C9—H9117.7
N2—C1—N1119.4 (3)C10—C9—H9117.7
N2—C1—C2122.5 (4)C9—C10—C11118.9 (5)
N1—C1—C2118.0 (4)C9—C10—H10120.5
C3—C2—C1117.4 (4)C11—C10—H10120.5
C3—C2—C6122.7 (4)N3—C11—C10116.3 (5)
C1—C2—C6119.9 (4)N3—C11—H11121.8
C2—C3—C4122.6 (4)C10—C11—H11121.8
C2—C3—H31118.7C8—C12—H121109.5
C4—C3—H31118.7C8—C12—H122109.5
C5—C4—C3118.7 (4)H121—C12—H122109.5
C5—C4—H4120.6C8—C12—H123109.5
C3—C4—H4120.6H121—C12—H123109.5
C4—C5—N1119.0 (4)H122—C12—H123109.5
C5—N1—C1—N2179.2 (4)C11—N3—C7—N4179.2 (4)
C5—N1—C1—C20.6 (5)C11—N3—C7—C80.1 (7)
N2—C1—C2—C3177.6 (3)N4—C7—C8—C9178.6 (4)
N1—C1—C2—C32.2 (5)N3—C7—C8—C90.4 (6)
N2—C1—C2—C62.2 (6)N4—C7—C8—C121.8 (6)
N1—C1—C2—C6178.0 (3)N3—C7—C8—C12179.1 (4)
C1—C2—C3—C42.2 (6)C7—C8—C9—C100.1 (7)
C6—C2—C3—C4178.0 (4)C12—C8—C9—C10179.4 (4)
C2—C3—C4—C50.6 (6)C8—C9—C10—C110.8 (7)
C3—C4—C5—N11.2 (6)C7—N3—C11—C101.0 (7)
C1—N1—C5—C41.2 (6)C9—C10—C11—N31.3 (7)
Symmetry code: (i) x+1, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···Br40.882.623.456 (3)158
N2—H21···Br40.882.683.496 (3)154
N2—H22···Br2ii0.882.653.504 (4)165
N3—H3···Br5i0.883.023.653 (4)130
N4—H41···Br3i0.882.723.521 (4)152
N4—H42···Br5iii0.883.043.912 (5)173
Symmetry codes: (i) x+1, y+1, z; (ii) x1, y, z; (iii) x, y+1, z.
Bis(4-amino-3-ammoniopyridinium) di-µ-chlorido-bis[tetrachloridobismuth(III)] dihydrate (4) top
Crystal data top
(C5H9N3)2[Bi2Cl10]·2H2OF(000) = 1904
Mr = 1030.79Dx = 2.409 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 18.0583 (2) ÅCell parameters from 20128 reflections
b = 12.07450 (12) Åθ = 3.4–29.4°
c = 13.43800 (15) ŵ = 13.33 mm1
β = 104.0805 (11)°T = 160 K
V = 2842.05 (5) Å3Block, colourless
Z = 40.20 × 0.18 × 0.08 mm
Data collection top
Oxford Diffraction SuperNova dual radiation
diffractometer
3742 independent reflections
Radiation source: micro-focus sealed X-ray tube, SuperNova (Mo) X-ray source3505 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.034
Detector resolution: 10.3801 pixels mm-1θmax = 29.5°, θmin = 2.7°
ω scansh = 2424
Absorption correction: multi-scan
(CrysAlis PRO; Rigaku OD, 2018)
k = 1616
Tmin = 0.348, Tmax = 1.000l = 1817
30758 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: geom & difmap
R[F2 > 2σ(F2)] = 0.016H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.030 w = 1/[σ2(Fo2) + (0.0104P)2 + 2.6097P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max = 0.003
3742 reflectionsΔρmax = 0.66 e Å3
182 parametersΔρmin = 0.55 e Å3
12 restraintsExtinction correction: SHELXL2018 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: dualExtinction coefficient: 0.000247 (12)
Special details top

Experimental. Data collection and full structure determination done by Prof. Anthony Linden: anthony.linden@chem.uzh.ch

Solvent used: 2M HCl Cooling Device: Oxford Instruments Cryojet XL Crystal mount: on a glass fibre Frames collected: 817 Seconds exposure per frame: 8.0 Degrees rotation per frame: 1.0 Crystal-detector distance (mm): 55.0 Client: Levi Senior Sample code: LS033

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Anion sites across a centre of inversion. Two sites for water molecules disordered about twofold axes. Distance and angle restraints applied to the water H atoms. Distance restraints applied to all N-H H atoms.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Bi10.35117 (2)0.72988 (2)0.05830 (2)0.01728 (3)
Cl10.46209 (3)0.86237 (5)0.03702 (5)0.03036 (13)
Cl20.40227 (4)0.59985 (5)0.18555 (4)0.03157 (14)
Cl30.27578 (3)0.85878 (4)0.21265 (4)0.02234 (11)
Cl40.42774 (3)0.60321 (4)0.10076 (4)0.02130 (11)
Cl50.30319 (3)0.86838 (5)0.08236 (4)0.02636 (12)
N10.61203 (12)0.66820 (18)0.07273 (15)0.0298 (5)
H10.6008 (16)0.6206 (19)0.1237 (16)0.048 (9)*
N20.60265 (10)0.68466 (17)0.19552 (14)0.0213 (4)
H210.5785 (14)0.6189 (13)0.190 (2)0.040 (8)*
H220.5709 (13)0.7352 (17)0.213 (2)0.033 (8)*
H230.6480 (8)0.679 (2)0.2424 (15)0.031 (7)*
N30.66863 (13)0.89037 (18)0.16324 (18)0.0349 (5)
H310.6629 (16)0.876 (2)0.2255 (11)0.046 (9)*
H320.6898 (17)0.9524 (15)0.152 (2)0.062 (10)*
C10.59972 (12)0.64156 (19)0.01852 (16)0.0230 (5)
H110.5778150.5719840.0279000.028*
C20.61865 (12)0.71426 (17)0.09767 (16)0.0186 (4)
C30.65074 (12)0.81845 (19)0.08692 (17)0.0227 (5)
C40.66180 (13)0.8418 (2)0.01215 (19)0.0303 (5)
H40.6831580.9107210.0249130.036*
C50.64214 (15)0.7667 (2)0.0878 (2)0.0334 (6)
H50.6497330.7837180.1536160.040*
O10.5074 (3)0.8331 (3)0.2772 (2)0.0267 (8)0.5
H1A0.532 (3)0.846 (4)0.3376 (15)0.040*0.5
H1B0.503 (5)0.889 (2)0.239 (3)0.040*0.5
O20.4782 (2)1.0460 (4)0.2339 (6)0.0560 (17)0.5
H2A0.4319 (12)1.062 (6)0.223 (6)0.084*0.5
H2B0.502 (3)1.089 (5)0.204 (5)0.084*0.5
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Bi10.01610 (5)0.01685 (5)0.01932 (5)0.00110 (3)0.00514 (3)0.00141 (3)
Cl10.0208 (3)0.0294 (3)0.0389 (3)0.0061 (2)0.0032 (2)0.0049 (3)
Cl20.0496 (4)0.0243 (3)0.0239 (3)0.0113 (3)0.0149 (3)0.0031 (2)
Cl30.0222 (3)0.0179 (2)0.0242 (3)0.0008 (2)0.0003 (2)0.0013 (2)
Cl40.0250 (3)0.0189 (3)0.0195 (2)0.0009 (2)0.0044 (2)0.0004 (2)
Cl50.0290 (3)0.0219 (3)0.0299 (3)0.0061 (2)0.0106 (2)0.0054 (2)
N10.0356 (11)0.0328 (12)0.0222 (10)0.0038 (9)0.0092 (9)0.0067 (9)
N20.0210 (10)0.0248 (10)0.0177 (9)0.0010 (9)0.0037 (8)0.0018 (8)
N30.0453 (13)0.0210 (11)0.0346 (13)0.0111 (10)0.0021 (11)0.0022 (9)
C10.0225 (11)0.0235 (12)0.0228 (11)0.0024 (9)0.0054 (9)0.0002 (9)
C20.0170 (10)0.0203 (11)0.0182 (10)0.0015 (8)0.0038 (8)0.0046 (8)
C30.0198 (11)0.0205 (12)0.0247 (11)0.0004 (9)0.0007 (9)0.0024 (9)
C40.0276 (12)0.0292 (13)0.0331 (13)0.0053 (10)0.0057 (10)0.0121 (11)
C50.0315 (14)0.0452 (16)0.0261 (13)0.0016 (12)0.0118 (11)0.0083 (11)
O10.030 (2)0.0257 (17)0.023 (2)0.0002 (16)0.003 (2)0.0021 (12)
O20.069 (5)0.044 (2)0.064 (5)0.016 (2)0.034 (4)0.017 (3)
Geometric parameters (Å, º) top
Bi1—Cl12.5247 (5)N3—H310.885 (10)
Bi1—Cl22.6474 (5)N3—H320.871 (10)
Bi1—Cl32.6840 (5)C1—C21.357 (3)
Bi1—Cl42.7170 (5)C1—H110.9500
Bi1—Cl52.8136 (5)C2—C31.407 (3)
Bi1—Cl5i2.9738 (5)C3—C41.422 (3)
N1—C11.338 (3)C4—C51.344 (4)
N1—C51.344 (3)C4—H40.9500
N1—H10.880 (10)C5—H50.9500
N2—C21.458 (3)O1—H1A0.839 (10)
N2—H210.900 (10)O1—H1B0.840 (10)
N2—H220.907 (10)O2—H2A0.837 (10)
N2—H230.906 (10)O2—H2B0.842 (10)
N3—C31.323 (3)
Cl1—Bi1—Cl293.29 (2)H21—N2—H23109 (2)
Cl1—Bi1—Cl387.673 (17)H22—N2—H23113 (2)
Cl2—Bi1—Cl392.048 (17)C3—N3—H31123 (2)
Cl1—Bi1—Cl491.700 (17)C3—N3—H32118 (2)
Cl2—Bi1—Cl489.060 (16)H31—N3—H32120 (3)
Cl3—Bi1—Cl4178.756 (16)N1—C1—C2119.8 (2)
Cl1—Bi1—Cl584.998 (18)N1—C1—H11120.1
Cl2—Bi1—Cl5177.559 (18)C2—C1—H11120.1
Cl3—Bi1—Cl589.619 (17)C1—C2—C3122.0 (2)
Cl4—Bi1—Cl589.256 (16)C1—C2—N2118.75 (19)
Cl1—Bi1—Cl5i164.142 (18)C3—C2—N2119.26 (19)
Cl2—Bi1—Cl5i99.089 (18)N3—C3—C2122.4 (2)
Cl3—Bi1—Cl5i82.042 (16)N3—C3—C4122.2 (2)
Cl4—Bi1—Cl5i98.344 (16)C2—C3—C4115.4 (2)
Cl5—Bi1—Cl5i82.905 (16)C5—C4—C3120.2 (2)
Bi1—Cl5—Bi1i97.096 (16)C5—C4—H4119.9
C1—N1—C5121.0 (2)C3—C4—H4119.9
C1—N1—H1119.9 (19)N1—C5—C4121.7 (2)
C5—N1—H1119.1 (19)N1—C5—H5119.1
C2—N2—H21110.3 (17)C4—C5—H5119.1
C2—N2—H22110.1 (17)H1A—O1—H1B113.1 (19)
H21—N2—H22107 (2)H2A—O2—H2B112.9 (19)
C2—N2—H23107.5 (16)
C5—N1—C1—C20.8 (3)N2—C2—C3—C4177.80 (19)
N1—C1—C2—C30.4 (3)N3—C3—C4—C5179.4 (2)
N1—C1—C2—N2178.2 (2)C2—C3—C4—C50.1 (3)
C1—C2—C3—N3179.3 (2)C1—N1—C5—C40.7 (4)
N2—C2—C3—N31.5 (3)C3—C4—C5—N10.2 (4)
C1—C2—C3—C40.0 (3)
Symmetry code: (i) x+1/2, y+3/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···Cl2ii0.88 (1)2.56 (2)3.300 (2)142 (2)
N1—H1···Cl4iii0.88 (1)2.78 (2)3.356 (2)124 (2)
N2—H21···Cl2iii0.90 (1)2.67 (2)3.438 (2)144 (2)
N2—H21···Cl40.90 (1)2.70 (2)3.2570 (19)121 (2)
N2—H22···O10.91 (1)1.98 (1)2.879 (5)169 (3)
N2—H22···O1iv0.91 (1)1.87 (1)2.766 (5)168 (3)
N2—H23···Cl3v0.91 (1)2.28 (1)3.1137 (19)152 (2)
N3—H31···Cl5iv0.89 (1)2.51 (2)3.342 (2)158 (3)
N3—H32···Cl3vi0.87 (1)2.45 (2)3.209 (2)146 (3)
O1—H1A···Cl1iv0.84 (1)2.66 (3)3.418 (3)151 (5)
O1—H1B···O20.84 (1)1.94 (4)2.661 (5)143 (6)
O2—H2B···Cl1vi0.84 (1)2.55 (4)3.282 (7)147 (7)
Symmetry codes: (ii) x+1, y, z1/2; (iii) x+1, y+1, z; (iv) x+1, y, z+1/2; (v) x+1/2, y+3/2, z+1/2; (vi) x+1, y+2, z.
catena-Poly[2,6-diaminopyridinium [[cis-diiodidobismuth(III)]-di-µ-iodido]] (5) top
Crystal data top
(C5H8N3)[BiI4]F(000) = 1416
Mr = 826.72Dx = 3.816 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 12.02106 (15) ÅCell parameters from 19181 reflections
b = 7.80880 (9) Åθ = 3.1–30.3°
c = 15.3298 (2) ŵ = 20.80 mm1
β = 90.0530 (11)°T = 160 K
V = 1439.01 (3) Å3Prism, red
Z = 40.16 × 0.10 × 0.04 mm
Data collection top
Oxford Diffraction SuperNova dual radiation
diffractometer
4076 independent reflections
Radiation source: micro-focus sealed X-ray tube, SuperNova (Mo) X-ray source3831 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.041
Detector resolution: 10.3801 pixels mm-1θmax = 30.4°, θmin = 2.9°
ω scansh = 1516
Absorption correction: multi-scan
(CrysAlis PRO; Rigaku OD, 2018)
k = 1111
Tmin = 0.259, Tmax = 1.000l = 2121
35690 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.020H-atom parameters constrained
wR(F2) = 0.040 w = 1/[σ2(Fo2) + (0.0158P)2 + 1.0108P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.002
4076 reflectionsΔρmax = 1.21 e Å3
120 parametersΔρmin = 1.04 e Å3
0 restraintsExtinction correction: SHELXL2018 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: dualExtinction coefficient: 0.00085 (3)
Special details top

Experimental. Data collection and full structure determination done by Prof. Anthony Linden: anthony.linden@chem.uzh.ch

Solvent used: 2M HI Cooling Device: Oxford Instruments Cryojet XL Crystal mount: on a glass fibre Frames collected: 843 Seconds exposure per frame: 4.0 Degrees rotation per frame: 1.0 Crystal-detector distance (mm): 55.0 Client: Levi Senior Sample code: LS014

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refined as a pseudomerohedral twin.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Bi10.50460 (2)0.74323 (2)0.58217 (2)0.01486 (5)
I10.34952 (2)0.87654 (3)0.71421 (2)0.02166 (7)
I20.67606 (2)0.60869 (3)0.69839 (2)0.02465 (7)
I30.64735 (2)1.07351 (3)0.57417 (2)0.01894 (6)
I40.37076 (2)0.40914 (3)0.58707 (2)0.01862 (6)
N10.9263 (3)0.8116 (4)0.5537 (2)0.0208 (7)
H10.8660880.8591320.5755440.025*
N20.8629 (3)0.8991 (4)0.4191 (3)0.0284 (9)
H2A0.8069070.9489640.4458900.034*
H2B0.8682360.9046880.3618840.034*
N30.9804 (4)0.7490 (5)0.6951 (3)0.0351 (10)
H3A0.9202760.8016550.7138830.042*
H3B1.0270920.7031440.7327180.042*
C10.9402 (3)0.8146 (5)0.4653 (3)0.0210 (9)
C21.0331 (4)0.7373 (5)0.4300 (3)0.0230 (9)
H21.0454690.7380320.3688300.028*
C31.1076 (4)0.6590 (5)0.4857 (3)0.0229 (9)
H31.1707430.6028560.4618270.028*
C41.0934 (3)0.6595 (5)0.5748 (3)0.0218 (9)
H41.1466980.6060930.6116650.026*
C51.0007 (4)0.7388 (5)0.6103 (3)0.0223 (9)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Bi10.01475 (8)0.01618 (7)0.01365 (8)0.00005 (5)0.00050 (6)0.00046 (6)
I10.02187 (14)0.02647 (13)0.01666 (13)0.00351 (10)0.00292 (11)0.00414 (10)
I20.02031 (14)0.02924 (14)0.02440 (15)0.00093 (11)0.00569 (12)0.00617 (11)
I30.01781 (13)0.01897 (12)0.02003 (13)0.00332 (10)0.00335 (11)0.00159 (10)
I40.01745 (13)0.01773 (12)0.02070 (14)0.00210 (9)0.00599 (10)0.00229 (10)
N10.0154 (17)0.0211 (16)0.026 (2)0.0028 (14)0.0027 (14)0.0034 (15)
N20.025 (2)0.0316 (19)0.028 (2)0.0045 (16)0.0034 (17)0.0052 (17)
N30.035 (3)0.049 (2)0.021 (2)0.0148 (19)0.0009 (19)0.0006 (18)
C10.020 (2)0.0187 (19)0.024 (2)0.0040 (16)0.0041 (17)0.0000 (17)
C20.022 (2)0.025 (2)0.021 (2)0.0032 (16)0.0051 (18)0.0031 (17)
C30.019 (2)0.0167 (19)0.033 (3)0.0024 (16)0.0040 (18)0.0040 (18)
C40.018 (2)0.0191 (19)0.028 (2)0.0007 (16)0.0001 (18)0.0011 (18)
C50.018 (2)0.022 (2)0.026 (2)0.0007 (15)0.0005 (19)0.0017 (17)
Geometric parameters (Å, º) top
Bi1—I12.9432 (3)N2—H2B0.8800
Bi1—I22.9187 (3)N3—C51.325 (6)
Bi1—I33.1003 (3)N3—H3A0.8800
Bi1—I3i3.3348 (3)N3—H3B0.8800
Bi1—I43.0660 (3)C1—C21.381 (6)
Bi1—I4ii3.2248 (3)C2—C31.380 (6)
N1—C11.365 (6)C2—H20.9500
N1—C51.369 (5)C3—C41.376 (6)
N1—H10.8800C3—H30.9500
N2—C11.342 (5)C4—C51.387 (6)
N2—H2A0.8800C4—H40.9500
I2—Bi1—I198.912 (9)C1—N2—H2B120.0
I2—Bi1—I492.810 (8)H2A—N2—H2B120.0
I1—Bi1—I487.214 (8)C5—N3—H3A120.0
I2—Bi1—I386.160 (8)C5—N3—H3B120.0
I1—Bi1—I394.815 (8)H3A—N3—H3B120.0
I4—Bi1—I3177.843 (9)N2—C1—N1116.6 (4)
I2—Bi1—I4ii91.716 (9)N2—C1—C2124.6 (4)
I1—Bi1—I4ii168.189 (9)N1—C1—C2118.7 (4)
I4—Bi1—I4ii87.131 (8)C3—C2—C1118.4 (4)
I3—Bi1—I4ii91.004 (8)C3—C2—H2120.8
I2—Bi1—I3i168.288 (10)C1—C2—H2120.8
I1—Bi1—I3i89.748 (8)C4—C3—C2122.1 (4)
I4—Bi1—I3i95.489 (8)C4—C3—H3118.9
I3—Bi1—I3i85.263 (7)C2—C3—H3118.9
I4ii—Bi1—I3i80.483 (8)C3—C4—C5119.4 (4)
Bi1—I3—Bi1i94.738 (7)C3—C4—H4120.3
Bi1—I4—Bi1ii92.869 (8)C5—C4—H4120.3
C1—N1—C5123.8 (4)N3—C5—N1118.5 (4)
C1—N1—H1118.1N3—C5—C4124.1 (4)
C5—N1—H1118.1N1—C5—C4117.5 (4)
C1—N2—H2A120.0
C5—N1—C1—N2176.4 (4)C2—C3—C4—C51.0 (6)
C5—N1—C1—C21.4 (6)C1—N1—C5—N3177.6 (4)
N2—C1—C2—C3178.1 (4)C1—N1—C5—C42.0 (6)
N1—C1—C2—C30.5 (6)C3—C4—C5—N3178.8 (4)
C1—C2—C3—C41.7 (6)C3—C4—C5—N10.8 (6)
Symmetry codes: (i) x+1, y+2, z+1; (ii) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···I30.883.123.941 (3)157
N2—H2A···I30.882.923.773 (4)165
N2—H2B···I1iii0.883.163.811 (4)132
N3—H3A···I2iv0.882.983.754 (4)147
N3—H3B···I1v0.883.063.816 (4)145
Symmetry codes: (iii) x+1/2, y+3/2, z1/2; (iv) x+3/2, y+1/2, z+3/2; (v) x+3/2, y1/2, z+3/2.
catena-Poly[2,6-diaminopyridinium [[cis-dibromidobismuth(III)]-di-µ-bromido]] (6) top
Crystal data top
(C5H7N2)[BiBr4]F(000) = 1096
Mr = 623.75Dx = 3.443 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 11.66220 (15) ÅCell parameters from 13232 reflections
b = 14.08143 (19) Åθ = 3.5–29.3°
c = 7.35193 (9) ŵ = 27.89 mm1
β = 94.7149 (13)°T = 160 K
V = 1203.25 (3) Å3Block, colourless
Z = 40.21 × 0.08 × 0.06 mm
Data collection top
Oxford Diffraction SuperNova dual radiation
diffractometer
3128 independent reflections
Radiation source: micro-focus sealed X-ray tube, SuperNova (Mo) X-ray source2794 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.040
Detector resolution: 10.3801 pixels mm-1θmax = 29.5°, θmin = 2.9°
ω scansh = 1615
Absorption correction: gaussian
(CrysAlis PRO; Rigaku OD, 2018)
k = 1919
Tmin = 0.735, Tmax = 1.000l = 109
26081 measured reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.023Hydrogen site location: geom & difmap
wR(F2) = 0.050H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0231P)2 + 0.9774P]
where P = (Fo2 + 2Fc2)/3
3127 reflections(Δ/σ)max = 0.001
121 parametersΔρmax = 1.26 e Å3
0 restraintsΔρmin = 2.21 e Å3
Special details top

Experimental. Data collection and full structure determination done by Prof. Anthony Linden: anthony.linden@chem.uzh.ch

Solvent used: 2M HBr Cooling Device: Oxford Instruments Cryojet XL Crystal mount: on a glass fibre Frames collected: 813 Seconds exposure per frame: 8.0 Degrees rotation per frame: 1.0 Crystal-detector distance (mm): 55.0 Client: Levi Senior Sample code: LS036

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Bi10.26448 (2)0.33482 (2)0.52386 (2)0.01425 (5)
Br10.13501 (3)0.47782 (3)0.37005 (5)0.02171 (10)
Br20.41622 (3)0.45100 (3)0.69260 (5)0.01968 (9)
Br30.11987 (3)0.33214 (3)0.82384 (5)0.01866 (9)
Br40.40032 (3)0.32819 (3)0.21440 (5)0.01834 (9)
N10.1705 (4)0.5749 (3)0.9120 (6)0.0401 (11)
H10.144 (5)0.523 (5)0.881 (8)0.06 (2)*
N20.3249 (4)0.8303 (3)1.0181 (6)0.0306 (9)
H210.285 (5)0.878 (5)0.978 (8)0.059 (19)*
H220.389 (5)0.830 (4)1.079 (8)0.056 (19)*
C10.2767 (5)0.5783 (4)1.0033 (6)0.0393 (13)
H110.3144050.5208351.0405120.047*
C20.3290 (4)0.6616 (3)1.0414 (6)0.0274 (10)
H20.4029010.6629791.1061080.033*
C30.2741 (3)0.7471 (3)0.9855 (5)0.0191 (8)
C40.1635 (3)0.7410 (3)0.8953 (5)0.0237 (9)
H40.1225600.7972330.8596120.028*
C50.1155 (4)0.6550 (3)0.8594 (6)0.0307 (11)
H50.0414530.6512450.7955950.037*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Bi10.01459 (8)0.01259 (9)0.01554 (8)0.00020 (5)0.00109 (6)0.00034 (5)
Br10.01822 (19)0.0174 (2)0.0288 (2)0.00216 (16)0.00217 (16)0.00382 (16)
Br20.01819 (18)0.0172 (2)0.0231 (2)0.00246 (15)0.00186 (15)0.00160 (15)
Br30.01692 (19)0.0173 (2)0.0222 (2)0.00106 (15)0.00430 (15)0.00167 (14)
Br40.01725 (19)0.0181 (2)0.01999 (19)0.00329 (15)0.00321 (15)0.00210 (14)
N10.062 (3)0.020 (2)0.042 (2)0.017 (2)0.025 (2)0.0098 (19)
N20.025 (2)0.027 (2)0.038 (2)0.0059 (18)0.0059 (19)0.0008 (18)
C10.063 (4)0.025 (3)0.034 (3)0.019 (3)0.026 (3)0.010 (2)
C20.029 (2)0.032 (3)0.021 (2)0.012 (2)0.0059 (18)0.0051 (18)
C30.0204 (19)0.021 (2)0.0162 (19)0.0004 (17)0.0027 (15)0.0018 (16)
C40.022 (2)0.023 (2)0.026 (2)0.0014 (18)0.0000 (17)0.0011 (17)
C50.028 (2)0.033 (3)0.032 (2)0.012 (2)0.007 (2)0.006 (2)
Geometric parameters (Å, º) top
Bi1—Br12.7079 (4)N2—H210.85 (6)
Bi1—Br22.6431 (4)N2—H220.84 (6)
Bi1—Br32.8846 (4)C1—C21.341 (7)
Bi1—Br3i3.1822 (4)C1—H110.9500
Bi1—Br42.8787 (4)C2—C31.408 (6)
Bi1—Br4ii3.0620 (4)C2—H20.9500
N1—C51.338 (7)C3—C41.403 (5)
N1—C11.361 (7)C4—C51.352 (6)
N1—H10.81 (6)C4—H40.9500
N2—C31.326 (6)C5—H50.9500
Br2—Bi1—Br193.702 (13)C1—N1—H1118 (4)
Br2—Bi1—Br490.017 (12)C3—N2—H21114 (4)
Br1—Bi1—Br491.046 (12)C3—N2—H22117 (4)
Br2—Bi1—Br393.452 (12)H21—N2—H22128 (6)
Br1—Bi1—Br389.314 (12)C2—C1—N1120.9 (5)
Br4—Bi1—Br3176.482 (12)C2—C1—H11119.6
Br2—Bi1—Br4ii87.020 (12)N1—C1—H11119.6
Br1—Bi1—Br4ii176.605 (12)C1—C2—C3119.9 (5)
Br4—Bi1—Br4ii92.272 (11)C1—C2—H2120.0
Br3—Bi1—Br4ii87.331 (11)C3—C2—H2120.0
Br2—Bi1—Br3i169.462 (12)N2—C3—C4121.2 (4)
Br1—Bi1—Br3i95.756 (12)N2—C3—C2121.1 (4)
Br4—Bi1—Br3i85.182 (11)C4—C3—C2117.7 (4)
Br3—Bi1—Br3i91.301 (11)C5—C4—C3119.7 (4)
Br4ii—Bi1—Br3i83.810 (12)C5—C4—H4120.1
Bi1—Br3—Bi1ii92.407 (11)C3—C4—H4120.1
Bi1—Br4—Bi1i95.064 (11)N1—C5—C4121.2 (5)
C5—N1—C1120.6 (4)N1—C5—H5119.4
C5—N1—H1121 (4)C4—C5—H5119.4
C5—N1—C1—C20.5 (7)N2—C3—C4—C5178.1 (4)
N1—C1—C2—C30.5 (7)C2—C3—C4—C52.4 (6)
C1—C2—C3—N2178.6 (4)C1—N1—C5—C40.1 (7)
C1—C2—C3—C41.9 (6)C3—C4—C5—N11.5 (7)
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···Br30.81 (6)2.74 (6)3.521 (4)163 (6)
N2—H21···Br1iii0.85 (6)2.76 (7)3.605 (5)173 (5)
N2—H22···Br4iv0.84 (6)2.78 (6)3.620 (4)179 (5)
Symmetry codes: (iii) x, y+3/2, z+1/2; (iv) x+1, y+1/2, z+3/2.
Selected geometric parameters (Å, °) for (2), (3) and (4) top
(2) (X = Cl)(3) (X = Br)(4) (X = Cl)
Bi1—X12.5533 (10)2.7114 (4)2.5247 (5)
Bi1—X22.5992 (9)2.7491 (4)2.6474 (5)
Bi1—X32.6342 (9)2.7830 (4)2.6840 (5)
Bi1—X42.7471 (8)2.9043 (4)2.7170 (5)
Bi1—X52.8300 (9)2.9590 (4)2.8136 (5)
Bi1—X5i2.9760 (10)3.1172 (4)2.9738 (6)
N2—C11.323 (4)1.331 (5)
N4—C71.310 (5)1.306 (6)
N2—C21.458 (3)
N3—C31.323 (3)
Bi1—X5—Bi1i97.40 (3)95.335 (12)97.096 (16)
Symmetry code (i) for (2) and (3): -x+1, -y+1, -z; for (4): -x+1/2, -y+3/2, -z.
Selected geometric parameters (Å, °) for (5) and (6) top
(5) (X = I)(6) (X = Br)
Bi1—X12.9432 (3)2.7079 (4)
Bi1—X22.9187 (3)2.6431 (4)
Bi1—X33.1003 (3)2.8846 (4)
Bi1—X3i3.3348 (3)3.1822 (4)
Bi1—X43.0660 (3)2.8787 (4)
Bi1—X4ii3.2248 (3)3.0620 (4)
N2—C11.342 (5)
N3—C51.325 (6)
N2—C31.326 (6)
Bi1—X3—Bi1i94.738 (7)92.407 (11)
Bi1—X4—Bi1ii92.869 (8)95.064 (11)
Symmetry codes for (5): (i) -x+1, -y+2, -z+1; (ii) -x+1, -y+1, -z+1; for (6): (i) x, -y+1/2, z-1/2; (ii) x, -y+1/2, z+1/2.
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds