Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The title compounds, {4,4'-di­bromo-2,2'-[1,3-propane­diyl­bis(nitrilo­methyl­idyne-N)]­diphenolato-O,O'}nickel(II), [Ni(C17­H14­Br2­N2O2)], and {4,4'-di­chloro-2,2'-[1,3-pro­pane­diyl­bis­(ni­trilo­methyl­idyne-N)]­di­phen­ol­ato-O,O'}­copper(II), [Cu­(C17­H14­Cl2­N2O2)], lie on crystallographic twofold axes. In both structures, the metal coordination sphere is a tetrahedrally distorted square plane formed by the four-coordinate N2O2 donor set of the Schiff base imine-phenol ligands. In the Ni compound, the Ni-O and Ni-N distances are 1.908 (3) and 1.959 (4) Å, respectively, while in the Cu compound, the Cu-O and Cu-N distances are 1.907 (2) and 1.960 (2) Å, respectively. The two Schiff base moieties, which themselves are nearly planar, are inclined at an angle of 29.26 (7)° for the Ni compound and 29.26 (5)° for the Cu compound.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270100010428/fr1285sup1.cif
Contains datablocks I, II, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270100010428/fr1285Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270100010428/fr1285IIsup3.hkl
Contains datablock II

CCDC references: 153869; 153870

Computing details top

For both compounds, data collection: CAD-4 Diffractometer Control Software (Enraf-Nonius, 1993); cell refinement: CAD-4 Diffractometer Control Software; data reduction: REDU4 (Stoe & Cie, 1991); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997).

(I) top
Crystal data top
[Ni(C17H14Br2N2O2)]F(000) = 976
Mr = 496.83Dx = 1.985 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 21.466 (3) ÅCell parameters from 25 reflections
b = 8.167 (1) Åθ = 2.7–13.3°
c = 9.495 (3) ŵ = 5.99 mm1
β = 93.07 (2)°T = 293 K
V = 1662.2 (6) Å3Needle, dark blue
Z = 40.40 × 0.05 × 0.03 mm
Data collection top
Enraf-Nonius CAD4
diffractometer
1016 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.027
Graphite monochromatorθmax = 26.0°, θmin = 1.9°
ω–2θ scansh = 2626
Absorption correction: ψ scan
(North et al., 1968)
k = 100
Tmin = 0.75, Tmax = 0.84l = 113
2249 measured reflections3 standard reflections every 120 min
1628 independent reflections intensity decay: 2.0%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.085H-atom parameters constrained
S = 0.97 w = 1/[σ2(Fo2) + (0.0349P)2 + 4.1291P]
where P = (Fo2 + 2Fc2)/3
1628 reflections(Δ/σ)max < 0.001
114 parametersΔρmax = 0.71 e Å3
1 restraintΔρmin = 0.38 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Ni10.50000.01666 (9)0.25000.0343 (2)
Br10.26976 (3)0.25243 (7)0.31466 (6)0.0653 (2)
O10.44154 (14)0.1858 (4)0.2007 (3)0.0443 (8)
N10.45946 (17)0.1417 (4)0.1200 (4)0.0426 (9)
C10.40088 (19)0.1893 (5)0.0941 (5)0.0372 (10)
C20.3642 (2)0.3315 (6)0.0701 (5)0.0463 (11)
H20.36700.41640.13540.056*
C30.3248 (2)0.3469 (6)0.0469 (5)0.0476 (12)
H30.30140.44190.06040.057*
C40.3195 (2)0.2223 (6)0.1454 (5)0.0446 (11)
C50.35041 (19)0.0772 (6)0.1216 (5)0.0415 (11)
H50.34460.00870.18530.050*
C60.39094 (19)0.0575 (5)0.0010 (4)0.0372 (10)
C70.4187 (2)0.1009 (5)0.0216 (5)0.0410 (11)
H70.40600.18290.04160.049*
C80.4750 (3)0.3182 (6)0.1268 (6)0.0656 (16)
H8A0.44220.38250.07940.098*0.50
H8B0.51390.34030.08280.098*0.50
H8C0.43720.37820.14380.098*0.50
H8D0.48910.35360.03640.098*0.50
C90.4803 (4)0.3760 (10)0.2739 (8)0.043 (2)0.50
H9A0.44030.35750.31380.064*0.50
H9B0.48590.49370.26980.064*0.50
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.0430 (4)0.0248 (4)0.0342 (4)0.0000.0050 (3)0.000
Br10.0626 (3)0.0788 (4)0.0522 (3)0.0079 (3)0.0189 (2)0.0031 (3)
O10.0536 (19)0.0359 (16)0.0417 (18)0.0043 (14)0.0123 (15)0.0032 (14)
N10.054 (2)0.032 (2)0.041 (2)0.0004 (17)0.0037 (19)0.0011 (17)
C10.037 (2)0.040 (2)0.035 (2)0.0031 (19)0.004 (2)0.004 (2)
C20.048 (3)0.042 (3)0.049 (3)0.004 (2)0.000 (2)0.003 (2)
C30.043 (3)0.049 (3)0.050 (3)0.009 (2)0.001 (2)0.002 (3)
C40.033 (2)0.057 (3)0.043 (3)0.000 (2)0.003 (2)0.001 (2)
C50.042 (3)0.046 (3)0.036 (3)0.005 (2)0.002 (2)0.005 (2)
C60.038 (2)0.041 (3)0.033 (2)0.0041 (19)0.0002 (19)0.002 (2)
C70.051 (3)0.035 (2)0.037 (3)0.009 (2)0.002 (2)0.005 (2)
C80.106 (5)0.030 (3)0.060 (4)0.013 (3)0.001 (3)0.004 (3)
C90.048 (6)0.033 (5)0.049 (6)0.007 (4)0.014 (5)0.004 (4)
Geometric parameters (Å, º) top
Ni1—O1i1.908 (3)C3—H30.9300
Ni1—O11.908 (3)C4—C51.371 (6)
Ni1—N11.959 (4)C5—C61.410 (6)
Ni1—N1i1.959 (4)C5—H50.9300
Br1—C41.897 (4)C6—C71.436 (6)
O1—C11.300 (5)C7—H70.9300
O1—Ni1i1.908 (3)C8—C91.473 (7)
N1—C71.289 (6)C8—H8A0.9700
N1—C81.480 (6)C8—H8B0.9700
N1—Ni1i1.959 (4)C8—H8C0.9700
C1—C21.415 (6)C8—H8D0.9700
C1—C61.414 (6)C9—C8i1.390 (10)
C2—C31.365 (6)C9—H8C1.5041
C2—H20.9300C9—H9A0.9700
C3—C41.383 (6)C9—H9B0.9700
O1i—Ni1—O187.23 (18)C1—C6—C7122.9 (4)
O1i—Ni1—N1153.75 (14)N1—C7—C6127.0 (4)
O1—Ni1—N193.39 (14)N1—C7—H7116.5
O1i—Ni1—N1i93.39 (14)C6—C7—H7116.5
O1—Ni1—N1i153.75 (14)C9—C8—N1111.0 (5)
N1—Ni1—N1i97.4 (2)C9—C8—H8A106.5
C1—O1—Ni1i127.8 (3)N1—C8—H8A110.5
C1—O1—Ni1127.8 (3)C9—C8—H8B108.9
C7—N1—C8115.2 (4)N1—C8—H8B111.1
C7—N1—Ni1i123.2 (3)H8A—C8—H8B108.6
C8—N1—Ni1i121.6 (3)C9—C8—H8C72.7
C7—N1—Ni1123.2 (3)N1—C8—H8C108.0
C8—N1—Ni1121.6 (3)H8A—C8—H8C37.8
O1—C1—C2119.2 (4)H8B—C8—H8C136.5
O1—C1—C6123.5 (4)C9—C8—H8D137.0
C2—C1—C6117.3 (4)N1—C8—H8D109.4
C3—C2—C1121.5 (4)H8A—C8—H8D71.4
C3—C2—H2119.3H8B—C8—H8D41.1
C1—C2—H2119.3H8C—C8—H8D107.5
C2—C3—C4120.5 (4)C8i—C9—C8123.4 (7)
C2—C3—H3119.7C8i—C9—H8C158.9
C4—C3—H3119.7C8—C9—H8C38.0
C5—C4—C3120.2 (4)C8i—C9—H9A106.0
C5—C4—Br1119.8 (4)C8—C9—H9A107.2
C3—C4—Br1120.0 (3)H8C—C9—H9A78.6
C4—C5—C6120.3 (4)C8i—C9—H9B106.4
C4—C5—H5119.9C8—C9—H9B106.4
C6—C5—H5119.9H8C—C9—H9B91.6
C5—C6—C1119.9 (4)H9A—C9—H9B106.5
C5—C6—C7117.2 (4)
O1i—Ni1—O1—C1140.6 (4)C3—C4—C5—C64.1 (7)
N1—Ni1—O1—C113.2 (4)Br1—C4—C5—C6175.6 (3)
N1i—Ni1—O1—C1127.4 (4)C4—C5—C6—C11.5 (6)
O1i—Ni1—N1—C776.2 (5)C4—C5—C6—C7176.3 (4)
O1—Ni1—N1—C714.4 (4)O1—C1—C6—C5173.7 (4)
N1i—Ni1—N1—C7170.4 (4)C2—C1—C6—C56.2 (6)
O1i—Ni1—N1—C8102.3 (5)O1—C1—C6—C78.7 (7)
O1—Ni1—N1—C8167.1 (4)C2—C1—C6—C7171.5 (4)
N1i—Ni1—N1—C811.1 (3)C8—N1—C7—C6173.8 (5)
Ni1i—O1—C1—C2175.8 (3)Ni1i—N1—C7—C67.5 (7)
Ni1—O1—C1—C2175.8 (3)Ni1—N1—C7—C67.5 (7)
Ni1i—O1—C1—C64.1 (6)C5—C6—C7—N1175.8 (4)
Ni1—O1—C1—C64.1 (6)C1—C6—C7—N16.6 (7)
O1—C1—C2—C3174.3 (4)C7—N1—C8—C9138.5 (6)
C6—C1—C2—C35.6 (7)Ni1i—N1—C8—C942.8 (7)
C1—C2—C3—C40.3 (7)Ni1—N1—C8—C942.8 (7)
C2—C3—C4—C54.7 (7)N1—C8—C9—C8i63.1 (8)
C2—C3—C4—Br1174.9 (4)
Symmetry code: (i) x+1, y, z+1/2.
(II) top
Crystal data top
[Cu(C17H14Cl2N2O2)]F(000) = 836
Mr = 412.74Dx = 1.706 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 21.022 (3) ÅCell parameters from 25 reflections
b = 8.140 (2) Åθ = 1.9–15.9°
c = 9.416 (3) ŵ = 1.70 mm1
β = 94.06 (2)°T = 293 K
V = 1607.2 (7) Å3Needle, blue
Z = 40.30 × 0.08 × 0.08 mm
Data collection top
Enraf-Nonius CAD4
diffractometer
1274 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.017
Graphite monochromatorθmax = 26.0°, θmin = 1.9°
ω–2θ scansh = 2525
Absorption correction: ψ scan
(North et al., 1968)
k = 100
Tmin = 0.79, Tmax = 0.87l = 112
1946 measured reflections3 standard reflections every 90 min
1568 independent reflections intensity decay: 3.0%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.106H-atom parameters constrained
S = 1.13 w = 1/[σ2(Fo2) + (0.0648P)2 + 0.4477P]
where P = (Fo2 + 2Fc2)/3
1568 reflections(Δ/σ)max < 0.001
114 parametersΔρmax = 0.57 e Å3
0 restraintsΔρmin = 0.51 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cu10.50000.01949 (5)0.25000.0383 (2)
Cl10.26844 (4)0.25493 (13)0.31366 (10)0.0677 (3)
O10.43986 (10)0.1888 (2)0.1998 (2)0.0437 (5)
N10.45778 (12)0.1393 (3)0.1182 (3)0.0414 (6)
C10.39829 (13)0.1928 (3)0.0911 (3)0.0385 (6)
C20.36059 (14)0.3360 (4)0.0647 (4)0.0451 (7)
H20.36320.42080.13100.054*
C30.32081 (14)0.3526 (4)0.0549 (4)0.0493 (7)
H30.29730.44850.07010.059*
C40.31524 (14)0.2263 (4)0.1545 (3)0.0460 (7)
C50.34610 (14)0.0812 (4)0.1291 (3)0.0443 (7)
H50.33970.00520.19320.053*
C60.38767 (13)0.0608 (4)0.0063 (3)0.0383 (6)
C70.41575 (14)0.0988 (3)0.0187 (3)0.0417 (7)
H70.40190.18170.04400.050*
C80.4736 (2)0.3162 (4)0.1249 (4)0.0666 (10)
H8A0.44010.37870.07340.100*0.50
H8B0.51290.33770.08030.100*0.50
H8C0.43470.37180.14750.100*0.50
H8D0.48410.35620.03240.100*0.50
C90.4800 (3)0.3741 (7)0.2732 (6)0.0434 (14)0.50
H9A0.43920.35490.31250.065*0.50
H9B0.48540.49240.26900.065*0.50
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0500 (3)0.0293 (3)0.0349 (3)0.0000.0022 (2)0.000
Cl10.0667 (6)0.0803 (7)0.0528 (5)0.0089 (4)0.0193 (4)0.0026 (4)
O10.0588 (12)0.0342 (10)0.0364 (11)0.0039 (9)0.0085 (9)0.0036 (8)
N10.0562 (14)0.0299 (11)0.0376 (13)0.0006 (10)0.0001 (11)0.0023 (10)
C10.0405 (14)0.0384 (14)0.0369 (15)0.0044 (11)0.0047 (12)0.0027 (12)
C20.0491 (16)0.0395 (15)0.0467 (17)0.0027 (12)0.0033 (13)0.0019 (13)
C30.0465 (16)0.0493 (17)0.0512 (19)0.0060 (13)0.0018 (14)0.0034 (15)
C40.0386 (15)0.0571 (19)0.0418 (17)0.0010 (13)0.0010 (12)0.0010 (14)
C50.0458 (16)0.0512 (16)0.0357 (15)0.0076 (13)0.0029 (13)0.0026 (13)
C60.0404 (14)0.0397 (14)0.0351 (15)0.0048 (11)0.0053 (12)0.0002 (12)
C70.0553 (17)0.0359 (14)0.0342 (15)0.0105 (13)0.0043 (13)0.0048 (12)
C80.111 (3)0.0299 (15)0.059 (2)0.0099 (17)0.000 (2)0.0050 (15)
C90.056 (4)0.030 (3)0.045 (4)0.002 (2)0.005 (3)0.002 (2)
Geometric parameters (Å, º) top
Cu1—O1i1.907 (2)C4—C51.361 (4)
Cu1—O11.907 (2)C5—C61.409 (4)
Cu1—N11.960 (2)C5—H50.9300
Cu1—N1i1.960 (2)C6—C71.439 (4)
Cl1—C41.749 (3)C7—H70.9300
O1—C11.298 (4)C8—C91.471 (6)
N1—C71.284 (4)C8—H8A0.9700
N1—C81.478 (4)C8—H8B0.9700
C1—C61.420 (4)C8—H8C0.9700
C1—C21.422 (4)C8—H8D0.9700
C2—C31.361 (4)C9—C8i1.401 (7)
C2—H20.9300C9—H8C1.4651
C3—C41.391 (5)C9—H9A0.9700
C3—H30.9300C9—H9B0.9700
O1i—Cu1—O187.44 (12)N1—C7—C6127.2 (3)
O1i—Cu1—N1153.63 (10)N1—C7—H7116.4
O1—Cu1—N193.27 (10)C6—C7—H7116.4
O1i—Cu1—N1i93.27 (10)N1—C8—C9111.0 (3)
O1—Cu1—N1i153.63 (10)N1—C8—H8A109.7
N1—Cu1—N1i97.51 (14)C9—C8—H8A108.7
C1—O1—Cu1127.66 (18)N1—C8—H8B110.7
C7—N1—C8115.0 (3)C9—C8—H8B109.2
C7—N1—Cu1123.34 (19)H8A—C8—H8B107.5
C8—N1—Cu1121.7 (2)N1—C8—H8C105.9
O1—C1—C6123.8 (3)C9—C8—H8C70.4
O1—C1—C2119.6 (3)H8A—C8—H8C43.4
C6—C1—C2116.5 (3)H8B—C8—H8C140.2
C3—C2—C1121.9 (3)N1—C8—H8D110.7
C3—C2—H2119.1C9—C8—H8D137.2
C1—C2—H2119.1H8A—C8—H8D65.1
C2—C3—C4120.1 (3)H8B—C8—H8D45.1
C2—C3—H3119.9H8C—C8—H8D106.9
C4—C3—H3119.9C8i—C9—C8123.7 (4)
C5—C4—C3120.4 (3)C8i—C9—H8C158.4
C5—C4—Cl1119.9 (3)C8—C9—H8C38.6
C3—C4—Cl1119.6 (3)C8i—C9—H9A106.0
C4—C5—C6120.5 (3)C8—C9—H9A106.6
C4—C5—H5119.8H8C—C9—H9A76.4
C6—C5—H5119.8C8i—C9—H9B106.5
C5—C6—C1120.1 (3)C8—C9—H9B106.4
C5—C6—C7117.6 (3)H8C—C9—H9B92.9
C1—C6—C7122.2 (3)H9A—C9—H9B106.5
O1i—Cu1—O1—C1139.6 (3)C3—C4—C5—C64.5 (5)
N1—Cu1—O1—C114.0 (2)Cl1—C4—C5—C6175.3 (2)
N1i—Cu1—O1—C1128.2 (3)C4—C5—C6—C10.8 (4)
O1i—Cu1—N1—C776.4 (3)C4—C5—C6—C7176.3 (3)
O1—Cu1—N1—C714.5 (3)O1—C1—C6—C5173.8 (3)
N1i—Cu1—N1—C7170.4 (3)C2—C1—C6—C55.9 (4)
O1i—Cu1—N1—C8102.3 (3)O1—C1—C6—C79.3 (4)
O1—Cu1—N1—C8166.9 (3)C2—C1—C6—C7171.0 (3)
N1i—Cu1—N1—C811.0 (2)C8—N1—C7—C6174.8 (3)
Cu1—O1—C1—C64.7 (4)Cu1—N1—C7—C66.5 (4)
Cu1—O1—C1—C2175.0 (2)C5—C6—C7—N1174.9 (3)
O1—C1—C2—C3173.6 (3)C1—C6—C7—N18.1 (5)
C6—C1—C2—C36.2 (4)C7—N1—C8—C9138.7 (4)
C1—C2—C3—C41.1 (5)Cu1—N1—C8—C942.6 (5)
C2—C3—C4—C54.4 (5)N1—C8—C9—C8i62.9 (6)
C2—C3—C4—Cl1175.4 (3)
Symmetry code: (i) x+1, y, z+1/2.
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds