Supporting information
Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270101017887/fr1349sup1.cif | |
Structure factor file (CIF format) https://doi.org/10.1107/S0108270101017887/fr1349Isup2.hkl |
CCDC reference: 1304851
Equimolar quantities of strontium chloride hexahydrate and of (NH4)(L1) were separately dissolved in water. When the solutions were mixed a pink crystalline precipitate of (I) was produced. Analysis, found C 26.0, H 4.3, N 21.6%; C14H28N10O14Sr requires C 25.9, H 4.4, N 21.6%. Crystals suitable for single-crystal X-ray diffraction were selected directly from the analytical sample.
H atoms were treated as riding atoms with C—H 0.98 Å (CH3) or 0.99 Å (CH2), and N—H 0.88 Å; water molecules were handled via DFIX followed by AFIX. The barium analogue appears to be isomorphous, with a = 24.8881 (8), b = 6.8332 (2), c = 14.6302 (3) Å, β = 93.5292 (9)°, V = 2483.27 (12) Å3.
Data collection: Kappa-CCD server software (Nonius, 1997); cell refinement: DENZO-SMN (Otwinowski & Minor, 1997); data reduction: DENZO-SMN (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2001); software used to prepare material for publication: SHELXL97 (Sheldrick, 1997) and PRPKAPPA (Ferguson, 1999).
C14H26N10O13Sr·H2O | F(000) = 1328 |
Mr = 648.08 | Dx = 1.779 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 25.0078 (8) Å | Cell parameters from 5162 reflections |
b = 6.7416 (1) Å | θ = 3.0–27.5° |
c = 14.3677 (4) Å | µ = 2.32 mm−1 |
β = 92.495 (1)° | T = 120 K |
V = 2419.99 (11) Å3 | Block, pink |
Z = 4 | 0.46 × 0.28 × 0.20 mm |
Kappa-CCD diffractometer | 5162 independent reflections |
Radiation source: fine-focus sealed X-ray tube | 4318 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.049 |
ϕ scans and ω scans with κ offsets | θmax = 27.5°, θmin = 3.0° |
Absorption correction: multi-scan DENZO-SMN (Otwinowski & Minor, 1997) | h = −32→32 |
Tmin = 0.415, Tmax = 0.654 | k = −8→5 |
10993 measured reflections | l = −11→18 |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.040 | H-atom parameters constrained |
wR(F2) = 0.102 | w = 1/[σ2(Fo2) + (0.0486P)2 + 1.798P] where P = (Fo2 + 2Fc2)/3 |
S = 1.06 | (Δ/σ)max = 0.001 |
5162 reflections | Δρmax = 0.62 e Å−3 |
355 parameters | Δρmin = −0.69 e Å−3 |
0 restraints | Extinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.0151 (7) |
C14H26N10O13Sr·H2O | V = 2419.99 (11) Å3 |
Mr = 648.08 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 25.0078 (8) Å | µ = 2.32 mm−1 |
b = 6.7416 (1) Å | T = 120 K |
c = 14.3677 (4) Å | 0.46 × 0.28 × 0.20 mm |
β = 92.495 (1)° |
Kappa-CCD diffractometer | 5162 independent reflections |
Absorption correction: multi-scan DENZO-SMN (Otwinowski & Minor, 1997) | 4318 reflections with I > 2σ(I) |
Tmin = 0.415, Tmax = 0.654 | Rint = 0.049 |
10993 measured reflections |
R[F2 > 2σ(F2)] = 0.040 | 0 restraints |
wR(F2) = 0.102 | H-atom parameters constrained |
S = 1.06 | Δρmax = 0.62 e Å−3 |
5162 reflections | Δρmin = −0.69 e Å−3 |
355 parameters |
Experimental. The program DENZO-SMN (Otwinowski & Minor, 1997) uses a scaling algorithm [Fox, G·C. & Holmes, K·C. (1966). Acta Cryst. 20, 886–891] which effectively corrects for absorption effects. High redundancy data were used in the scaling program hence the 'multi-scan' code word was used. No transmission coefficients are available from the program (only scale factors for each frame). The scale factors in the experimental table are calculated from the 'size' command in the SHELXL97 input file. |
Geometry. Mean-plane data from the final SHELXL97 refinement run:- |
x | y | z | Uiso*/Ueq | ||
Sr1 | 0.278327 (10) | 0.14831 (4) | 0.407412 (18) | 0.01843 (11) | |
N11 | 0.01874 (9) | 0.2683 (4) | 0.53178 (17) | 0.0208 (5) | |
C12 | 0.05038 (11) | 0.2338 (4) | 0.4614 (2) | 0.0205 (6) | |
N12 | 0.10277 (9) | 0.2441 (4) | 0.47859 (17) | 0.0220 (5) | |
C121 | 0.12639 (11) | 0.3021 (4) | 0.5692 (2) | 0.0218 (6) | |
C122 | 0.18571 (11) | 0.3467 (4) | 0.5615 (2) | 0.0210 (6) | |
O121 | 0.20475 (8) | 0.3312 (3) | 0.48286 (15) | 0.0266 (5) | |
O122 | 0.21081 (8) | 0.3955 (3) | 0.63527 (15) | 0.0262 (5) | |
C13 | 0.06986 (12) | 0.1649 (5) | 0.2968 (2) | 0.0264 (7) | |
N13 | 0.03225 (9) | 0.1908 (4) | 0.37172 (17) | 0.0214 (5) | |
C14 | −0.02214 (11) | 0.1642 (4) | 0.3499 (2) | 0.0213 (6) | |
O14 | −0.03737 (8) | 0.1097 (3) | 0.27222 (15) | 0.0289 (5) | |
C15 | −0.05790 (11) | 0.2048 (4) | 0.4251 (2) | 0.0194 (6) | |
N15 | −0.11010 (10) | 0.1790 (4) | 0.40233 (18) | 0.0234 (5) | |
O15 | −0.14334 (8) | 0.2143 (3) | 0.46589 (15) | 0.0264 (5) | |
C16 | −0.03460 (11) | 0.2595 (4) | 0.5153 (2) | 0.0210 (6) | |
N16 | −0.06507 (10) | 0.3018 (4) | 0.58490 (18) | 0.0240 (5) | |
N21 | 0.45799 (10) | −0.1293 (3) | 0.17412 (17) | 0.0204 (5) | |
C22 | 0.42906 (11) | −0.1471 (4) | 0.0951 (2) | 0.0193 (6) | |
N22 | 0.37728 (9) | −0.1013 (4) | 0.09359 (17) | 0.0202 (5) | |
C221 | 0.35075 (11) | −0.0345 (4) | 0.17601 (19) | 0.0208 (6) | |
C222 | 0.32671 (11) | −0.2006 (4) | 0.2331 (2) | 0.0198 (6) | |
O221 | 0.31165 (8) | −0.1533 (3) | 0.31213 (14) | 0.0227 (4) | |
O222 | 0.32238 (9) | −0.3706 (3) | 0.19718 (15) | 0.0276 (5) | |
C23 | 0.41327 (11) | −0.2412 (5) | −0.0713 (2) | 0.0233 (6) | |
N23 | 0.44894 (9) | −0.2118 (4) | 0.01147 (16) | 0.0196 (5) | |
C24 | 0.50256 (11) | −0.2608 (4) | 0.0059 (2) | 0.0206 (6) | |
O24 | 0.51986 (8) | −0.3288 (3) | −0.06648 (14) | 0.0259 (5) | |
C25 | 0.53598 (11) | −0.2266 (4) | 0.0896 (2) | 0.0197 (6) | |
N25 | 0.58752 (9) | −0.2685 (4) | 0.07911 (17) | 0.0223 (5) | |
O25 | 0.62163 (8) | −0.2452 (3) | 0.14750 (14) | 0.0243 (4) | |
C26 | 0.51094 (11) | −0.1593 (4) | 0.1726 (2) | 0.0205 (6) | |
N26 | 0.54082 (10) | −0.1304 (4) | 0.24855 (17) | 0.0250 (6) | |
O1 | 0.25470 (8) | 0.3568 (3) | 0.26200 (14) | 0.0247 (5) | |
O2 | 0.34375 (8) | 0.1136 (3) | 0.55056 (15) | 0.0255 (5) | |
O3 | 0.29895 (8) | 0.5366 (3) | 0.44185 (14) | 0.0227 (4) | |
O4 | 0.24605 (8) | −0.1119 (3) | 0.52799 (15) | 0.0299 (5) | |
O5 | 0.19435 (8) | −0.0023 (3) | 0.32021 (15) | 0.0260 (5) | |
O6 | 0.15973 (9) | −0.3963 (3) | 0.29473 (16) | 0.0298 (5) | |
H12 | 0.1242 | 0.2149 | 0.4336 | 0.026* | |
H12A | 0.1218 | 0.1936 | 0.6146 | 0.026* | |
H12B | 0.1079 | 0.4212 | 0.5921 | 0.026* | |
H13A | 0.0914 | 0.0454 | 0.3088 | 0.040* | |
H13B | 0.0935 | 0.2807 | 0.2948 | 0.040* | |
H13C | 0.0498 | 0.1513 | 0.2371 | 0.040* | |
H16A | −0.0504 | 0.3343 | 0.6396 | 0.029* | |
H16B | −0.1001 | 0.2977 | 0.5768 | 0.029* | |
H22 | 0.3584 | −0.1119 | 0.0407 | 0.024* | |
H22A | 0.3219 | 0.0590 | 0.1565 | 0.025* | |
H22B | 0.3769 | 0.0393 | 0.2164 | 0.025* | |
H23A | 0.3842 | −0.3314 | −0.0561 | 0.035* | |
H23B | 0.4336 | −0.2987 | −0.1215 | 0.035* | |
H23C | 0.3982 | −0.1133 | −0.0916 | 0.035* | |
H26A | 0.5261 | −0.0916 | 0.3000 | 0.030* | |
H26B | 0.5756 | −0.1498 | 0.2481 | 0.030* | |
H11C | 0.2817 | 0.4222 | 0.2405 | 0.030* | |
H12D | 0.2337 | 0.2858 | 0.2165 | 0.030* | |
H21C | 0.3793 | 0.1390 | 0.5398 | 0.031* | |
H22D | 0.3489 | 0.0223 | 0.5938 | 0.031* | |
H31C | 0.3052 | 0.6360 | 0.4020 | 0.027* | |
H32D | 0.2696 | 0.5802 | 0.4805 | 0.027* | |
H41C | 0.2111 | −0.1501 | 0.5350 | 0.036* | |
H42D | 0.2670 | −0.1227 | 0.5810 | 0.036* | |
H51C | 0.1875 | −0.1460 | 0.3263 | 0.031* | |
H51D | 0.1976 | 0.0242 | 0.2603 | 0.031* | |
H61C | 0.1412 | −0.3777 | 0.2341 | 0.036* | |
H62D | 0.1916 | −0.4864 | 0.2983 | 0.036* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Sr1 | 0.01743 (15) | 0.02178 (16) | 0.01626 (15) | 0.00020 (10) | 0.00287 (10) | 0.00017 (10) |
N11 | 0.0192 (12) | 0.0236 (12) | 0.0197 (12) | −0.0001 (9) | 0.0027 (10) | 0.0017 (10) |
C12 | 0.0194 (13) | 0.0204 (14) | 0.0217 (15) | −0.0006 (11) | 0.0018 (11) | 0.0020 (11) |
N12 | 0.0201 (12) | 0.0271 (14) | 0.0190 (13) | −0.0012 (10) | 0.0030 (10) | −0.0008 (10) |
C121 | 0.0205 (14) | 0.0264 (15) | 0.0186 (14) | 0.0001 (11) | 0.0031 (11) | 0.0000 (12) |
C122 | 0.0199 (13) | 0.0206 (14) | 0.0223 (15) | 0.0032 (11) | 0.0000 (11) | 0.0016 (11) |
O121 | 0.0208 (10) | 0.0371 (12) | 0.0221 (11) | −0.0003 (9) | 0.0041 (9) | −0.0047 (9) |
O122 | 0.0247 (10) | 0.0308 (11) | 0.0227 (11) | 0.0022 (9) | −0.0027 (9) | −0.0031 (9) |
C13 | 0.0216 (14) | 0.0361 (17) | 0.0217 (15) | −0.0011 (12) | 0.0052 (12) | 0.0001 (13) |
N13 | 0.0180 (11) | 0.0290 (13) | 0.0173 (12) | −0.0003 (10) | 0.0029 (10) | 0.0006 (10) |
C14 | 0.0199 (13) | 0.0235 (15) | 0.0204 (15) | −0.0012 (11) | 0.0000 (11) | 0.0025 (11) |
O14 | 0.0251 (11) | 0.0422 (13) | 0.0195 (11) | −0.0041 (9) | 0.0011 (9) | −0.0011 (9) |
C15 | 0.0161 (12) | 0.0231 (14) | 0.0191 (14) | 0.0021 (10) | 0.0018 (11) | 0.0015 (11) |
N15 | 0.0217 (12) | 0.0234 (13) | 0.0251 (14) | −0.0002 (9) | 0.0019 (10) | 0.0046 (10) |
O15 | 0.0184 (10) | 0.0325 (11) | 0.0288 (12) | −0.0006 (9) | 0.0053 (9) | 0.0001 (9) |
C16 | 0.0209 (14) | 0.0205 (14) | 0.0217 (15) | 0.0004 (11) | 0.0028 (11) | 0.0039 (11) |
N16 | 0.0185 (12) | 0.0322 (14) | 0.0215 (13) | −0.0001 (10) | 0.0022 (10) | −0.0006 (11) |
N21 | 0.0210 (12) | 0.0236 (13) | 0.0166 (12) | 0.0008 (9) | 0.0020 (10) | −0.0001 (9) |
C22 | 0.0218 (13) | 0.0188 (13) | 0.0176 (14) | −0.0001 (11) | 0.0040 (11) | 0.0006 (11) |
N22 | 0.0201 (11) | 0.0242 (12) | 0.0165 (12) | 0.0013 (9) | 0.0038 (9) | −0.0008 (10) |
C221 | 0.0214 (14) | 0.0227 (14) | 0.0187 (14) | 0.0010 (11) | 0.0068 (11) | −0.0018 (11) |
C222 | 0.0162 (13) | 0.0261 (14) | 0.0172 (14) | 0.0001 (11) | 0.0021 (11) | 0.0007 (11) |
O221 | 0.0239 (10) | 0.0263 (11) | 0.0183 (10) | 0.0010 (8) | 0.0048 (8) | −0.0015 (8) |
O222 | 0.0365 (12) | 0.0241 (11) | 0.0229 (11) | −0.0053 (9) | 0.0102 (9) | −0.0045 (9) |
C23 | 0.0212 (14) | 0.0300 (16) | 0.0187 (14) | −0.0011 (12) | 0.0009 (11) | −0.0010 (12) |
N23 | 0.0210 (12) | 0.0225 (12) | 0.0156 (12) | 0.0017 (9) | 0.0038 (10) | 0.0003 (9) |
C24 | 0.0227 (14) | 0.0206 (14) | 0.0187 (14) | −0.0006 (11) | 0.0038 (11) | 0.0024 (11) |
O24 | 0.0272 (11) | 0.0330 (12) | 0.0181 (11) | 0.0043 (9) | 0.0073 (9) | −0.0033 (9) |
C25 | 0.0195 (13) | 0.0229 (14) | 0.0170 (14) | 0.0003 (11) | 0.0037 (11) | 0.0005 (11) |
N25 | 0.0224 (12) | 0.0237 (13) | 0.0210 (13) | 0.0012 (10) | 0.0027 (10) | 0.0032 (10) |
O25 | 0.0211 (10) | 0.0295 (12) | 0.0223 (11) | 0.0025 (8) | 0.0011 (8) | 0.0030 (9) |
C26 | 0.0221 (14) | 0.0207 (14) | 0.0189 (14) | 0.0013 (11) | 0.0045 (11) | 0.0010 (11) |
N26 | 0.0221 (12) | 0.0374 (15) | 0.0157 (12) | 0.0033 (10) | 0.0025 (10) | −0.0010 (10) |
O1 | 0.0245 (10) | 0.0290 (11) | 0.0204 (11) | −0.0069 (8) | 0.0013 (9) | 0.0024 (8) |
O2 | 0.0214 (10) | 0.0331 (12) | 0.0222 (11) | −0.0022 (8) | 0.0028 (8) | 0.0053 (9) |
O3 | 0.0216 (10) | 0.0236 (11) | 0.0233 (11) | −0.0002 (8) | 0.0070 (9) | 0.0012 (8) |
O4 | 0.0206 (10) | 0.0436 (14) | 0.0255 (12) | −0.0060 (9) | 0.0009 (9) | 0.0074 (10) |
O5 | 0.0252 (11) | 0.0303 (11) | 0.0224 (11) | −0.0026 (9) | 0.0012 (9) | 0.0004 (9) |
O6 | 0.0284 (11) | 0.0329 (12) | 0.0279 (12) | 0.0019 (9) | −0.0009 (9) | −0.0010 (10) |
Sr1—O121 | 2.501 (2) | N23—C24 | 1.387 (4) |
Sr1—O1 | 2.566 (2) | C24—C25 | 1.453 (4) |
Sr1—O2 | 2.582 (2) | C25—C26 | 1.445 (4) |
Sr1—O5 | 2.604 (2) | C26—N21 | 1.341 (4) |
N11—C12 | 1.331 (4) | C22—N22 | 1.330 (4) |
C12—N13 | 1.379 (4) | C23—N23 | 1.469 (4) |
N13—C14 | 1.394 (3) | C24—O24 | 1.232 (3) |
C14—C15 | 1.458 (4) | C25—N25 | 1.334 (4) |
C15—C16 | 1.446 (4) | N25—O25 | 1.282 (3) |
C16—N11 | 1.346 (4) | C26—N26 | 1.310 (4) |
C12—N12 | 1.325 (4) | N22—C221 | 1.454 (3) |
C13—N13 | 1.470 (4) | N22—H22 | 0.8800 |
C14—O14 | 1.220 (4) | C221—C222 | 1.526 (4) |
C15—N15 | 1.343 (4) | C221—H22A | 0.9900 |
N15—O15 | 1.284 (3) | C221—H22B | 0.9900 |
C16—N16 | 1.314 (4) | C222—O221 | 1.253 (3) |
Sr1—O221 | 2.608 (2) | C222—O222 | 1.260 (3) |
Sr1—O4 | 2.617 (2) | C23—H23A | 0.9800 |
Sr1—O3 | 2.710 (2) | C23—H23B | 0.9800 |
Sr1—O25i | 2.751 (2) | C23—H23C | 0.9800 |
N12—C121 | 1.460 (4) | N26—H26A | 0.8800 |
N12—H12 | 0.8800 | N26—H26B | 0.8800 |
C121—C122 | 1.522 (4) | O1—H11C | 0.8742 |
C121—H12A | 0.9900 | O1—H12D | 0.9498 |
C121—H12B | 0.9900 | O2—H21C | 0.9239 |
C122—O121 | 1.250 (4) | O2—H22D | 0.8795 |
C122—O122 | 1.252 (4) | O3—H31C | 0.8996 |
C13—H13A | 0.9800 | O3—H32D | 0.9842 |
C13—H13B | 0.9800 | O4—H41C | 0.9209 |
C13—H13C | 0.9800 | O4—H42D | 0.9082 |
N16—H16A | 0.8800 | O5—H51C | 0.9884 |
N16—H16B | 0.8800 | O5—H51D | 0.8868 |
N21—C22 | 1.325 (4) | O6—H61C | 0.9770 |
C22—N23 | 1.390 (4) | O6—H62D | 1.0008 |
O121—Sr1—O1 | 86.28 (7) | N16—C16—C15 | 120.9 (3) |
O121—Sr1—O2 | 98.75 (7) | N11—C16—C15 | 121.7 (3) |
O1—Sr1—O2 | 144.45 (7) | C16—N16—H16A | 120.0 |
O121—Sr1—O5 | 78.91 (7) | C16—N16—H16B | 120.0 |
O1—Sr1—O5 | 70.70 (7) | H16A—N16—H16B | 120.0 |
O2—Sr1—O5 | 144.84 (7) | C22—N21—C26 | 118.4 (3) |
O121—Sr1—O221 | 150.43 (7) | N21—C22—N22 | 119.2 (3) |
O1—Sr1—O221 | 93.85 (6) | N21—C22—N23 | 124.5 (3) |
O2—Sr1—O221 | 98.14 (7) | N22—C22—N23 | 116.3 (3) |
O5—Sr1—O221 | 73.31 (6) | C22—N22—C221 | 122.5 (2) |
O121—Sr1—O4 | 77.85 (7) | C22—N22—H22 | 118.8 |
O1—Sr1—O4 | 147.08 (7) | C221—N22—H22 | 118.8 |
O2—Sr1—O4 | 67.36 (7) | N22—C221—C222 | 114.5 (2) |
O5—Sr1—O4 | 77.98 (7) | N22—C221—H22A | 108.6 |
O221—Sr1—O4 | 86.55 (7) | C222—C221—H22A | 108.6 |
O121—Sr1—O3 | 65.31 (6) | N22—C221—H22B | 108.6 |
O1—Sr1—O3 | 69.79 (6) | C222—C221—H22B | 108.6 |
O2—Sr1—O3 | 80.40 (6) | H22A—C221—H22B | 107.6 |
O5—Sr1—O3 | 127.41 (6) | O221—C222—O222 | 125.3 (3) |
O221—Sr1—O3 | 141.86 (6) | O221—C222—C221 | 116.2 (2) |
O4—Sr1—O3 | 126.04 (7) | O222—C222—C221 | 118.5 (2) |
O121—Sr1—O25i | 133.72 (6) | C222—O221—Sr1 | 142.12 (19) |
O1—Sr1—O25i | 78.68 (6) | N23—C23—H23A | 109.5 |
O2—Sr1—O25i | 72.51 (6) | N23—C23—H23B | 109.5 |
O5—Sr1—O25i | 133.48 (6) | H23A—C23—H23B | 109.5 |
O221—Sr1—O25i | 74.79 (6) | N23—C23—H23C | 109.5 |
O4—Sr1—O25i | 132.46 (6) | H23A—C23—H23C | 109.5 |
O3—Sr1—O25i | 68.41 (6) | H23B—C23—H23C | 109.5 |
C12—N11—C16 | 118.5 (3) | C24—N23—C22 | 120.5 (2) |
N12—C12—N11 | 117.7 (3) | C24—N23—C23 | 118.4 (2) |
N12—C12—N13 | 117.9 (3) | C22—N23—C23 | 121.0 (2) |
N11—C12—N13 | 124.4 (3) | O24—C24—N23 | 120.9 (3) |
C12—N12—C121 | 122.6 (2) | O24—C24—C25 | 123.2 (3) |
C12—N12—H12 | 118.7 | N23—C24—C25 | 115.9 (3) |
C121—N12—H12 | 118.7 | N25—C25—C26 | 127.9 (3) |
N12—C121—C122 | 110.2 (2) | N25—C25—C24 | 113.4 (3) |
N12—C121—H12A | 109.6 | C26—C25—C24 | 118.6 (3) |
C122—C121—H12A | 109.6 | O25—N25—C25 | 120.1 (2) |
N12—C121—H12B | 109.6 | N25—O25—Sr1ii | 109.34 (16) |
C122—C121—H12B | 109.6 | N26—C26—N21 | 119.5 (3) |
H12A—C121—H12B | 108.1 | N26—C26—C25 | 118.9 (3) |
O121—C122—O122 | 126.2 (3) | N21—C26—C25 | 121.6 (3) |
O121—C122—C121 | 117.4 (3) | C26—N26—H26A | 120.0 |
O122—C122—C121 | 116.4 (3) | C26—N26—H26B | 120.0 |
C122—O121—Sr1 | 138.56 (19) | H26A—N26—H26B | 120.0 |
N13—C13—H13A | 109.5 | Sr1—O1—H11C | 114.3 |
N13—C13—H13B | 109.5 | Sr1—O1—H12D | 112.6 |
H13A—C13—H13B | 109.5 | H11C—O1—H12D | 115.1 |
N13—C13—H13C | 109.5 | Sr1—O2—H21C | 115.5 |
H13A—C13—H13C | 109.5 | Sr1—O2—H22D | 133.9 |
H13B—C13—H13C | 109.5 | H21C—O2—H22D | 97.9 |
C12—N13—C14 | 121.0 (2) | Sr1—O3—H31C | 129.8 |
C12—N13—C13 | 121.0 (2) | Sr1—O3—H32D | 104.5 |
C14—N13—C13 | 118.0 (2) | H31C—O3—H32D | 106.9 |
O14—C14—N13 | 120.4 (3) | Sr1—O4—H41C | 125.5 |
O14—C14—C15 | 123.9 (3) | Sr1—O4—H42D | 115.2 |
N13—C14—C15 | 115.7 (3) | H41C—O4—H42D | 113.7 |
N15—C15—C16 | 126.9 (3) | Sr1—O5—H51C | 118.6 |
N15—C15—C14 | 114.6 (3) | Sr1—O5—H51D | 106.5 |
C16—C15—C14 | 118.4 (2) | H51C—O5—H51D | 107.8 |
O15—N15—C15 | 117.1 (2) | H61C—O6—H62D | 118.0 |
N16—C16—N11 | 117.4 (3) | ||
C16—N11—C12—N12 | 179.6 (3) | C26—N21—C22—N23 | 5.8 (4) |
C16—N11—C12—N13 | 0.5 (4) | N21—C22—N22—C221 | −0.9 (4) |
N11—C12—N12—C121 | −3.5 (4) | N23—C22—N22—C221 | 179.1 (2) |
N13—C12—N12—C121 | 175.6 (2) | C22—N22—C221—C222 | −90.3 (3) |
C12—N12—C121—C122 | −166.9 (2) | N22—C221—C222—O221 | 168.3 (2) |
N12—C121—C122—O121 | 1.0 (4) | N22—C221—C222—O222 | −13.2 (4) |
N12—C121—C122—O122 | −179.0 (2) | O222—C222—O221—Sr1 | −152.5 (2) |
O122—C122—O121—Sr1 | 56.2 (4) | C221—C222—O221—Sr1 | 25.8 (4) |
C121—C122—O121—Sr1 | −123.8 (3) | O121—Sr1—O221—C222 | 106.8 (3) |
O1—Sr1—O121—C122 | −173.3 (3) | O1—Sr1—O221—C222 | 17.5 (3) |
O2—Sr1—O121—C122 | −28.8 (3) | O2—Sr1—O221—C222 | −128.9 (3) |
O5—Sr1—O121—C122 | 115.6 (3) | O5—Sr1—O221—C222 | 86.0 (3) |
O221—Sr1—O121—C122 | 95.4 (3) | O4—Sr1—O221—C222 | 164.5 (3) |
O4—Sr1—O121—C122 | 35.7 (3) | O3—Sr1—O221—C222 | −44.2 (3) |
O3—Sr1—O121—C122 | −103.9 (3) | O25i—Sr1—O221—C222 | −59.7 (3) |
O25i—Sr1—O121—C122 | −102.9 (3) | N21—C22—N23—C24 | −0.8 (4) |
N12—C12—N13—C14 | 175.6 (3) | N22—C22—N23—C24 | 179.3 (2) |
N11—C12—N13—C14 | −5.4 (4) | N21—C22—N23—C23 | 175.5 (3) |
N12—C12—N13—C13 | −2.3 (4) | N22—C22—N23—C23 | −4.4 (4) |
N11—C12—N13—C13 | 176.8 (3) | C22—N23—C24—O24 | 175.9 (3) |
C12—N13—C14—O14 | −173.8 (3) | C23—N23—C24—O24 | −0.6 (4) |
C13—N13—C14—O14 | 4.2 (4) | C22—N23—C24—C25 | −4.2 (4) |
C12—N13—C14—C15 | 6.1 (4) | C23—N23—C24—C25 | 179.4 (2) |
C13—N13—C14—C15 | −176.0 (2) | O24—C24—C25—N25 | 2.6 (4) |
O14—C14—C15—N15 | −0.4 (4) | N23—C24—C25—N25 | −177.4 (2) |
N13—C14—C15—N15 | 179.7 (2) | O24—C24—C25—C26 | −175.8 (3) |
O14—C14—C15—C16 | 177.1 (3) | N23—C24—C25—C26 | 4.3 (4) |
N13—C14—C15—C16 | −2.7 (4) | C26—C25—N25—O25 | −1.8 (4) |
C16—C15—N15—O15 | 3.2 (4) | C24—C25—N25—O25 | −180.0 (2) |
C14—C15—N15—O15 | −179.5 (2) | C25—N25—O25—Sr1ii | 179.7 (2) |
C12—N11—C16—N16 | −177.4 (3) | C22—N21—C26—N26 | 175.8 (3) |
C12—N11—C16—C15 | 3.0 (4) | C22—N21—C26—C25 | −5.5 (4) |
N15—C15—C16—N16 | −4.2 (5) | N25—C25—C26—N26 | 1.2 (5) |
C14—C15—C16—N16 | 178.5 (3) | C24—C25—C26—N26 | 179.2 (3) |
N15—C15—C16—N11 | 175.4 (3) | N25—C25—C26—N21 | −177.6 (3) |
C14—C15—C16—N11 | −1.8 (4) | C24—C25—C26—N21 | 0.4 (4) |
C26—N21—C22—N22 | −174.3 (2) |
Symmetry codes: (i) −x+1, y+1/2, −z+1/2; (ii) −x+1, y−1/2, −z+1/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
N16—H16A···O14iii | 0.88 | 1.96 | 2.814 (3) | 164 |
N16—H16B···O15 | 0.88 | 1.97 | 2.610 (3) | 129 |
N22—H22···O3iv | 0.88 | 2.07 | 2.900 (3) | 156 |
N26—H26A···O24v | 0.88 | 2.00 | 2.745 (3) | 141 |
N26—H26B···O25 | 0.88 | 1.99 | 2.654 (3) | 131 |
O1—H11C···O222vi | 0.87 | 1.85 | 2.692 (3) | 161 |
O1—H12D···O122iv | 0.95 | 1.77 | 2.691 (3) | 163 |
O2—H21C···O24i | 0.93 | 2.54 | 3.431 (3) | 161 |
O2—H21C···N25i | 0.93 | 2.03 | 2.708 (3) | 129 |
O2—H22D···O222v | 0.88 | 1.94 | 2.740 (3) | 150 |
O3—H31C···O221vi | 0.90 | 1.93 | 2.828 (3) | 175 |
O3—H32D···O4vi | 0.98 | 2.27 | 3.007 (3) | 131 |
O4—H41C···O15vii | 0.92 | 1.75 | 2.665 (3) | 173 |
O4—H42D···O222v | 0.91 | 2.12 | 3.027 (3) | 174 |
O5—H51C···O6 | 0.99 | 1.87 | 2.813 (3) | 158 |
O5—H51D···O122iv | 0.89 | 1.92 | 2.801 (3) | 173 |
O6—H61C···O14viii | 0.98 | 2.60 | 3.168 (3) | 118 |
O6—H61C···N15viii | 0.98 | 2.11 | 3.084 (3) | 173 |
O6—H62D···O1ix | 1.00 | 1.99 | 2.955 (3) | 161 |
Symmetry codes: (i) −x+1, y+1/2, −z+1/2; (iii) x, −y+1/2, z+1/2; (iv) x, −y+1/2, z−1/2; (v) x, −y−1/2, z+1/2; (vi) x, y+1, z; (vii) −x, −y, −z+1; (viii) −x, y−1/2, −z+1/2; (ix) x, y−1, z. |
Experimental details
Crystal data | |
Chemical formula | C14H26N10O13Sr·H2O |
Mr | 648.08 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 120 |
a, b, c (Å) | 25.0078 (8), 6.7416 (1), 14.3677 (4) |
β (°) | 92.495 (1) |
V (Å3) | 2419.99 (11) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 2.32 |
Crystal size (mm) | 0.46 × 0.28 × 0.20 |
Data collection | |
Diffractometer | Kappa-CCD diffractometer |
Absorption correction | Multi-scan DENZO-SMN (Otwinowski & Minor, 1997) |
Tmin, Tmax | 0.415, 0.654 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 10993, 5162, 4318 |
Rint | 0.049 |
(sin θ/λ)max (Å−1) | 0.649 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.040, 0.102, 1.06 |
No. of reflections | 5162 |
No. of parameters | 355 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.62, −0.69 |
Computer programs: Kappa-CCD server software (Nonius, 1997), DENZO-SMN (Otwinowski & Minor, 1997), SHELXS97 (Sheldrick, 1997), PLATON (Spek, 2001), SHELXL97 (Sheldrick, 1997) and PRPKAPPA (Ferguson, 1999).
Sr1—O121 | 2.501 (2) | Sr1—O221 | 2.608 (2) |
Sr1—O1 | 2.566 (2) | Sr1—O4 | 2.617 (2) |
Sr1—O2 | 2.582 (2) | Sr1—O3 | 2.710 (2) |
Sr1—O5 | 2.604 (2) | Sr1—O25i | 2.751 (2) |
N15—O15 | 1.284 (3) | N25—O25 | 1.282 (3) |
C16—N16 | 1.314 (4) | C26—N26 | 1.310 (4) |
N11—C12—N12—C121 | −3.5 (4) | N21—C22—N22—C221 | −0.9 (4) |
C12—N12—C121—C122 | −166.9 (2) | C22—N22—C221—C222 | −90.3 (3) |
N12—C121—C122—O121 | 1.0 (4) | N22—C221—C222—O221 | 168.3 (2) |
C121—C122—O121—Sr1 | −123.8 (3) | C221—C222—O221—Sr1 | 25.8 (4) |
Symmetry code: (i) −x+1, y+1/2, −z+1/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
N16—H16A···O14ii | 0.88 | 1.96 | 2.814 (3) | 164 |
N16—H16B···O15 | 0.88 | 1.97 | 2.610 (3) | 129 |
N22—H22···O3iii | 0.88 | 2.07 | 2.900 (3) | 156 |
N26—H26A···O24iv | 0.88 | 2.00 | 2.745 (3) | 141 |
N26—H26B···O25 | 0.88 | 1.99 | 2.654 (3) | 131 |
O1—H11C···O222v | 0.87 | 1.85 | 2.692 (3) | 161 |
O1—H12D···O122iii | 0.95 | 1.77 | 2.691 (3) | 163 |
O2—H21C···O24i | 0.93 | 2.54 | 3.431 (3) | 161 |
O2—H21C···N25i | 0.93 | 2.03 | 2.708 (3) | 129 |
O2—H22D···O222iv | 0.88 | 1.94 | 2.740 (3) | 150 |
O3—H31C···O221v | 0.90 | 1.93 | 2.828 (3) | 175 |
O3—H32D···O4v | 0.98 | 2.27 | 3.007 (3) | 131 |
O4—H41C···O15vi | 0.92 | 1.75 | 2.665 (3) | 173 |
O4—H42D···O222iv | 0.91 | 2.12 | 3.027 (3) | 174 |
O5—H51C···O6 | 0.99 | 1.87 | 2.813 (3) | 158 |
O5—H51D···O122iii | 0.89 | 1.92 | 2.801 (3) | 173 |
O6—H61C···O14vii | 0.98 | 2.60 | 3.168 (3) | 118 |
O6—H61C···N15vii | 0.98 | 2.11 | 3.084 (3) | 173 |
O6—H62D···O1viii | 1.00 | 1.99 | 2.955 (3) | 161 |
Symmetry codes: (i) −x+1, y+1/2, −z+1/2; (ii) x, −y+1/2, z+1/2; (iii) x, −y+1/2, z−1/2; (iv) x, −y−1/2, z+1/2; (v) x, y+1, z; (vi) −x, −y, −z+1; (vii) −x, y−1/2, −z+1/2; (viii) x, y−1, z. |
Subscribe to Acta Crystallographica Section C: Structural Chemistry
The full text of this article is available to subscribers to the journal.
- Information on subscribing
- Sample issue
- Purchase subscription
- Reduced-price subscriptions
- If you have already subscribed, you may need to register
We have recently described and discussed the structures of a number of hydrated metal salts of the anions N-(6-amino-3,4-dihydro-3-methyl-5-nitroso-4-oxopyrimidin-2-yl)glycinate, (L1)- and N-(6-amino-3,4-dihydro-3-methyl- 5-nitroso-4-oxopyrimidin-2-yl)glycylglycinate, (L2)- (Arranz Mascarós et al., 1999, 2000; Low, Arranz et al., 2001a,b; Low, Moreno Sánchez et al., 2001). The simpler ligand (L1)- can form simple hydrated salts [M(H2O)6](L1)2, with no coordination of (L1)- to the metal cation, as when M2+ = Mg2+ or Zn2+ (Arranz Mascarós et al., 1999, 2000); finite molecular aggregates [Li(L1)(H2O)3] and [Mn(L1)2(H2O)4]·6H2O are formed with Li+ and Mn2+, where the molecular aggregates are linked into three-dimensional frameworks by extensive hydrogen bonding (Low, Moreno Sánchez et al., 2001); and with Na+ and K+, organic-inorganic hybrid sheets are formed, consisting of cations and anions only, which are then linked into three-dimensional frameworks by hydrogen bonds (Low, Moreno Sánchez et al., 2001). The hydrated K+ salt of (L2)- takes the form of a three-dimensional coordination polymer, in whose construction the water molecules play no direct role (Low, Arranz et al., 2001b), while in [Ca(L2)2(H2O)3], there are one-dimensional coordination polymer chains built from cations and anions only, linked by hydrogen bonds into a continuous framework (Low, Arranz et al., 2001a). Continuing with our structural study of the metal salts formed by (L1)-, we have now studied the hydrated Sr2+ salt.
Although the composition of the Sr2+ derivative (I) is identical to that of the Mg2+ analogue, M(L1)2·6H2O, the constitution is entirely different. In particular, both anions in (I) are directly coordinated in monodentate fashion to the Sr via a carboxylate O, [Sr(L1)2(H2O)5]·H2O, whereas in the Mg salt there is no coordination of the anions to the cation, thus [Mg(H2O)6](L1)2; one of the anions in (I) is also coordinated, via nitroso O25, to another Sr at the symmetry position (1 - x, 0.5 + y, 0.5 - z); the Sr coordination number is eight, as opposed to six in the Mg salt, but only five of the water molecules are directly bonded to Sr, while the sixth is hydrogen bonded to one of the coordinated water molecules (Fig. 1).
The range of Sr—O distances, 2.501 (2) - 2.751 (2) Å, has an overall mean value of 2.618 (2) Å. However, within this range it is possible to distinguish three types of Sr—O interaction: the bonds to carboxylate O have mean value 2.555 (2) Å, those to water O have mean value 2.616 (2) Å, while the unique bond to nitrosyl O has length 2.751 (2) Å. This ordering of the different types is consistent with the variations observed in the hydrated Na+ and K+ salts of (L1)- (Low, Moreno Sánchez et al., 2001). In [Ca(L2)2(H2O)3], the mean Ca—O distance is 2.420 (4) Å, if all seven ligating O are included, or 2.377 (4) Å if the outlier value for one weakly bound O is omitted. The difference between the mean Sr—O distance in (I) and the mean Ca—O distances in [Ca(L2)2(H2O)3] are ca 0.20 Å if Ca is regarded as seven-coordinate and ca 0.24 Å if Ca is regarded as six coordinate: these differences precisely reflect the differences between the corresponding ionic radii as tabulated by Shannon & Prewitt (1970): Ca2+ (seven coordinate) 1.07 Å, Ca2+ (six coordinate) 1.00 Å, and Sr2+ (eight coordinate) 1.25 Å. The geometry of the SrO8 polyhedron takes the form of a distorted square antiprism, typical of this coordination number.
The effect of the bridging action of one of the anions in (I) is the generation of a coordination polymer chain running parallel to the [010] direction, and generated by the 21 screw axis along (1/2, y, 1/4) (Fig. 2): a second, antiparallel chain is generated by the 21 axis along (1/2, -y, 3/4). It is striking that the formation of the coordination polymer involves only one of the two independent anionic ligands: in the one dimensional coordination polymer formed by Ca2+ and the related anion (L2)- (Low, Arranz et al., 2001a), the polymer chains lie across twofold rotation axes so that both anionic ligands participate in the chain formation. The formation of the one-dimensional chain polymers [Sr(L1)2]n and [Ca(L2)2]n may be contrasted with the formation of organic-inorganic hybrid sheets in the hydrated Na and K salts of (L1)-, in which the nitroso groups act as η1 and η2 ligands to Na and K respectively (Low, Moreno Sánchez et al., 2001).
As in [Ca(L2)2]n, the coordination polymer chains in [Sr(L1)2]n are linked into a single three-dimensional framework by an extensive series of hydrogen bonds. In addition to the intramolecular N—H···O hydrogen bonds as normally found in the anion (Low, Moreno Sánchez et al., 2001). and the O5—H51C···O6 hydrogen bond to the sixth water molecule within the asymmetric unit, there are a total of sixteen independent hydrogen bonds linking the neutral molecular aggregates; some of these reinforce the polymer chains and some link adjacent chains. There are two strictly planar three-centre O—H····O/N systems in which a water O—H moiety acts as the hydrogen bond donor and the ortho-substituent atoms On4 and Nn5 (n = 1 or 2) act as the pair of acceptors (Table 2). In addition there are twelve two-centre hydrogen bonds linking the molecular units, nine of O—H···O type and three of N—H···O type.
Water O1 acts as hydrogen-bond donor, via H11C, to O222iv [symmetry operators are as defined in Table 2], and water O3 acts as donor, via H31C and H31D to O221iv and O4iv respectively: these three translational hydrogen bonds all reinforce the coordination polymer chain along [010]. Similarly water O2 acts as donor, via H21C, to both O24v and N25v in a three-centre hydrogen bond, which again reinforces the [010] chain by following the 21 axis along (1/2, y, 1/4).
To analyse the linking of the coordination polymer chains it is not, in fact, necessary to consider all of the inter-aggregate hydrogen bonds. Just three of the remaining hydrogen bonds, two of N—H···O type and one of the O—H···O hydrogen bonds suffice to demonstrate the three-dimensional framework structure. Amino N16 in the type 1 anion (linked to Sr via O121) acts as hydrogen bond donor, via H16A, to amido O14i, so producing a C(6) zigzag chain running parallel to [001] and generated by the glide plane at y = 0.25: in an entirely similar manner, N26 in the type 2 anion (linked to Sr via O221)acts as hydrogen-bond donor, via H26A, to O24iii, so producing a second C(6) chain parallel to [001], this time generated by the glide plane at y = -0.25. The combination and propagation, of these two simple chain motifs generates a deeply puckered sheet parallel to (100) in the form of a (4,4) net (Batten & Robson, 1998) built from a single type of R44(48) ring (Fig. 3). Two sheets of this type run through each unit cell and they are linked by the coordination polymer chain into bilayers comprising cations and anions. There are, of course, water molecules present which add considerable complexity to the overall hydrogen bonding: nonetheless it is possible to identify both one- and two-dimensional sub-structures (Figs. 2 and 3) built from the ionic components only.
The linking of the (100) bilayers into a continuous framework is most simply envisaged in terms of the formation of a [100] chain motif involving the ionic components together with just one of the water molecules, that containing O4. The cation-anion aggregates at (x, y, z) and (1 - x, -y, 1 - z) are linked by that at (x, 0.5 - y, 0.5 + z): N16 at (x, y, z) acts as hydrogen-bond donor to O14 at (x, 0.5 - y, 0.5 + z) (cf. Fig. 3), while O25 at (1 - x, -y, 1 - z) is coordinated to the Sr at (x, 0.5 - y, 0.5 + z) (cf. Fig. 3). At the same time the aggregates at (1 - x, -y, 1 - z) and (1 + x, y, z) are linked by the O4 water molecule (Table 2): O4 at (1 + x, y, z), which is coordinated to the Sr at (1 + x, y, z) acts as hydrogen-bond donor, via H41C, to O15 at (1 - x, -y, 1 - z), and O4 at (1 - x, -y, 1 - z) similarly acts as donor to O15 at (1 + x, y, z), so generating a centrosymmetric R22(26) ring. In this way the ionic aggregates at (x, y, z) and (1 + x, y, z) are linked via a C22(28)[R22(26)] chain of rings, and hence all of the (100) bilayers are linked into a continuous framework.
Not only do the two anionic ligands in (I) exhibit different modes of coordination to the Sr, but they adopt significantly different conformations (Table 1). In the type 1 anion, the torsional angles along the sequence of bonds from Sr1 to N11 can be classified as ac, ap, ap, sp (where ap denotes antiperiplanar and so on), while the corresponding sequence of torsional angles in the type 2 anions is sp, ap, ac, sp (cf. Fig. 1).
Within the anionic ligands, the pattern of bond distances reproduces the pattern observed earlier, both in salts of (L1)- (Low, Moreno Sánchez et al., 2001) and in the neutral HL1 (Low et al., 2000), and point to the delocalized form (B) as more important than the classically localized form (A). We note in particular that the values of Δ [Δ ={d(C—N)-d(N—O)}] for the nitroso groups in the two independent anions are 0.060 (4) Å and 0.053 (4) Å, comfortably within the range previously observed in other metal salts of (L1)-, consistent with (B). In this connection it is of interest to note that the O4—H41C···O15i [i = (-x, -y, 1 - z)] hydrogen bond having the uncoordinated nitroso O as acceptor has very short H···O and O···O distances (Table 2), characteristic of O—H···O hydrogen bonds having anionic rather than neutral O as acceptor and thus entirely consistent with the dominance of the polarized form (B). In the other anion, nitroso O25 does not act as an acceptor of intermolecular hydrogen bonds as it is coordinated to the Sr.