Buy article online - an online subscription or single-article purchase is required to access this article.
The structure of the title compound, 2,4-bis(1-methyl-1-phenylethyl)phenol, C
24H
26O, was found to have a torsion angle of 129.95 (13)° for the C—C bond that connects the benzyl carbon to the phenol ring
ortho to the OH group. A value of ∼50° was expected from molecular mechanics calculations. Intermolecular interactions, in particular O—H
O and edge–face π bonding, may contribute to this discrepancy. Intramolecular O—H
π bonding is also observed.
Supporting information
CCDC reference: 150367
The title compound was obtained from a commercial source (Aldrich) and was recrystallized from 2,2,2-trifluorethanol.
A 1.1 mm collimator was used. All carbon-bound H atoms were placed in calculated positions, refined using a riding model, and given an isotropic displacement parameter equal to 1.2 (CH) or 1.5 (CH3) times the equivalent isotropic displacement parameter of the atom to which they were attached. The C—H distances used depend on the type of C atom: Caromatic—H = 0.95, Cmethyl—H = 0.98 Å. Methyl H atoms were allowed to rotate about the adjacent C—C bond. The hydroxyl H atom was found to be disordered over two sites (50:50). The positional parameters of the hydroxyl H atom were allowed to refine, and they were given an isotropic displacement parameter equal to 1.5 times the equivalent isotropic displacement parameter of O.
Data collection: CAD-4-PC (Nonius, 1993); cell refinement: CAD-4-PC; data reduction: XCAD4 (Harms, 1995); program(s) used to solve structure: SHELXS86 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Siemens, 1994); software used to prepare material for publication: PLATON (Spek, 1999).
Crystal data top
C24H26O | Z = 2 |
Mr = 330.4 | F(000) = 356 |
Triclinic, P1 | Dx = 1.17 Mg m−3 |
Hall symbol: -P 1 | Melting point = 63–65 K |
a = 6.1716 (9) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 11.7924 (14) Å | Cell parameters from 25 reflections |
c = 13.2197 (14) Å | θ = 10.0–17.6° |
α = 97.731 (10)° | µ = 0.07 mm−1 |
β = 97.109 (12)° | T = 173 K |
γ = 97.353 (12)° | Plate, colourless |
V = 935.7 (2) Å3 | 0.71 × 0.47 × 0.13 mm |
Data collection top
Nonius CAD-4 diffractometer | Rint = 0.028 |
Radiation source: fine-focus sealed tube | θmax = 25.0°, θmin = 2.1° |
Graphite monochromator | h = −7→7 |
ω–scans | k = −14→0 |
3458 measured reflections | l = −15→15 |
3282 independent reflections | 3 standard reflections every 120 min |
2656 reflections with I > 2σI | intensity decay: 1% |
Refinement top
Refinement on F2 | 0 restraints |
Least-squares matrix: full | H atoms treated by a mixture of independent and constrained refinement |
R[F2 > 2σ(F2)] = 0.040 | w = 1/[σ2(Fo2) + (0.0631P)2 + 0.2606P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.110 | (Δ/σ)max < 0.001 |
S = 1.07 | Δρmax = 0.21 e Å−3 |
3282 reflections | Δρmin = −0.23 e Å−3 |
236 parameters | |
Crystal data top
C24H26O | γ = 97.353 (12)° |
Mr = 330.4 | V = 935.7 (2) Å3 |
Triclinic, P1 | Z = 2 |
a = 6.1716 (9) Å | Mo Kα radiation |
b = 11.7924 (14) Å | µ = 0.07 mm−1 |
c = 13.2197 (14) Å | T = 173 K |
α = 97.731 (10)° | 0.71 × 0.47 × 0.13 mm |
β = 97.109 (12)° | |
Data collection top
Nonius CAD-4 diffractometer | Rint = 0.028 |
3458 measured reflections | 3 standard reflections every 120 min |
3282 independent reflections | intensity decay: 1% |
2656 reflections with I > 2σI | |
Refinement top
R[F2 > 2σ(F2)] = 0.040 | 0 restraints |
wR(F2) = 0.110 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.07 | Δρmax = 0.21 e Å−3 |
3282 reflections | Δρmin = −0.23 e Å−3 |
236 parameters | |
Special details top
Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All e.s.d.'s are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top | x | y | z | Uiso*/Ueq | Occ. (<1) |
O | 0.0934 (2) | 0.45563 (10) | 0.40796 (9) | 0.0371 (4) | |
C1 | 0.2585 (2) | 0.53809 (12) | 0.39012 (11) | 0.0267 (4) | |
C2 | 0.3097 (2) | 0.54428 (12) | 0.29059 (11) | 0.0235 (4) | |
C3 | 0.4705 (2) | 0.63486 (12) | 0.27953 (11) | 0.0235 (4) | |
C4 | 0.5773 (2) | 0.71780 (12) | 0.36163 (11) | 0.0257 (4) | |
C5 | 0.5253 (3) | 0.70564 (13) | 0.45935 (12) | 0.0312 (5) | |
C6 | 0.3689 (3) | 0.61682 (14) | 0.47360 (12) | 0.0317 (5) | |
C7 | 0.1845 (2) | 0.45797 (12) | 0.19757 (11) | 0.0256 (4) | |
C8 | −0.0524 (3) | 0.48571 (14) | 0.17804 (13) | 0.0347 (5) | |
C9 | 0.2889 (3) | 0.46927 (13) | 0.09881 (11) | 0.0335 (5) | |
C11 | 0.1919 (2) | 0.33335 (12) | 0.21881 (10) | 0.0244 (4) | |
C12 | 0.0048 (2) | 0.24976 (13) | 0.20398 (12) | 0.0301 (5) | |
C13 | 0.0203 (3) | 0.13785 (13) | 0.22261 (13) | 0.0357 (5) | |
C14 | 0.2219 (3) | 0.10721 (13) | 0.25672 (13) | 0.0352 (5) | |
C15 | 0.4100 (3) | 0.18852 (13) | 0.27083 (12) | 0.0323 (5) | |
C16 | 0.3940 (2) | 0.30020 (13) | 0.25193 (11) | 0.0272 (5) | |
C17 | 0.7545 (2) | 0.81724 (12) | 0.34845 (12) | 0.0280 (4) | |
C18 | 0.7123 (3) | 0.93286 (14) | 0.40797 (13) | 0.0392 (5) | |
C19 | 0.9791 (3) | 0.7918 (2) | 0.39688 (14) | 0.0405 (6) | |
C21 | 0.7518 (2) | 0.83103 (12) | 0.23504 (12) | 0.0267 (4) | |
C22 | 0.5684 (3) | 0.86590 (13) | 0.18112 (12) | 0.0323 (5) | |
C23 | 0.5614 (3) | 0.88164 (15) | 0.07913 (14) | 0.0426 (6) | |
C24 | 0.7379 (3) | 0.8622 (2) | 0.02727 (14) | 0.0470 (6) | |
C25 | 0.9186 (3) | 0.82708 (15) | 0.07850 (14) | 0.0442 (6) | |
C26 | 0.9260 (3) | 0.81138 (13) | 0.18067 (13) | 0.0339 (5) | |
H1 | 0.052 (7) | 0.467 (4) | 0.475 (3) | 0.056* | 0.500 |
H2 | 0.093 (7) | 0.380 (4) | 0.361 (3) | 0.056* | 0.500 |
H3 | 0.5088 | 0.64014 | 0.21272 | 0.028* | |
H5 | 0.5986 | 0.75936 | 0.51725 | 0.037* | |
H6 | 0.3366 | 0.60960 | 0.54107 | 0.038* | |
H8A | −0.0484 | 0.5654 | 0.1639 | 0.052* | |
H8B | −0.1245 | 0.4772 | 0.2392 | 0.052* | |
H8C | −0.1353 | 0.4323 | 0.1186 | 0.052* | |
H9A | 0.4439 | 0.4578 | 0.1107 | 0.050* | |
H9B | 0.2801 | 0.5465 | 0.0805 | 0.050* | |
H9C | 0.2091 | 0.4107 | 0.0423 | 0.050* | |
H12 | −0.1353 | 0.26971 | 0.18080 | 0.036* | |
H13 | −0.1088 | 0.08194 | 0.21179 | 0.043* | |
H14 | 0.2316 | 0.03084 | 0.27043 | 0.042* | |
H15 | 0.5498 | 0.16786 | 0.29343 | 0.039* | |
H16 | 0.5241 | 0.35538 | 0.26184 | 0.033* | |
H18A | 0.7279 | 0.9286 | 0.4820 | 0.059* | |
H18B | 0.5626 | 0.9469 | 0.3843 | 0.059* | |
H18C | 0.8197 | 0.9963 | 0.3953 | 0.059* | |
H19A | 0.9746 | 0.7843 | 0.4696 | 0.061* | |
H19B | 1.0944 | 0.8553 | 0.3920 | 0.061* | |
H19C | 1.0115 | 0.7195 | 0.3600 | 0.061* | |
H22 | 0.4456 | 0.87910 | 0.21551 | 0.039* | |
H23 | 0.4351 | 0.90587 | 0.04451 | 0.051* | |
H24 | 0.7340 | 0.8730 | −0.04283 | 0.056* | |
H25 | 1.0403 | 0.81338 | 0.04341 | 0.053* | |
H26 | 1.0527 | 0.78665 | 0.21441 | 0.041* | |
Atomic displacement parameters (Å2) top | U11 | U22 | U33 | U12 | U13 | U23 |
O | 0.0391 (7) | 0.0342 (6) | 0.0376 (6) | −0.0047 (5) | 0.0146 (5) | 0.0056 (5) |
C1 | 0.0267 (8) | 0.0242 (7) | 0.0298 (8) | 0.0024 (6) | 0.0051 (6) | 0.0071 (6) |
C2 | 0.0241 (7) | 0.0193 (7) | 0.0266 (7) | 0.0036 (6) | 0.0009 (6) | 0.0041 (6) |
C3 | 0.0239 (7) | 0.0220 (7) | 0.0242 (7) | 0.0032 (6) | 0.0022 (6) | 0.0039 (6) |
C4 | 0.0236 (7) | 0.0231 (7) | 0.0290 (8) | 0.0036 (6) | −0.0010 (6) | 0.0027 (6) |
C5 | 0.0339 (8) | 0.0293 (8) | 0.0262 (8) | 0.0007 (6) | −0.0018 (6) | −0.0011 (6) |
C6 | 0.0361 (9) | 0.0354 (9) | 0.0231 (7) | 0.0022 (7) | 0.0037 (6) | 0.0059 (6) |
C7 | 0.0264 (8) | 0.0216 (7) | 0.0265 (7) | −0.0017 (6) | −0.0007 (6) | 0.0047 (6) |
C8 | 0.0305 (8) | 0.0275 (8) | 0.0428 (9) | 0.0019 (6) | −0.0070 (7) | 0.0070 (7) |
C9 | 0.0442 (9) | 0.0262 (8) | 0.0251 (8) | −0.0071 (7) | −0.0002 (7) | 0.0021 (6) |
C11 | 0.0269 (8) | 0.0227 (7) | 0.0220 (7) | 0.0002 (6) | 0.0039 (6) | 0.0011 (6) |
C12 | 0.0264 (8) | 0.0242 (8) | 0.0378 (9) | −0.0008 (6) | 0.0051 (6) | 0.0021 (6) |
C13 | 0.0355 (9) | 0.0241 (8) | 0.0461 (10) | −0.0044 (7) | 0.0119 (7) | 0.0036 (7) |
C14 | 0.0459 (10) | 0.0227 (8) | 0.0393 (9) | 0.0069 (7) | 0.0114 (7) | 0.0064 (7) |
C15 | 0.0343 (9) | 0.0315 (8) | 0.0321 (8) | 0.0092 (7) | 0.0040 (7) | 0.0049 (6) |
C16 | 0.0267 (8) | 0.0261 (8) | 0.0269 (8) | −0.0010 (6) | 0.0033 (6) | 0.0026 (6) |
C17 | 0.0236 (7) | 0.0233 (7) | 0.0336 (8) | 0.0000 (6) | −0.0004 (6) | −0.0011 (6) |
C18 | 0.0458 (10) | 0.0255 (8) | 0.0421 (10) | −0.0017 (7) | 0.0074 (8) | −0.0045 (7) |
C19 | 0.0297 (9) | 0.0408 (10) | 0.0457 (10) | −0.0010 (7) | −0.0067 (7) | 0.0043 (8) |
C21 | 0.0245 (7) | 0.0154 (7) | 0.0369 (8) | −0.0040 (5) | 0.0034 (6) | 0.0002 (6) |
C22 | 0.0272 (8) | 0.0264 (8) | 0.0430 (9) | 0.0002 (6) | 0.0055 (7) | 0.0074 (7) |
C23 | 0.0412 (10) | 0.0373 (9) | 0.0466 (10) | −0.0039 (8) | −0.0030 (8) | 0.0142 (8) |
C24 | 0.0575 (12) | 0.0429 (10) | 0.0362 (10) | −0.0114 (9) | 0.0100 (9) | 0.0052 (8) |
C25 | 0.0442 (10) | 0.0383 (10) | 0.0473 (11) | −0.0056 (8) | 0.0194 (8) | −0.0044 (8) |
C26 | 0.0293 (8) | 0.0229 (8) | 0.0465 (10) | −0.0013 (6) | 0.0075 (7) | −0.0020 (7) |
Geometric parameters (Å, º) top
O—C1 | 1.3809 (18) | C24—C25 | 1.371 (3) |
O—H1 | 0.95 (4) | C25—C26 | 1.384 (2) |
O—H2 | 1.02 (4) | C3—H3 | 0.95 |
C1—C2 | 1.400 (2) | C5—H5 | 0.95 |
C1—C6 | 1.386 (2) | C6—H6 | 0.95 |
C2—C7 | 1.540 (2) | C8—H8A | 0.98 |
C2—C3 | 1.3978 (19) | C8—H8B | 0.98 |
C3—C4 | 1.393 (2) | C8—H8C | 0.98 |
C4—C17 | 1.5412 (19) | C9—H9A | 0.98 |
C4—C5 | 1.390 (2) | C9—H9B | 0.98 |
C5—C6 | 1.380 (2) | C9—H9C | 0.98 |
C7—C11 | 1.538 (2) | C12—H12 | 0.95 |
C7—C8 | 1.537 (2) | C13—H13 | 0.95 |
C7—C9 | 1.540 (2) | C14—H14 | 0.95 |
C11—C16 | 1.3914 (18) | C15—H15 | 0.95 |
C11—C12 | 1.394 (2) | C16—H16 | 0.95 |
C12—C13 | 1.388 (2) | C18—H18A | 0.98 |
C13—C14 | 1.379 (3) | C18—H18B | 0.98 |
C14—C15 | 1.384 (2) | C18—H18C | 0.98 |
C15—C16 | 1.386 (2) | C19—H19A | 0.98 |
C17—C19 | 1.536 (2) | C19—H19B | 0.98 |
C17—C18 | 1.549 (2) | C19—H19C | 0.98 |
C17—C21 | 1.528 (2) | C22—H22 | 0.95 |
C21—C26 | 1.392 (2) | C23—H23 | 0.95 |
C21—C22 | 1.399 (2) | C24—H24 | 0.95 |
C22—C23 | 1.382 (2) | C25—H25 | 0.95 |
C23—C24 | 1.384 (3) | C26—H26 | 0.95 |
| | | |
C1—O—H1 | 115 (3) | C16—C11—C7 | 119.30 (12) |
C1—O—H2 | 110 (2) | C12—C11—C7 | 123.02 (13) |
O—C1—C6 | 117.94 (13) | C13—C12—C11 | 120.92 (15) |
O—C1—C2 | 121.30 (13) | C14—C13—C12 | 120.48 (15) |
C6—C1—C2 | 120.73 (13) | C13—C14—C15 | 119.52 (14) |
C3—C2—C1 | 117.04 (13) | C14—C15—C16 | 119.85 (15) |
C3—C2—C7 | 122.15 (12) | C15—C16—C11 | 121.56 (14) |
C1—C2—C7 | 120.74 (13) | C21—C17—C19 | 111.92 (13) |
C4—C3—C2 | 123.25 (13) | C21—C17—C4 | 111.34 (12) |
C5—C4—C3 | 117.38 (13) | C19—C17—C4 | 107.73 (12) |
C5—C4—C17 | 119.81 (13) | C21—C17—C18 | 108.09 (12) |
C3—C4—C17 | 122.76 (13) | C19—C17—C18 | 107.57 (13) |
C6—C5—C4 | 121.08 (14) | C4—C17—C18 | 110.13 (12) |
C5—C6—C1 | 120.43 (14) | C26—C21—C22 | 116.81 (15) |
C8—C7—C11 | 112.59 (12) | C26—C21—C17 | 123.29 (14) |
C8—C7—C9 | 107.63 (12) | C22—C21—C17 | 119.90 (13) |
C11—C7—C9 | 106.96 (12) | C23—C22—C21 | 121.7 (2) |
C8—C7—C2 | 107.91 (12) | C22—C23—C24 | 120.1 (2) |
C11—C7—C2 | 109.86 (11) | C25—C24—C23 | 119.1 (2) |
C9—C7—C2 | 111.93 (12) | C24—C25—C26 | 120.8 (2) |
C16—C11—C12 | 117.66 (13) | C25—C26—C21 | 121.4 (2) |
| | | |
H1—O—C1—C2 | −169 (3) | C8—C7—C11—C12 | 10.53 (19) |
H1—O—C1—C6 | 10 (3) | C9—C7—C11—C16 | 70.84 (16) |
H2—O—C1—C2 | 37 (3) | C8—C7—C11—C16 | −171.14 (13) |
H2—O—C1—C6 | −144 (3) | C9—C7—C11—C12 | −107.50 (15) |
O—C1—C6—C5 | −175.78 (15) | C2—C7—C11—C16 | −50.85 (16) |
C2—C1—C6—C5 | 2.6 (2) | C2—C7—C11—C12 | 130.81 (14) |
C6—C1—C2—C3 | −2.0 (2) | C7—C11—C12—C13 | 178.93 (13) |
O—C1—C2—C3 | 176.37 (12) | C16—C11—C12—C13 | 0.6 (2) |
O—C1—C2—C7 | −0.7 (2) | C7—C11—C16—C15 | −179.14 (13) |
C6—C1—C2—C7 | −179.03 (14) | C12—C11—C16—C15 | −0.7 (2) |
C1—C2—C3—C4 | −0.7 (2) | C11—C12—C13—C14 | 0.3 (2) |
C3—C2—C7—C8 | −106.97 (15) | C12—C13—C14—C15 | −1.0 (3) |
C3—C2—C7—C9 | 11.28 (18) | C13—C14—C15—C16 | 0.8 (2) |
C3—C2—C7—C11 | 129.95 (13) | C14—C15—C16—C11 | 0.0 (2) |
C1—C2—C7—C9 | −171.82 (13) | C18—C17—C21—C26 | 124.14 (15) |
C7—C2—C3—C4 | 176.33 (12) | C19—C17—C21—C26 | 5.9 (2) |
C1—C2—C7—C8 | 69.94 (16) | C4—C17—C21—C26 | −114.81 (15) |
C1—C2—C7—C11 | −53.15 (16) | C19—C17—C21—C22 | −173.61 (15) |
C2—C3—C4—C5 | 2.6 (2) | C4—C17—C21—C22 | 65.71 (17) |
C2—C3—C4—C17 | 180.0 (3) | C18—C17—C21—C22 | −55.33 (17) |
C3—C4—C17—C21 | 14.92 (18) | C17—C21—C22—C23 | 178.66 (14) |
C5—C4—C17—C18 | −47.97 (18) | C26—C21—C22—C23 | −0.8 (2) |
C3—C4—C17—C19 | −108.19 (16) | C17—C21—C26—C25 | −178.71 (15) |
C3—C4—C5—C6 | −2.0 (2) | C22—C21—C26—C25 | 0.8 (2) |
C17—C4—C5—C6 | −179.38 (15) | C21—C22—C23—C24 | 0.4 (3) |
C3—C4—C17—C18 | 134.77 (14) | C22—C23—C24—C25 | 0.1 (3) |
C5—C4—C17—C21 | −167.81 (13) | C23—C24—C25—C26 | −0.2 (3) |
C5—C4—C17—C19 | 69.08 (17) | C24—C25—C26—C21 | −0.3 (3) |
C4—C5—C6—C1 | −0.6 (3) | | |
Hydrogen-bond geometry (Å, º) top
D—H···A | D—H | H···A | D···A | D—H···A |
O—H1···Oi | 0.95 (4) | 2.05 (4) | 2.944 (2) | 156 (4) |
O—H2···Cg2 | 1.02 (4) | 2.56 | 3.54 | 162 |
C8—H8B···O | 0.98 | 2.52 | 3.141 (2) | 121 |
C13—H13···Cg3ii | 0.95 | 2.83 | 3.61 | 141 |
C24—H24···Cg2iii | 0.95 | 2.74 | 3.57 | 146 |
Symmetry codes: (i) −x, −y+1, −z+1; (ii) x−1, y−1, z; (iii) −x+1, −y+1, −z. |
Experimental details
Crystal data |
Chemical formula | C24H26O |
Mr | 330.4 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 173 |
a, b, c (Å) | 6.1716 (9), 11.7924 (14), 13.2197 (14) |
α, β, γ (°) | 97.731 (10), 97.109 (12), 97.353 (12) |
V (Å3) | 935.7 (2) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 0.07 |
Crystal size (mm) | 0.71 × 0.47 × 0.13 |
|
Data collection |
Diffractometer | Nonius CAD-4 diffractometer |
Absorption correction | – |
No. of measured, independent and observed (I > 2σI) reflections | 3458, 3282, 2656 |
Rint | 0.028 |
(sin θ/λ)max (Å−1) | 0.595 |
|
Refinement |
R[F2 > 2σ(F2)], wR(F2), S | 0.040, 0.110, 1.07 |
No. of reflections | 3282 |
No. of parameters | 236 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.21, −0.23 |
Selected geometric parameters (Å, º) topO—C1 | 1.3809 (18) | O—H2 | 1.02 (4) |
O—H1 | 0.95 (4) | | |
| | | |
C1—O—H1 | 115 (3) | O—C1—C6 | 117.94 (13) |
C1—O—H2 | 110 (2) | O—C1—C2 | 121.30 (13) |
| | | |
C3—C2—C7—C11 | 129.95 (13) | C2—C7—C11—C16 | −50.85 (16) |
C1—C2—C7—C11 | −53.15 (16) | C2—C7—C11—C12 | 130.81 (14) |
C3—C4—C17—C21 | 14.92 (18) | C4—C17—C21—C26 | −114.81 (15) |
C5—C4—C17—C21 | −167.81 (13) | C4—C17—C21—C22 | 65.71 (17) |
Hydrogen-bond geometry (Å, º) top
D—H···A | D—H | H···A | D···A | D—H···A |
O—H1···Oi | 0.95 (4) | 2.05 (4) | 2.944 (2) | 156 (4) |
O—H2···Cg2 | 1.02 (4) | 2.56 | 3.54 | 162 |
C13—H13···Cg3ii | 0.95 | 2.83 | 3.61 | 141 |
C24—H24···Cg2iii | 0.95 | 2.74 | 3.57 | 146 |
Symmetry codes: (i) −x, −y+1, −z+1; (ii) x−1, y−1, z; (iii) −x+1, −y+1, −z. |
Subscribe to Acta Crystallographica Section C: Structural Chemistry
The full text of this article is available to subscribers to the journal.
If you have already registered and are using a computer listed in your registration details, please email
support@iucr.org for assistance.
As part of our investigation into the extraction of caesium by 2-benzylphenol and its derivatives (Bryan et al., 1999; Delmau et al., 2000), we wished to examine the structural effects of alkyl substitution on the benzyl carbon atom. Molecular mechanics (MM) calculations suggest that metal ion selectivity may be affected by the rotational potential energy surface for the C—C bond that connects the benzyl carbon to the phenol ring ortho to the OH group (Delmau et al., 2000). In other words, the value for this torsion angle (referred to here as ψ) varies in MM minimizations depending on the alkali metal ion complexed, from 100° for Cs+ to 126° for Li+ (Bryan et al., 1999). Varying the steric environment at the ortho benzyl carbon atom will affect the potential energy surface, and therefore also affect selectivity.
We previously reported the structure of 2-benzylphenol, which exhibited a ψ value of 11.1 (2)°. This unusually low value was attributed to intermolecular O—H···O hydrogen bonding and edge-to-face arene interactions (Bryan et al., 1999), and to the relatively low conformational energies calculated for 2-benzylphenol by MM at low ψ (Delmau et al., 2000). The only published structure of a 2-benzylphenol derivative containing alkyl substitution at the benzyl carbon is 2,4,6-tris(α,α-dimethylbenzyl)phenol, which exhibits ψ values of 122.3 (3) and −124.4 (3)° for the two benzyl groups ortho to the hydroxyl group (Kurashev et al., 1986). We sought to investigate the structure of the title compound, (I), because of its commercial availability and because MM calculations predicted a minimum conformational energy for ψ of \sim50° for methyl substitution on the benzyl carbon (2-α-methylbenzylphenol; Delmau et al., 2000). \sch
The structure of (I) (Figure 1) is dramatically different from 2-benzylphenol (Bryan et al., 1999), but is quite similar to the more closely related 2,4,6-tris(α,α-dimethylbenzyl)phenol (Kurashev et al., 1986). Specifically, the ψ angle (C3—C2—C7—C11) is 129.95 (13)° in (I), almost identical to those reported for 2,4,6-tris(α,α-dimethylbenzyl)phenol. These results suggest that the MM calculations performed for 2-α-methylbenzylphenol do not correlate well to structures determined containing the 2-α,α-dimethylbenzylphenol fragment, possibly due to intermolecular forces in the crystal structure.
The hydroxyl H atom in (I) was determined to be disordered over two sites (50:50) by examination of an electron-density difference map. One position (H1) is oriented outwards from the molecule, and forms an intermolecular hydrogen bond to Oi [symmetry code (i) −x, 1 − y, 1 − z]. The other location (H2) is oriented inwards, forming an O—H···π interaction (Steiner et al., 1996; Bakshi, et al., 1994) with the phenyl group (Table 2).
The three arene rings in this structure are each planar within 0.016 Å, and are all roughly orthogonal to each other. The interarene angles are A1—A2 = 80.36 (7)°, A1—A3 = 71.43 (8)°, and A2—A3 = 71.88 (8)°, where A1 = C1–C6, A2 = C11–C16, and A3 = C21–C26. No π–π ring stacking is observed, but two edge-face arene interactions are detected, which are illustrated in Figure 2. These interactions are further quantified in Table 2 where metrical parameters for the two C—H···π-centroid interactions are listed. The centroids are represented as CgX, where X corresponds to the appropriate arene (AX) ring. Taken together, the hydrogen bonds of the hydroxyl group and the edge-face interactions of the arene groups, a three-dimensional network is formed.