Supporting information
Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270101014640/fr1343sup1.cif | |
Structure factor file (CIF format) https://doi.org/10.1107/S0108270101014640/fr1343Isup2.hkl |
CCDC reference: 179249
For related literature, see: Addison et al. (1984); Allen & Kennard (1993); Bhandari et al. (2000); Downard et al. (1995); Gaponik et al. (1990, 2000); Koningsbruggen et al. (2000, 2001); Lavrenova et al. (1991); Orpen et al. (1989).
1,5-bis(1-methyl-1H-tetrazol-5-yl)-3-oxopentane was synthesized by methylation of 1,5-bis(tert-butyl-1H-tetrazol-5-yl)-3-oxopentane, followed by de-tert-butylation of the intermediate tetrazolium salt according to the method previously described by Gaponik et al. (2000). The title complex was prepared by the reaction of copper(II) chloride dihydrate with 1,5-bis(1-methyl-1H-tetrazol-5-yl)-3-oxopentane in ethanol. Single crystals of (I) were grown by slow crystallization from the reaction mixture.
The H atoms were included in geometrically calculated positions, with C—H = 0.96–0.97 Å, and refined using a riding model, with Uiso(H) equal to 1.2Ueq of the corresponding C atom (1.5Ueq for methyl groups).
Data collection: R3m Software (Nicolet, 1980); cell refinement: R3m Software; data reduction: R3m Software; program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97.
Fig. 1. The molecular view of (I) with displacement ellipsoids drawn at the 50% probability level. H atoms are shown as small spheres of arbitrary radii. |
[CuCl2(C8H14N8O)] | F(000) = 756 |
Mr = 372.71 | Dx = 1.773 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71069 Å |
a = 8.566 (2) Å | Cell parameters from 25 reflections |
b = 13.611 (3) Å | θ = 13.7–19.8° |
c = 12.633 (3) Å | µ = 1.96 mm−1 |
β = 108.54 (2)° | T = 293 K |
V = 1396.5 (6) Å3 | Prism, blue |
Z = 4 | 0.56 × 0.38 × 0.08 mm |
Nicolet R3m four-circle diffractometer | 3547 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.020 |
Graphite monochromator | θmax = 30.1°, θmin = 2.3° |
ω/2θ scans | h = 0→12 |
Absorption correction: ψ-scan (North et al., 1968) | k = 0→19 |
Tmin = 0.407, Tmax = 0.859 | l = −17→16 |
4477 measured reflections | 3 standard reflections every 100 reflections |
4095 independent reflections | intensity decay: none |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.033 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.092 | H-atom parameters constrained |
S = 1.06 | w = 1/[σ2(Fo2) + (0.0509P)2 + 0.6526P] where P = (Fo2 + 2Fc2)/3 |
4095 reflections | (Δ/σ)max = 0.002 |
183 parameters | Δρmax = 0.59 e Å−3 |
0 restraints | Δρmin = −0.56 e Å−3 |
[CuCl2(C8H14N8O)] | V = 1396.5 (6) Å3 |
Mr = 372.71 | Z = 4 |
Monoclinic, P21/n | Mo Kα radiation |
a = 8.566 (2) Å | µ = 1.96 mm−1 |
b = 13.611 (3) Å | T = 293 K |
c = 12.633 (3) Å | 0.56 × 0.38 × 0.08 mm |
β = 108.54 (2)° |
Nicolet R3m four-circle diffractometer | 3547 reflections with I > 2σ(I) |
Absorption correction: ψ-scan (North et al., 1968) | Rint = 0.020 |
Tmin = 0.407, Tmax = 0.859 | 3 standard reflections every 100 reflections |
4477 measured reflections | intensity decay: none |
4095 independent reflections |
R[F2 > 2σ(F2)] = 0.033 | 0 restraints |
wR(F2) = 0.092 | H-atom parameters constrained |
S = 1.06 | Δρmax = 0.59 e Å−3 |
4095 reflections | Δρmin = −0.56 e Å−3 |
183 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Cu1 | 0.52652 (3) | 0.170067 (17) | 0.695871 (17) | 0.02555 (8) | |
Cl1 | 0.42345 (7) | 0.32391 (4) | 0.67767 (5) | 0.03903 (12) | |
Cl2 | 0.74107 (7) | 0.06868 (5) | 0.76786 (4) | 0.04466 (15) | |
N1 | 0.2982 (2) | 0.08927 (13) | 0.92453 (13) | 0.0293 (3) | |
N2 | 0.4476 (2) | 0.11982 (15) | 0.99103 (14) | 0.0355 (4) | |
N3 | 0.5276 (2) | 0.14823 (15) | 0.92653 (14) | 0.0360 (4) | |
N4 | 0.4335 (2) | 0.13648 (13) | 0.81802 (13) | 0.0287 (3) | |
C5 | 0.2906 (2) | 0.10005 (14) | 0.81805 (15) | 0.0265 (3) | |
C6 | 0.1741 (3) | 0.05300 (19) | 0.97218 (19) | 0.0418 (5) | |
H6A | 0.0670 | 0.0746 | 0.9269 | 0.063* | |
H6B | 0.1970 | 0.0781 | 1.0466 | 0.063* | |
H6C | 0.1769 | −0.0175 | 0.9742 | 0.063* | |
C7 | 0.1459 (2) | 0.07253 (17) | 0.72136 (16) | 0.0349 (4) | |
H7A | 0.0467 | 0.0930 | 0.7367 | 0.042* | |
H7B | 0.1425 | 0.0015 | 0.7145 | 0.042* | |
C8 | 0.1441 (2) | 0.11614 (17) | 0.61117 (16) | 0.0336 (4) | |
H8A | 0.0412 | 0.1004 | 0.5539 | 0.040* | |
H8B | 0.1538 | 0.1871 | 0.6174 | 0.040* | |
O1 | 0.27936 (17) | 0.07643 (12) | 0.58179 (12) | 0.0343 (3) | |
N1' | 0.5721 (2) | 0.17464 (13) | 0.38290 (14) | 0.0322 (4) | |
N2' | 0.7324 (2) | 0.18360 (16) | 0.44493 (15) | 0.0399 (4) | |
N3' | 0.7372 (2) | 0.18769 (16) | 0.54800 (15) | 0.0378 (4) | |
N4' | 0.5815 (2) | 0.18106 (12) | 0.55360 (13) | 0.0291 (3) | |
C5' | 0.4799 (2) | 0.17396 (14) | 0.45016 (15) | 0.0278 (4) | |
C6' | 0.5254 (3) | 0.1625 (2) | 0.26128 (18) | 0.0473 (6) | |
H6'A | 0.4762 | 0.0990 | 0.2408 | 0.071* | |
H6'B | 0.6216 | 0.1679 | 0.2383 | 0.071* | |
H6'C | 0.4478 | 0.2126 | 0.2253 | 0.071* | |
C7' | 0.2989 (3) | 0.16411 (18) | 0.41607 (17) | 0.0371 (5) | |
H7'A | 0.2545 | 0.1623 | 0.3352 | 0.044* | |
H7'B | 0.2526 | 0.2207 | 0.4420 | 0.044* | |
C8' | 0.2503 (3) | 0.07138 (19) | 0.46388 (18) | 0.0423 (5) | |
H8'A | 0.1343 | 0.0588 | 0.4268 | 0.051* | |
H8'B | 0.3118 | 0.0165 | 0.4482 | 0.051* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cu1 | 0.02286 (12) | 0.03424 (13) | 0.01933 (11) | 0.00059 (8) | 0.00639 (8) | 0.00151 (8) |
Cl1 | 0.0439 (3) | 0.0315 (2) | 0.0397 (3) | 0.00562 (19) | 0.0104 (2) | −0.00060 (18) |
Cl2 | 0.0378 (3) | 0.0670 (4) | 0.0321 (2) | 0.0230 (3) | 0.0152 (2) | 0.0184 (2) |
N1 | 0.0303 (8) | 0.0372 (8) | 0.0213 (7) | −0.0016 (7) | 0.0096 (6) | 0.0018 (6) |
N2 | 0.0318 (8) | 0.0499 (10) | 0.0231 (7) | −0.0027 (7) | 0.0067 (6) | −0.0003 (7) |
N3 | 0.0300 (8) | 0.0546 (11) | 0.0214 (7) | −0.0050 (8) | 0.0053 (6) | −0.0031 (7) |
N4 | 0.0237 (7) | 0.0409 (9) | 0.0205 (7) | −0.0028 (6) | 0.0056 (6) | 0.0006 (6) |
C5 | 0.0267 (8) | 0.0314 (8) | 0.0223 (7) | −0.0006 (7) | 0.0092 (6) | 0.0004 (6) |
C6 | 0.0451 (12) | 0.0535 (13) | 0.0324 (10) | −0.0104 (10) | 0.0201 (9) | 0.0033 (9) |
C7 | 0.0256 (9) | 0.0526 (12) | 0.0264 (9) | −0.0103 (8) | 0.0082 (7) | 0.0003 (8) |
C8 | 0.0245 (8) | 0.0498 (12) | 0.0241 (8) | −0.0011 (8) | 0.0044 (7) | 0.0002 (8) |
O1 | 0.0295 (7) | 0.0497 (9) | 0.0248 (6) | −0.0030 (6) | 0.0100 (5) | −0.0025 (6) |
N1' | 0.0317 (8) | 0.0425 (9) | 0.0225 (7) | −0.0032 (7) | 0.0089 (6) | 0.0046 (6) |
N2' | 0.0318 (9) | 0.0597 (12) | 0.0294 (8) | −0.0090 (8) | 0.0117 (7) | 0.0031 (8) |
N3' | 0.0289 (8) | 0.0565 (11) | 0.0277 (8) | −0.0086 (8) | 0.0084 (7) | 0.0024 (7) |
N4' | 0.0267 (8) | 0.0381 (9) | 0.0227 (7) | 0.0001 (6) | 0.0079 (6) | 0.0034 (6) |
C5' | 0.0281 (9) | 0.0328 (9) | 0.0226 (8) | 0.0022 (7) | 0.0079 (7) | 0.0048 (6) |
C6' | 0.0508 (14) | 0.0704 (17) | 0.0223 (9) | −0.0114 (12) | 0.0139 (9) | 0.0002 (9) |
C7' | 0.0265 (9) | 0.0576 (13) | 0.0239 (9) | 0.0046 (9) | 0.0035 (7) | 0.0049 (8) |
C8' | 0.0419 (11) | 0.0576 (14) | 0.0282 (9) | −0.0163 (10) | 0.0123 (8) | −0.0142 (9) |
Cu1—N4 | 2.002 (2) | C8—H8A | 0.9700 |
Cu1—N4' | 2.003 (2) | C8—H8B | 0.9700 |
Cu1—Cl2 | 2.2464 (7) | O1—C8' | 1.432 (2) |
Cu1—Cl1 | 2.2557 (7) | N1'—C5' | 1.332 (2) |
Cu1—O1 | 2.499 (2) | N1'—N2' | 1.353 (3) |
N1—C5 | 1.334 (2) | N1'—C6' | 1.469 (3) |
N1—N2 | 1.354 (2) | N2'—N3' | 1.291 (2) |
N1—C6 | 1.464 (3) | N3'—N4' | 1.361 (2) |
N2—N3 | 1.280 (2) | N4'—C5' | 1.323 (2) |
N3—N4 | 1.361 (2) | C5'—C7' | 1.477 (3) |
N4—C5 | 1.321 (2) | C6'—H6'A | 0.9600 |
C5—C7 | 1.485 (3) | C6'—H6'B | 0.9600 |
C6—H6A | 0.9600 | C6'—H6'C | 0.9600 |
C6—H6B | 0.9600 | C7'—C8' | 1.514 (3) |
C6—H6C | 0.9600 | C7'—H7'A | 0.9700 |
C7—C8 | 1.509 (3) | C7'—H7'B | 0.9700 |
C7—H7A | 0.9700 | C8'—H8'A | 0.9700 |
C7—H7B | 0.9700 | C8'—H8'B | 0.9700 |
C8—O1 | 1.430 (2) | ||
N4—Cu1—N4' | 166.77 (7) | O1—C8—H8B | 110.0 |
N4—Cu1—Cl2 | 91.29 (5) | C7—C8—H8B | 110.0 |
N4'—Cu1—Cl2 | 90.79 (5) | H8A—C8—H8B | 108.3 |
N4—Cu1—Cl1 | 92.97 (5) | C8—O1—C8' | 113.64 (16) |
N4'—Cu1—Cl1 | 92.02 (5) | C8—O1—Cu1 | 105.38 (11) |
Cl2—Cu1—Cl1 | 148.75 (3) | C8'—O1—Cu1 | 117.37 (12) |
N4—Cu1—O1 | 81.73 (6) | C5'—N1'—N2' | 109.27 (16) |
N4'—Cu1—O1 | 85.31 (6) | C5'—N1'—C6' | 130.32 (19) |
Cl2—Cu1—O1 | 110.75 (5) | N2'—N1'—C6' | 120.33 (19) |
Cl1—Cu1—O1 | 100.50 (4) | N3'—N2'—N1' | 106.78 (17) |
C5—N1—N2 | 108.96 (16) | N2'—N3'—N4' | 109.42 (17) |
C5—N1—C6 | 130.01 (18) | C5'—N4'—N3' | 107.54 (16) |
N2—N1—C6 | 121.02 (16) | C5'—N4'—Cu1 | 127.74 (14) |
N3—N2—N1 | 106.84 (16) | N3'—N4'—Cu1 | 124.43 (13) |
N2—N3—N4 | 109.89 (17) | N4'—C5'—N1' | 106.98 (17) |
C5—N4—N3 | 107.22 (15) | N4'—C5'—C7' | 126.47 (18) |
C5—N4—Cu1 | 133.00 (13) | N1'—C5'—C7' | 126.52 (18) |
N3—N4—Cu1 | 119.75 (13) | N1'—C6'—H6'A | 109.5 |
N4—C5—N1 | 107.08 (16) | N1'—C6'—H6'B | 109.5 |
N4—C5—C7 | 128.74 (16) | H6'A—C6'—H6'B | 109.5 |
N1—C5—C7 | 124.17 (17) | N1'—C6'—H6'C | 109.5 |
N1—C6—H6A | 109.5 | H6'A—C6'—H6'C | 109.5 |
N1—C6—H6B | 109.5 | H6'B—C6'—H6'C | 109.5 |
H6A—C6—H6B | 109.5 | C5'—C7'—C8' | 110.84 (18) |
N1—C6—H6C | 109.5 | C5'—C7'—H7'A | 109.5 |
H6A—C6—H6C | 109.5 | C8'—C7'—H7'A | 109.5 |
H6B—C6—H6C | 109.5 | C5'—C7'—H7'B | 109.5 |
C5—C7—C8 | 114.85 (17) | C8'—C7'—H7'B | 109.5 |
C5—C7—H7A | 108.6 | H7'A—C7'—H7'B | 108.1 |
C8—C7—H7A | 108.6 | O1—C8'—C7' | 113.34 (18) |
C5—C7—H7B | 108.6 | O1—C8'—H8'A | 108.9 |
C8—C7—H7B | 108.6 | C7'—C8'—H8'A | 108.9 |
H7A—C7—H7B | 107.5 | O1—C8'—H8'B | 108.9 |
O1—C8—C7 | 108.63 (17) | C7'—C8'—H8'B | 108.9 |
O1—C8—H8A | 110.0 | H8'A—C8'—H8'B | 107.7 |
C7—C8—H8A | 110.0 | ||
C5—N1—N2—N3 | 0.1 (2) | N4—Cu1—O1—C8' | 176.37 (16) |
C6—N1—N2—N3 | −179.1 (2) | N4'—Cu1—O1—C8' | −6.32 (16) |
N1—N2—N3—N4 | −0.3 (2) | Cl2—Cu1—O1—C8' | −95.39 (16) |
N2—N3—N4—C5 | 0.4 (2) | Cl1—Cu1—O1—C8' | 84.86 (15) |
N2—N3—N4—Cu1 | −177.93 (15) | C5'—N1'—N2'—N3' | 0.4 (2) |
N4'—Cu1—N4—C5 | −23.5 (4) | C6'—N1'—N2'—N3' | −176.6 (2) |
Cl2—Cu1—N4—C5 | −122.50 (19) | N1'—N2'—N3'—N4' | 0.2 (2) |
Cl1—Cu1—N4—C5 | 88.47 (19) | N2'—N3'—N4'—C5' | −0.8 (2) |
O1—Cu1—N4—C5 | −11.72 (19) | N2'—N3'—N4'—Cu1 | 173.44 (15) |
N4'—Cu1—N4—N3 | 154.4 (3) | N4—Cu1—N4'—C5' | 34.3 (4) |
Cl2—Cu1—N4—N3 | 55.38 (16) | Cl2—Cu1—N4'—C5' | 133.38 (16) |
Cl1—Cu1—N4—N3 | −93.65 (15) | Cl1—Cu1—N4'—C5' | −77.75 (16) |
O1—Cu1—N4—N3 | 166.16 (16) | O1—Cu1—N4'—C5' | 22.63 (16) |
N3—N4—C5—N1 | −0.4 (2) | N4—Cu1—N4'—N3' | −138.7 (3) |
Cu1—N4—C5—N1 | 177.68 (14) | Cl2—Cu1—N4'—N3' | −39.63 (16) |
N3—N4—C5—C7 | −179.0 (2) | Cl1—Cu1—N4'—N3' | 109.24 (16) |
Cu1—N4—C5—C7 | −1.0 (3) | O1—Cu1—N4'—N3' | −150.39 (17) |
N2—N1—C5—N4 | 0.2 (2) | N3'—N4'—C5'—N1' | 1.0 (2) |
C6—N1—C5—N4 | 179.3 (2) | Cu1—N4'—C5'—N1' | −172.99 (13) |
N2—N1—C5—C7 | 178.9 (2) | N3'—N4'—C5'—C7' | 179.3 (2) |
C6—N1—C5—C7 | −1.9 (3) | Cu1—N4'—C5'—C7' | 5.3 (3) |
N4—C5—C7—C8 | −17.9 (3) | N2'—N1'—C5'—N4' | −0.8 (2) |
N1—C5—C7—C8 | 163.66 (19) | C6'—N1'—C5'—N4' | 175.7 (2) |
C5—C7—C8—O1 | 65.3 (2) | N2'—N1'—C5'—C7' | −179.1 (2) |
C7—C8—O1—C8' | 151.14 (18) | C6'—N1'—C5'—C7' | −2.6 (4) |
C7—C8—O1—Cu1 | −79.00 (17) | N4'—C5'—C7'—C8' | −60.8 (3) |
N4—Cu1—O1—C8 | 48.72 (12) | N1'—C5'—C7'—C8' | 117.2 (2) |
N4'—Cu1—O1—C8 | −133.97 (12) | C8—O1—C8'—C7' | 88.5 (2) |
Cl2—Cu1—O1—C8 | 136.97 (11) | Cu1—O1—C8'—C7' | −35.1 (2) |
Cl1—Cu1—O1—C8 | −42.78 (12) | C5'—C7'—C8'—O1 | 71.8 (2) |
D—H···A | D—H | H···A | D···A | D—H···A |
C7—H7A···Cl2i | 0.97 | 2.79 | 3.697 (2) | 156 |
C7′—H7′B···N3ii | 0.97 | 2.59 | 3.484 (3) | 154 |
Symmetry codes: (i) x−1, y, z; (ii) x−1/2, −y+1/2, z−1/2. |
Experimental details
Crystal data | |
Chemical formula | [CuCl2(C8H14N8O)] |
Mr | 372.71 |
Crystal system, space group | Monoclinic, P21/n |
Temperature (K) | 293 |
a, b, c (Å) | 8.566 (2), 13.611 (3), 12.633 (3) |
β (°) | 108.54 (2) |
V (Å3) | 1396.5 (6) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 1.96 |
Crystal size (mm) | 0.56 × 0.38 × 0.08 |
Data collection | |
Diffractometer | Nicolet R3m four-circle diffractometer |
Absorption correction | ψ-scan (North et al., 1968) |
Tmin, Tmax | 0.407, 0.859 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 4477, 4095, 3547 |
Rint | 0.020 |
(sin θ/λ)max (Å−1) | 0.705 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.033, 0.092, 1.06 |
No. of reflections | 4095 |
No. of parameters | 183 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.59, −0.56 |
Computer programs: R3m Software (Nicolet, 1980), R3m Software, SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 1997), ORTEP-3 (Farrugia, 1997), SHELXL97.
Cu1—N4 | 2.002 (2) | Cu1—Cl1 | 2.2557 (7) |
Cu1—N4' | 2.003 (2) | Cu1—O1 | 2.499 (2) |
Cu1—Cl2 | 2.2464 (7) | ||
N4—Cu1—N4' | 166.77 (7) | Cl2—Cu1—Cl1 | 148.75 (3) |
N4—Cu1—Cl2 | 91.29 (5) | N4—Cu1—O1 | 81.73 (6) |
N4'—Cu1—Cl2 | 90.79 (5) | N4'—Cu1—O1 | 85.31 (6) |
N4—Cu1—Cl1 | 92.97 (5) | Cl2—Cu1—O1 | 110.75 (5) |
N4'—Cu1—Cl1 | 92.02 (5) | Cl1—Cu1—O1 | 100.50 (4) |
D—H···A | D—H | H···A | D···A | D—H···A |
C7—H7A···Cl2i | 0.97 | 2.79 | 3.697 (2) | 156 |
C7'—H7'B···N3ii | 0.97 | 2.59 | 3.484 (3) | 154 |
Symmetry codes: (i) x−1, y, z; (ii) x−1/2, −y+1/2, z−1/2. |
Subscribe to Acta Crystallographica Section C: Structural Chemistry
The full text of this article is available to subscribers to the journal.
- Information on subscribing
- Sample issue
- Purchase subscription
- Reduced-price subscriptions
- If you have already subscribed, you may need to register
Binuclear N-substituted tetrazoles are of interest as potential chelating ligands (Downard et al., 1995). Some molecular complexes of binuclear substituted tetrazoles have been reported in the literature (Gaponik et al., 1990; Lavrenova et al., 1991; Downard et al., 1995; van Koningsbruggen et al., 2001). An inspection of the Cambridge Structural Database (release April 2001; Allen & Kennard, 1993) with respect to binuclear N-substituted tetrazole complexes revealed only a thallium(III) organometallic compound with 1,2-bis(tetrazol-5-yl)benzene as the ligand molecule (Bhandari et al., 2000). The crystal structure of a non-chelate complex of 1,2-bis(tetrazol-1-yl)propane with iron(II) perchlorate has been also reported (van Koningsbruggen et al., 2000). In this paper, we present the molecular and crystal structures of a copper(II) complex with 1,5-bis(1-methyl-1H-tetrazol-5-yl)-3-oxopentane, (I). \sch
In compound (I), the coordination polyhedron of the Cu atom is somewhat distorted from a perfect square pyramid, as is apparent from the observed τ value of 0.3 (values of 0 and 1 are indicative of idealized square-pyramidal and trigonal-bipyramidal geometries, respectively; Addison et al., 1984). The equatorial positions of the pyramid are occupied by atoms Cl1 and Cl2 [Cu1—Cl1 2.2557 (7) and Cu1—Cl2 2.2464 (7) Å], and by atoms N4 and N4' of the ligand molecule [Cu—N4 2.002 (2) and Cu—N4' 2.003 (2) Å]. These Cu—Cl and Cu—N distances are in the normal range of those previously observed for CuII complexes. Atom O1 of the ligand molecule lies in the axial position of the pyramid. The Cu1—O1 distance of 2.499 (2) Å is significantly longer than the usual bonding distance (Orpen et al., 1989), representing a weak Cu—O interaction. The ligand molecule is tridentate.
Both tetrazole rings of the ligand in (I) have very similar geometries. They are both planar, to within 0.006 (2) Å for the ring with primed atom numbering, and 0.003 (2) Å for the ring numbered without primes (Fig. 1). The bond distances and angles in the tetrazole fragments of (I) are consistent with those previously observed for tetrazole rings. The dihedral angle between the planes of the two tetrazole rings in the ligand molecule is 18.86 (7)°.
Inspecting the packing structure of (I), the following peculiarities may be discerned. There are no classical hydrogen bonds in the structure, but the intermolecular contacts C7—H7A···Cl2i and C7'-H7'B···N3ii may be noted [symmetry codes: (i) x - 1, y, z; (ii) x - 1/2, 1/2 - y, z - 1/2 Check!]. Taking these weak interactions into account, two types of infinite one-dimensional chains may be seen in the structure of (I). Chains of the first type are formed by C7—H7A···Cl2 interactions and run parallel to the a axis. Chains of the second type are due to C7'-H7'B···N3 contacts and are oriented along the [101] direction. The connection of each complex with four others via these interactions leads to sheets parallel to the (010) plane. No pronounced interaction could be found between the sheets.