Buy article online - an online subscription or single-article purchase is required to access this article.
Crystals of the title compounds, namely 1-(diaminomethylene)thiouron-1-ium perchlorate, C
2H
7N
4S
+·ClO
4−, 1-(diaminomethylene)thiouron-1-ium hydrogen sulfate, C
2H
7N
4S
+·HSO
4−, 1-(diaminomethylene)thiouron-1-ium dihydrogen phosphate, C
2H
7N
4S
+·H
2PO
4−, and its isomorphic relative 1-(diaminomethylene)thiouron-1-ium dihydrogen arsenate, C
2H
7N
4S
+·H
2AsO
4−, are built up from a nonplanar 1-(diaminomethylene)thiouron-1-ium cation and the respective anion linked together
via N—H
O hydrogen bonds. Both arms of the cation are planar, but they are twisted with respect to one another around the central N atom. Ionic and extensive hydrogen-bonding interactions join oppositely charged units into layers in the perchlorate, double layers in the hydrogen sulfate, and a three-dimensional network in the dihydrogen phosphate and dihydrogen arsenate salts. This work demonstrates the usefulness of 1-(diaminomethylene)thiourea in crystal engineering for the formation of supramolecular networks with acids.
Supporting information
CCDC references: 692712; 692713; 692714; 692715
Crystals of (Ia), (Ib), (Ic) and (Id) were obtained
from 2-imino-4-thiobiuret (purchased from Aldrich, 99% purity) dissolved in 5%
aqueous solutions of HCLO4, H2SO4, H3PO4 and H3AsO4 acids,
respectively [quantities of reagents?]. After several days at room
temperature, suitable crystals were formed.
H atoms were located in difference Fourier maps and were refined with isotropic
displacement parameters in all structures.
For all compounds, data collection: CrysAlis CCD (Oxford Diffraction Poland, 2005); cell refinement: CrysAlis CCD (Oxford Diffraction Poland, 2005); data reduction: CrysAlis RED (Oxford Diffraction Poland, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2006); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).
(Ia) 1-(diaminomethylene)thiouron-1-ium perchlorate
top
Crystal data top
C2H7N4S+·ClO4− | Z = 2 |
Mr = 218.63 | F(000) = 224 |
Triclinic, P1 | Dx = 1.731 Mg m−3 Dm = 1.73 Mg m−3 Dm measured by flotation |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 5.8011 (9) Å | Cell parameters from 1038 reflections |
b = 8.4511 (14) Å | θ = 3.7–29.5° |
c = 9.430 (2) Å | µ = 0.69 mm−1 |
α = 109.15 (2)° | T = 295 K |
β = 91.441 (10)° | Paralellepiped, colourless |
γ = 104.639 (11)° | 0.37 × 0.22 × 0.14 mm |
V = 419.59 (15) Å3 | |
Data collection top
Kuma KM-4 diffractometer with CCD area detector | 2110 independent reflections |
Radiation source: fine-focus sealed tube | 1516 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.016 |
Detector resolution: 1024x1024 with blocks 2x2 pixels mm-1 | θmax = 29.5°, θmin = 3.7° |
ω–scan | h = −6→8 |
Absorption correction: analytical (face-indexed; SHELXTL; Sheldrick, 2008) | k = −11→11 |
Tmin = 0.785, Tmax = 0.910 | l = −12→12 |
5108 measured reflections | |
Refinement top
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.036 | All H-atom parameters refined |
wR(F2) = 0.097 | w = 1/[σ2(Fo2) + (0.0576P)2] where P = (Fo2 + 2Fc2)/3 |
S = 1.00 | (Δ/σ)max < 0.001 |
2110 reflections | Δρmax = 0.29 e Å−3 |
137 parameters | Δρmin = −0.35 e Å−3 |
0 restraints | Extinction correction: SHELXL97 |
Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.017 (5) |
Crystal data top
C2H7N4S+·ClO4− | γ = 104.639 (11)° |
Mr = 218.63 | V = 419.59 (15) Å3 |
Triclinic, P1 | Z = 2 |
a = 5.8011 (9) Å | Mo Kα radiation |
b = 8.4511 (14) Å | µ = 0.69 mm−1 |
c = 9.430 (2) Å | T = 295 K |
α = 109.15 (2)° | 0.37 × 0.22 × 0.14 mm |
β = 91.441 (10)° | |
Data collection top
Kuma KM-4 diffractometer with CCD area detector | 2110 independent reflections |
Absorption correction: analytical (face-indexed; SHELXTL; Sheldrick, 2008) | 1516 reflections with I > 2σ(I) |
Tmin = 0.785, Tmax = 0.910 | Rint = 0.016 |
5108 measured reflections | |
Refinement top
R[F2 > 2σ(F2)] = 0.036 | 0 restraints |
wR(F2) = 0.097 | All H-atom parameters refined |
S = 1.00 | Δρmax = 0.29 e Å−3 |
2110 reflections | Δρmin = −0.35 e Å−3 |
137 parameters | |
Special details top
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes)
are estimated using the full covariance matrix. The cell e.s.d.'s are taken
into account individually in the estimation of e.s.d.'s in distances, angles
and torsion angles; correlations between e.s.d.'s in cell parameters are only
used when they are defined by crystal symmetry. An approximate (isotropic)
treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s.
planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor
wR and goodness of fit S are based on F2, conventional
R-factors R are based on F, with F set to zero for
negative F2. The threshold expression of F2 >
σ(F2) is used only for calculating R-factors(gt) etc.
and is not relevant to the choice of reflections for refinement.
R-factors based on F2 are statistically about twice as large
as those based on F, and R- factors based on ALL data will be
even larger. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top | x | y | z | Uiso*/Ueq | |
Cl1 | 0.33875 (8) | 0.76951 (6) | 0.65728 (5) | 0.03919 (17) | |
O1 | 0.2814 (4) | 0.5916 (2) | 0.5601 (2) | 0.0906 (7) | |
O2 | 0.1475 (4) | 0.7940 (3) | 0.7455 (2) | 0.0895 (7) | |
O3 | 0.5514 (3) | 0.8099 (2) | 0.7523 (2) | 0.0810 (6) | |
O4 | 0.3649 (3) | 0.88027 (19) | 0.56864 (17) | 0.0528 (4) | |
S1 | 0.65094 (9) | 0.28351 (7) | 0.92477 (6) | 0.04618 (19) | |
C1 | 0.7894 (3) | 0.4101 (2) | 0.8318 (2) | 0.0330 (4) | |
N1 | 0.9665 (3) | 0.3752 (2) | 0.73814 (18) | 0.0350 (4) | |
H1 | 1.018 (4) | 0.448 (3) | 0.701 (2) | 0.042 (6)* | |
N2 | 0.7399 (4) | 0.5550 (2) | 0.8389 (2) | 0.0490 (5) | |
H21 | 0.812 (4) | 0.611 (3) | 0.795 (3) | 0.053 (7)* | |
H22 | 0.644 (4) | 0.590 (3) | 0.892 (3) | 0.054 (7)* | |
C2 | 1.0630 (3) | 0.2376 (2) | 0.7004 (2) | 0.0359 (4) | |
N3 | 1.2312 (3) | 0.2417 (3) | 0.6086 (2) | 0.0496 (5) | |
H31 | 1.298 (4) | 0.160 (3) | 0.587 (3) | 0.053 (7)* | |
H32 | 1.267 (4) | 0.320 (4) | 0.580 (3) | 0.058 (8)* | |
N4 | 0.9943 (4) | 0.1105 (2) | 0.7496 (3) | 0.0535 (5) | |
H42 | 1.064 (4) | 0.029 (3) | 0.724 (3) | 0.062 (7)* | |
H41 | 0.886 (6) | 0.113 (4) | 0.816 (3) | 0.096 (10)* | |
Atomic displacement parameters (Å2) top | U11 | U22 | U33 | U12 | U13 | U23 |
Cl1 | 0.0538 (3) | 0.0521 (3) | 0.0679 (3) | 0.0150 (2) | 0.0159 (2) | 0.0267 (2) |
O1 | 0.0967 (19) | 0.0368 (9) | 0.0737 (13) | 0.0236 (11) | −0.0041 (13) | 0.0183 (9) |
O2 | 0.0716 (13) | 0.0936 (16) | 0.0998 (17) | 0.0381 (12) | 0.0450 (12) | 0.0584 (14) |
O3 | 0.0564 (11) | 0.0649 (12) | 0.0737 (16) | 0.0097 (9) | −0.0192 (11) | 0.0292 (12) |
O4 | 0.0671 (10) | 0.0462 (8) | 0.0617 (9) | 0.0211 (7) | 0.0230 (8) | 0.0358 (8) |
S1 | 0.0521 (3) | 0.0442 (3) | 0.0549 (3) | 0.0201 (3) | 0.0258 (3) | 0.0280 (3) |
C1 | 0.0312 (9) | 0.0305 (9) | 0.0347 (9) | 0.0065 (7) | 0.0046 (7) | 0.0102 (7) |
N1 | 0.0398 (9) | 0.0295 (8) | 0.0404 (8) | 0.0113 (7) | 0.0157 (7) | 0.0169 (7) |
N2 | 0.0569 (12) | 0.0432 (10) | 0.0658 (12) | 0.0292 (9) | 0.0337 (10) | 0.0306 (10) |
C2 | 0.0318 (9) | 0.0312 (9) | 0.0399 (10) | 0.0100 (8) | 0.0038 (8) | 0.0060 (8) |
N3 | 0.0484 (11) | 0.0505 (11) | 0.0560 (11) | 0.0240 (9) | 0.0236 (9) | 0.0181 (10) |
N4 | 0.0514 (11) | 0.0412 (10) | 0.0840 (15) | 0.0261 (9) | 0.0268 (11) | 0.0320 (10) |
Geometric parameters (Å, º) top
Cl1—O3 | 1.4044 (17) | N2—H21 | 0.78 (3) |
Cl1—O2 | 1.4198 (17) | N2—H22 | 0.81 (3) |
Cl1—O1 | 1.4283 (18) | C2—N4 | 1.283 (3) |
Cl1—O4 | 1.4304 (14) | C2—N3 | 1.322 (3) |
S1—C1 | 1.6656 (19) | N3—H31 | 0.85 (2) |
C1—N2 | 1.308 (2) | N3—H32 | 0.78 (3) |
C1—N1 | 1.396 (2) | N4—H42 | 0.86 (3) |
N1—C2 | 1.364 (2) | N4—H41 | 0.90 (3) |
N1—H1 | 0.81 (2) | | |
| | | |
O3—Cl1—O2 | 109.83 (14) | C1—N2—H21 | 118.6 (18) |
O3—Cl1—O1 | 109.43 (13) | C1—N2—H22 | 121.4 (17) |
O2—Cl1—O1 | 108.83 (14) | H21—N2—H22 | 120 (2) |
O3—Cl1—O4 | 110.59 (10) | N4—C2—N3 | 121.6 (2) |
O2—Cl1—O4 | 108.40 (10) | N4—C2—N1 | 122.37 (18) |
O4—Cl1—O4 | 109.73 (10) | N3—C2—N1 | 116.0 (2) |
N2—C1—N1 | 112.58 (18) | C2—N3—H31 | 117.5 (16) |
N2—C1—S1 | 122.50 (16) | C2—N3—H32 | 119 (2) |
N1—C1—S1 | 124.92 (14) | H31—N3—H32 | 123 (2) |
C2—N1—C1 | 130.08 (17) | C2—N4—H42 | 118.5 (17) |
C2—N1—H1 | 115.6 (14) | C2—N4—H41 | 120 (2) |
C1—N1—H1 | 114.3 (14) | H42—N4—H41 | 121 (3) |
Hydrogen-bond geometry (Å, º) top
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···O1i | 0.81 (2) | 2.40 (2) | 3.159 (3) | 156.5 (19) |
N2—H21···O2i | 0.78 (2) | 2.32 (3) | 3.050 (3) | 156 (2) |
N2—H22···S1ii | 0.80 (3) | 2.63 (3) | 3.434 (2) | 177 (2) |
N3—H31···O4iii | 0.85 (2) | 2.44 (3) | 3.245 (3) | 158 (2) |
N3—H31···O4iv | 0.85 (2) | 2.50 (2) | 3.104 (2) | 129 (2) |
N3—H32···O1i | 0.78 (3) | 2.35 (3) | 3.082 (3) | 159 (3) |
N4—H42···O2iii | 0.86 (3) | 2.22 (3) | 3.014 (3) | 153 (2) |
N4—H41···S1 | 0.90 (3) | 2.25 (3) | 2.981 (2) | 138 (3) |
Symmetry codes: (i) x+1, y, z; (ii) −x+1, −y+1, −z+2; (iii) x+1, y−1, z; (iv) −x+2, −y+1, −z+1. |
(Ib) 1-(diaminomethylene)thiouron-1-ium hydrogen sulfate
top
Crystal data top
C2H7N4S+·HO4S− | Z = 2 |
Mr = 216.24 | F(000) = 224 |
Triclinic, P1 | Dx = 1.783 Mg m−3 Dm = 1.78 Mg m−3 Dm measured by flotation |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 7.8371 (11) Å | Cell parameters from 1225 reflections |
b = 8.103 (2) Å | θ = 3.2–27.9° |
c = 8.104 (2) Å | µ = 0.65 mm−1 |
α = 60.88 (1)° | T = 295 K |
β = 65.99 (1)° | Paralellepiped, colourless |
γ = 87.54 (2)° | 0.37 × 0.27 × 0.22 mm |
V = 402.85 (17) Å3 | |
Data collection top
Kuma KM-4 diffractometer with CCD area detector | 1917 independent reflections |
Radiation source: fine-focus sealed tube | 1731 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.005 |
Detector resolution: 1024x1024 with blocks 2x2 pixels mm-1 | θmax = 27.9°, θmin = 3.2° |
ω–scan | h = −10→10 |
Absorption correction: analytical (face-indexed; SHELXTL; Sheldrick, 2008) | k = −10→10 |
Tmin = 0.796, Tmax = 0.871 | l = −10→10 |
4199 measured reflections | |
Refinement top
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.029 | All H-atom parameters refined |
wR(F2) = 0.070 | w = 1/[σ2(Fo2) + (0.0341P)2 + 0.2478P] where P = (Fo2 + 2Fc2)/3 |
S = 1.01 | (Δ/σ)max = 0.001 |
1917 reflections | Δρmax = 0.52 e Å−3 |
134 parameters | Δρmin = −0.49 e Å−3 |
0 restraints | Extinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.101 (6) |
Crystal data top
C2H7N4S+·HO4S− | γ = 87.54 (2)° |
Mr = 216.24 | V = 402.85 (17) Å3 |
Triclinic, P1 | Z = 2 |
a = 7.8371 (11) Å | Mo Kα radiation |
b = 8.103 (2) Å | µ = 0.65 mm−1 |
c = 8.104 (2) Å | T = 295 K |
α = 60.88 (1)° | 0.37 × 0.27 × 0.22 mm |
β = 65.99 (1)° | |
Data collection top
Kuma KM-4 diffractometer with CCD area detector | 1917 independent reflections |
Absorption correction: analytical (face-indexed; SHELXTL; Sheldrick, 2008) | 1731 reflections with I > 2σ(I) |
Tmin = 0.796, Tmax = 0.871 | Rint = 0.005 |
4199 measured reflections | |
Refinement top
R[F2 > 2σ(F2)] = 0.029 | 0 restraints |
wR(F2) = 0.070 | All H-atom parameters refined |
S = 1.01 | Δρmax = 0.52 e Å−3 |
1917 reflections | Δρmin = −0.49 e Å−3 |
134 parameters | |
Special details top
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes)
are estimated using the full covariance matrix. The cell e.s.d.'s are taken
into account individually in the estimation of e.s.d.'s in distances, angles
and torsion angles; correlations between e.s.d.'s in cell parameters are only
used when they are defined by crystal symmetry. An approximate (isotropic)
treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s.
planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor
wR and goodness of fit S are based on F2, conventional
R-factors R are based on F, with F set to zero for
negative F2. The threshold expression of F2 >
σ(F2) is used only for calculating R-factors(gt) etc.
and is not relevant to the choice of reflections for refinement.
R-factors based on F2 are statistically about twice as large
as those based on F, and R- factors based on ALL data will be
even larger. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top | x | y | z | Uiso*/Ueq | |
S2 | 0.76851 (5) | 0.01455 (5) | 0.33072 (6) | 0.02512 (12) | |
O1 | 0.69633 (16) | 0.19365 (15) | 0.28570 (19) | 0.0336 (3) | |
O2 | 0.97036 (17) | 0.04752 (19) | 0.2646 (2) | 0.0451 (3) | |
O3 | 0.68035 (18) | −0.11706 (16) | 0.57480 (18) | 0.0335 (3) | |
H3 | 0.561 (4) | −0.161 (4) | 0.628 (4) | 0.059 (7)* | |
O4 | 0.7104 (2) | −0.08542 (19) | 0.2500 (2) | 0.0449 (3) | |
S1 | 0.45743 (6) | 0.60771 (7) | 0.16711 (9) | 0.04241 (15) | |
N1 | 0.11009 (18) | 0.70288 (18) | 0.2241 (2) | 0.0263 (3) | |
H1 | 0.046 (3) | 0.789 (3) | 0.225 (3) | 0.032 (5)* | |
C1 | 0.2893 (2) | 0.7335 (2) | 0.2114 (2) | 0.0250 (3) | |
C2 | 0.0226 (2) | 0.5553 (2) | 0.2314 (2) | 0.0249 (3) | |
N2 | 0.3173 (2) | 0.8791 (2) | 0.2346 (3) | 0.0368 (3) | |
H21 | 0.234 (3) | 0.943 (3) | 0.258 (3) | 0.039 (5)* | |
H22 | 0.433 (3) | 0.908 (3) | 0.217 (3) | 0.046 (6)* | |
N3 | −0.1488 (2) | 0.5632 (2) | 0.2417 (3) | 0.0385 (3) | |
H31 | −0.206 (3) | 0.467 (3) | 0.252 (3) | 0.048 (6)* | |
H32 | −0.204 (3) | 0.654 (3) | 0.248 (3) | 0.045 (6)* | |
N4 | 0.1035 (2) | 0.4111 (2) | 0.2324 (3) | 0.0373 (3) | |
H41 | 0.225 (3) | 0.415 (3) | 0.218 (3) | 0.048 (6)* | |
H42 | 0.042 (3) | 0.324 (4) | 0.237 (4) | 0.055 (6)* | |
Atomic displacement parameters (Å2) top | U11 | U22 | U33 | U12 | U13 | U23 |
S2 | 0.02383 (19) | 0.02176 (18) | 0.0340 (2) | 0.00638 (13) | −0.01303 (15) | −0.01719 (15) |
O1 | 0.0596 (8) | 0.0404 (7) | 0.0520 (7) | 0.0089 (6) | −0.0284 (6) | −0.0327 (6) |
O2 | 0.0339 (6) | 0.0436 (7) | 0.0509 (8) | 0.0089 (5) | −0.0153 (5) | −0.0252 (6) |
O3 | 0.0342 (6) | 0.0304 (6) | 0.0340 (6) | 0.0061 (5) | −0.0183 (5) | −0.0127 (5) |
O4 | 0.0344 (6) | 0.0221 (5) | 0.0444 (6) | 0.0095 (4) | −0.0183 (5) | −0.0168 (5) |
S1 | 0.0387 (2) | 0.0433 (3) | 0.0631 (3) | 0.01779 (18) | −0.0243 (2) | −0.0427 (2) |
N1 | 0.0255 (6) | 0.0238 (6) | 0.0364 (7) | 0.0093 (5) | −0.0153 (5) | −0.0192 (5) |
C1 | 0.0263 (7) | 0.0242 (6) | 0.0276 (7) | 0.0040 (5) | −0.0124 (5) | −0.0149 (6) |
C2 | 0.0260 (7) | 0.0243 (6) | 0.0245 (6) | 0.0035 (5) | −0.0121 (5) | −0.0117 (5) |
N2 | 0.0350 (7) | 0.0357 (7) | 0.0558 (9) | 0.0098 (6) | −0.0214 (7) | −0.0337 (7) |
N3 | 0.0313 (7) | 0.0357 (7) | 0.0583 (9) | 0.0085 (6) | −0.0254 (7) | −0.0266 (7) |
N4 | 0.0359 (7) | 0.0336 (7) | 0.0566 (10) | 0.0093 (6) | −0.0270 (7) | −0.0288 (7) |
Geometric parameters (Å, º) top
S1—C1 | 1.6615 (16) | N3—H31 | 0.87 (2) |
N1—C2 | 1.3685 (19) | N3—H32 | 0.85 (2) |
N1—C1 | 1.3902 (18) | N4—H41 | 0.91 (2) |
N1—H1 | 0.84 (2) | N4—H42 | 0.84 (2) |
C1—N2 | 1.3212 (19) | S2—O2 | 1.4380 (13) |
C2—N4 | 1.303 (2) | S2—O4 | 1.4427 (12) |
C2—N3 | 1.313 (2) | S2—O1 | 1.4633 (11) |
N2—H21 | 0.83 (2) | S2—O3 | 1.5571 (15) |
N2—H22 | 0.89 (2) | O3—H3 | 0.84 (2) |
| | | |
C2—N1—C1 | 129.74 (13) | C2—N3—H32 | 121.3 (15) |
C2—N1—H1 | 114.9 (13) | H31—N3—H32 | 121 (2) |
C1—N1—H1 | 115.3 (13) | C2—N4—H41 | 118.1 (14) |
N2—C1—N1 | 112.97 (14) | C2—N4—H42 | 117.7 (15) |
N2—C1—S1 | 121.75 (12) | H41—N4—H42 | 124 (2) |
N1—C1—S1 | 125.27 (11) | O2—S2—O4 | 113.95 (9) |
N4—C2—N3 | 121.22 (15) | O2—S2—O1 | 111.09 (8) |
N4—C2—N1 | 121.83 (14) | O1—S2—O4 | 111.90 (8) |
N3—C2—N1 | 116.94 (14) | O2—S2—O3 | 104.43 (9) |
C1—N2—H21 | 123.1 (15) | O4—S2—O3 | 108.00 (8) |
C1—N2—H22 | 115.2 (14) | O1—S2—O3 | 106.90 (8) |
H21—N2—H22 | 122 (2) | S2—O3—H3 | 111.5 (14) |
C2—N3—H31 | 116.9 (15) | | |
Hydrogen-bond geometry (Å, º) top
D—H···A | D—H | H···A | D···A | D—H···A |
O3—H3···O1i | 0.86 (3) | 1.83 (3) | 2.6714 (19) | 166 (2) |
N1—H1···O2ii | 0.84 (2) | 2.29 (2) | 3.073 (2) | 155.2 (17) |
N2—H21···O2ii | 0.83 (2) | 2.19 (2) | 2.963 (2) | 154.0 (19) |
N2—H22···O4iii | 0.89 (2) | 2.30 (2) | 3.164 (2) | 166 (2) |
N3—H31···O1iv | 0.87 (2) | 2.23 (2) | 3.080 (2) | 168 (2) |
N3—H32···O4ii | 0.85 (2) | 2.19 (2) | 3.031 (2) | 168 (2) |
N4—H41···S1 | 0.92 (2) | 2.22 (2) | 2.9798 (18) | 140.4 (19) |
N4—H41···O3i | 0.92 (2) | 2.47 (2) | 3.029 (2) | 119.6 (17) |
N4—H42···O2iv | 0.85 (3) | 2.22 (3) | 3.021 (2) | 159 (2) |
Symmetry codes: (i) −x+1, −y, −z+1; (ii) x−1, y+1, z; (iii) x, y+1, z; (iv) x−1, y, z. |
(Ic) 1-(diaminomethylene)thiouron-1-ium dihydrogen phosphate
top
Crystal data top
C2H7N4S+·H2O4P− | Z = 2 |
Mr = 216.16 | F(000) = 224 |
Triclinic, P1 | Dx = 1.654 Mg m−3 Dm = 1.65 Mg m−3 Dm measured by flotation |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 4.5229 (8) Å | Cell parameters from 1257 reflections |
b = 8.3241 (11) Å | θ = 3.0–28.0° |
c = 11.574 (2) Å | µ = 0.54 mm−1 |
α = 88.160 (12)° | T = 295 K |
β = 86.191 (11)° | Paralellepiped, colourless |
γ = 87.359 (10)° | 0.38 × 0.18 × 0.17 mm |
V = 434.15 (13) Å3 | |
Data collection top
Kuma KM-4 diffractometer with CDD area detector | 2067 independent reflections |
Radiation source: fine-focus sealed tube | 1757 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.012 |
Detector resolution: 1024x1024 with blocks 2x2 pixels mm-1 | θmax = 28.0°, θmin = 3.0° |
ω–scan | h = −5→5 |
Absorption correction: analytical (face-indexed; SHELXTL; Sheldrick, 2008) | k = −10→10 |
Tmin = 0.812, Tmax = 0.909 | l = −15→15 |
4924 measured reflections | |
Refinement top
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.027 | Hydrogen site location: difference Fourier map |
wR(F2) = 0.072 | All H-atom parameters refined |
S = 1.00 | w = 1/[σ2(Fo2) + (0.0412P)2 + 0.0855P] where P = (Fo2 + 2Fc2)/3 |
2067 reflections | (Δ/σ)max < 0.001 |
145 parameters | Δρmax = 0.27 e Å−3 |
0 restraints | Δρmin = −0.26 e Å−3 |
Crystal data top
C2H7N4S+·H2O4P− | γ = 87.359 (10)° |
Mr = 216.16 | V = 434.15 (13) Å3 |
Triclinic, P1 | Z = 2 |
a = 4.5229 (8) Å | Mo Kα radiation |
b = 8.3241 (11) Å | µ = 0.54 mm−1 |
c = 11.574 (2) Å | T = 295 K |
α = 88.160 (12)° | 0.38 × 0.18 × 0.17 mm |
β = 86.191 (11)° | |
Data collection top
Kuma KM-4 diffractometer with CDD area detector | 2067 independent reflections |
Absorption correction: analytical (face-indexed; SHELXTL; Sheldrick, 2008) | 1757 reflections with I > 2σ(I) |
Tmin = 0.812, Tmax = 0.909 | Rint = 0.012 |
4924 measured reflections | |
Refinement top
R[F2 > 2σ(F2)] = 0.027 | 0 restraints |
wR(F2) = 0.072 | All H-atom parameters refined |
S = 1.00 | Δρmax = 0.27 e Å−3 |
2067 reflections | Δρmin = −0.26 e Å−3 |
145 parameters | |
Special details top
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes)
are estimated using the full covariance matrix. The cell e.s.d.'s are taken
into account individually in the estimation of e.s.d.'s in distances, angles
and torsion angles; correlations between e.s.d.'s in cell parameters are only
used when they are defined by crystal symmetry. An approximate (isotropic)
treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s.
planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor
wR and goodness of fit S are based on F2, conventional
R-factors R are based on F, with F set to zero for
negative F2. The threshold expression of F2 >
σ(F2) is used only for calculating R-factors(gt) etc.
and is not relevant to the choice of reflections for refinement.
R-factors based on F2 are statistically about twice as large
as those based on F, and R- factors based on ALL data will be
even larger. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top | x | y | z | Uiso*/Ueq | |
P1 | 0.28127 (7) | 0.65855 (4) | 0.60758 (3) | 0.02430 (11) | |
O1 | 0.4070 (2) | 0.49667 (11) | 0.64587 (8) | 0.0298 (2) | |
O2 | 0.01641 (19) | 0.71967 (12) | 0.68229 (9) | 0.0310 (2) | |
O3 | 0.1843 (2) | 0.65850 (13) | 0.48022 (9) | 0.0375 (3) | |
H3 | 0.305 (4) | 0.600 (2) | 0.4396 (18) | 0.050 (5)* | |
O4 | 0.5195 (2) | 0.78877 (12) | 0.60441 (11) | 0.0403 (3) | |
H4 | 0.675 (6) | 0.759 (3) | 0.625 (2) | 0.084 (8)* | |
S1 | −0.34160 (11) | 0.23701 (5) | 0.97068 (4) | 0.04931 (14) | |
C1 | −0.1533 (3) | 0.35003 (17) | 0.87071 (12) | 0.0315 (3) | |
N1 | 0.0335 (3) | 0.29052 (14) | 0.78114 (11) | 0.0323 (3) | |
H1 | 0.131 (4) | 0.364 (2) | 0.7380 (16) | 0.039 (5)* | |
C2 | 0.0998 (3) | 0.13590 (16) | 0.74954 (12) | 0.0311 (3) | |
N2 | −0.1685 (4) | 0.50789 (16) | 0.87172 (13) | 0.0404 (3) | |
H21 | −0.086 (4) | 0.562 (2) | 0.8152 (16) | 0.035 (4)* | |
H22 | −0.269 (4) | 0.557 (2) | 0.9211 (18) | 0.049 (5)* | |
N3 | 0.2781 (4) | 0.11737 (19) | 0.65666 (14) | 0.0473 (4) | |
H31 | 0.332 (4) | 0.027 (2) | 0.6361 (16) | 0.041 (5)* | |
H32 | 0.324 (4) | 0.202 (3) | 0.6131 (18) | 0.057 (6)* | |
N4 | −0.0002 (4) | 0.01142 (16) | 0.80830 (14) | 0.0461 (4) | |
H42 | 0.041 (4) | −0.083 (2) | 0.7754 (16) | 0.041 (5)* | |
H41 | −0.114 (4) | 0.024 (2) | 0.8625 (17) | 0.043 (5)* | |
Atomic displacement parameters (Å2) top | U11 | U22 | U33 | U12 | U13 | U23 |
P1 | 0.02301 (17) | 0.02320 (17) | 0.02656 (19) | 0.00039 (12) | −0.00156 (13) | −0.00079 (13) |
O1 | 0.0312 (5) | 0.0243 (5) | 0.0334 (5) | 0.0025 (4) | −0.0025 (4) | 0.0008 (4) |
O2 | 0.0240 (5) | 0.0339 (5) | 0.0348 (6) | 0.0007 (4) | 0.0008 (4) | −0.0047 (4) |
O3 | 0.0392 (6) | 0.0396 (6) | 0.0330 (6) | 0.0121 (5) | −0.0060 (5) | −0.0029 (5) |
O4 | 0.0319 (5) | 0.0365 (5) | 0.0528 (8) | −0.0015 (4) | −0.0082 (5) | 0.0058 (5) |
S1 | 0.0682 (3) | 0.0338 (2) | 0.0429 (2) | −0.00430 (19) | 0.0194 (2) | 0.00190 (17) |
C1 | 0.0391 (8) | 0.0287 (7) | 0.0273 (7) | −0.0019 (6) | −0.0059 (6) | −0.0006 (5) |
N1 | 0.0424 (7) | 0.0227 (6) | 0.0308 (6) | −0.0017 (5) | 0.0034 (5) | 0.0021 (5) |
C2 | 0.0369 (7) | 0.0255 (6) | 0.0309 (7) | 0.0016 (5) | −0.0051 (6) | 0.0007 (5) |
N2 | 0.0586 (9) | 0.0277 (6) | 0.0334 (7) | −0.0008 (6) | 0.0076 (6) | −0.0019 (6) |
N3 | 0.0531 (10) | 0.0381 (7) | 0.0468 (8) | 0.0067 (7) | 0.0174 (7) | 0.0027 (6) |
N4 | 0.0589 (10) | 0.0337 (7) | 0.0437 (8) | −0.0041 (6) | 0.0137 (8) | −0.0018 (6) |
Geometric parameters (Å, º) top
P1—O1 | 1.5034 (10) | N1—H1 | 0.890 (19) |
P1—O2 | 1.5086 (11) | C2—N4 | 1.303 (2) |
P1—O4 | 1.5612 (12) | C2—N3 | 1.309 (2) |
P1—O3 | 1.5656 (12) | N2—H21 | 0.855 (19) |
O3—H3 | 0.84 (2) | N2—H22 | 0.81 (2) |
O4—H4 | 0.79 (2) | N3—H31 | 0.81 (2) |
S1—C1 | 1.6800 (16) | N3—H32 | 0.88 (2) |
C1—N2 | 1.3130 (19) | N4—H42 | 0.893 (19) |
C1—N1 | 1.3827 (19) | N4—H41 | 0.790 (19) |
N1—C2 | 1.3639 (18) | | |
| | | |
O1—P1—O2 | 114.17 (6) | C1—N1—H1 | 115.5 (11) |
O1—P1—O4 | 111.37 (6) | N4—C2—N3 | 120.67 (15) |
O2—P1—O4 | 107.58 (6) | N4—C2—N1 | 123.09 (14) |
O1—P1—O3 | 111.95 (6) | N3—C2—N1 | 116.22 (14) |
O2—P1—O3 | 107.03 (6) | C1—N2—H21 | 119.4 (12) |
O4—P1—O3 | 104.12 (7) | C1—N2—H22 | 122.0 (14) |
P1—O3—H3 | 109.9 (13) | H21—N2—H22 | 118.3 (18) |
P1—O4—H4 | 115.4 (18) | C2—N3—H31 | 120.2 (13) |
N2—C1—N1 | 112.91 (14) | C2—N3—H32 | 119.3 (13) |
N2—C1—S1 | 122.04 (12) | H31—N3—H32 | 120.2 (19) |
N1—C1—S1 | 125.04 (11) | C2—N4—H42 | 115.3 (12) |
C2—N1—C1 | 130.34 (13) | C2—N4—H41 | 119.9 (14) |
C2—N1—H1 | 114.2 (11) | H42—N4—H41 | 123.9 (18) |
Hydrogen-bond geometry (Å, º) top
D—H···A | D—H | H···A | D···A | D—H···A |
O3—H3···O1i | 0.84 (2) | 1.76 (2) | 2.5994 (17) | 171.0 (19) |
O4—H4···O2ii | 0.79 (2) | 1.73 (3) | 2.5123 (15) | 171 (3) |
N1—H1···O1 | 0.890 (19) | 1.948 (19) | 2.8273 (18) | 169.3 (16) |
N2—H21···O2 | 0.855 (19) | 2.035 (19) | 2.874 (2) | 166.4 (16) |
N2—H21···O2 | 0.855 (19) | 2.035 (19) | 2.874 (2) | 166.4 (16) |
N2—H22···S1iii | 0.81 (2) | 2.68 (2) | 3.4677 (19) | 163.3 (18) |
N4—H42···O2iv | 0.893 (19) | 2.00 (2) | 2.8682 (19) | 162.9 (16) |
N4—H41···S1 | 0.790 (19) | 2.36 (2) | 3.0028 (19) | 138.9 (17) |
N3—H31···O4iv | 0.81 (2) | 2.16 (2) | 2.964 (2) | 171.0 (17) |
N3—H32···O1 | 0.88 (2) | 2.55 (2) | 3.234 (2) | 136.2 (17) |
N3—H32···O4i | 0.88 (2) | 2.57 (2) | 3.182 (2) | 127.8 (17) |
Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) x+1, y, z; (iii) −x−1, −y+1, −z+2; (iv) x, y−1, z. |
(Id) 1-(diaminomethylene)thiouron-1-ium dihydrogen arsenate
top
Crystal data top
C2H7N4S+·H2AsO4− | Z = 2 |
Mr = 260.11 | F(000) = 260 |
Triclinic, P1 | Dx = 1.914 Mg m−3 Dm = 1.91 Mg m−3 Dm measured by flotation |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 4.7250 (8) Å | Cell parameters from 1287 reflections |
b = 8.4071 (10) Å | θ = 3.0–28.0° |
c = 11.3841 (19) Å | µ = 3.98 mm−1 |
α = 89.402 (11)° | T = 295 K |
β = 86.840 (12)° | Paralellepiped, colourless |
γ = 88.871 (14)° | 0.38 × 0.14 × 0.12 mm |
V = 451.41 (12) Å3 | |
Data collection top
Kuma KM-4 diffractometer with CCD area detector | 2149 independent reflections |
Radiation source: fine-focus sealed tube | 1927 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.013 |
Detector resolution: 1024x1024 with blocks 2x2 pixels mm-1 | θmax = 28.0°, θmin = 3.0° |
ω–scan | h = −6→6 |
Absorption correction: analytical (face-indexed; SHELXTL; Sheldrick, 2008) | k = −11→11 |
Tmin = 0.513, Tmax = 0.642 | l = −15→14 |
4770 measured reflections | |
Refinement top
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.041 | Hydrogen site location: difference Fourier map |
wR(F2) = 0.109 | All H-atom parameters refined |
S = 1.01 | w = 1/[σ2(Fo2) + (0.0863P)2] where P = (Fo2 + 2Fc2)/3 |
2149 reflections | (Δ/σ)max < 0.001 |
136 parameters | Δρmax = 1.02 e Å−3 |
0 restraints | Δρmin = −0.93 e Å−3 |
Crystal data top
C2H7N4S+·H2AsO4− | γ = 88.871 (14)° |
Mr = 260.11 | V = 451.41 (12) Å3 |
Triclinic, P1 | Z = 2 |
a = 4.7250 (8) Å | Mo Kα radiation |
b = 8.4071 (10) Å | µ = 3.98 mm−1 |
c = 11.3841 (19) Å | T = 295 K |
α = 89.402 (11)° | 0.38 × 0.14 × 0.12 mm |
β = 86.840 (12)° | |
Data collection top
Kuma KM-4 diffractometer with CCD area detector | 2149 independent reflections |
Absorption correction: analytical (face-indexed; SHELXTL; Sheldrick, 2008) | 1927 reflections with I > 2σ(I) |
Tmin = 0.513, Tmax = 0.642 | Rint = 0.013 |
4770 measured reflections | |
Refinement top
R[F2 > 2σ(F2)] = 0.041 | 0 restraints |
wR(F2) = 0.109 | All H-atom parameters refined |
S = 1.01 | Δρmax = 1.02 e Å−3 |
2149 reflections | Δρmin = −0.93 e Å−3 |
136 parameters | |
Special details top
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes)
are estimated using the full covariance matrix. The cell e.s.d.'s are taken
into account individually in the estimation of e.s.d.'s in distances, angles
and torsion angles; correlations between e.s.d.'s in cell parameters are only
used when they are defined by crystal symmetry. An approximate (isotropic)
treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s.
planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor
wR and goodness of fit S are based on F2, conventional
R-factors R are based on F, with F set to zero for
negative F2. The threshold expression of F2 >
σ(F2) is used only for calculating R-factors(gt) etc.
and is not relevant to the choice of reflections for refinement.
R-factors based on F2 are statistically about twice as large
as those based on F, and R- factors based on ALL data will be
even larger. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top | x | y | z | Uiso*/Ueq | |
As1 | 0.26918 (5) | 0.65723 (3) | 0.60563 (3) | 0.02854 (14) | |
O1 | 0.3995 (5) | 0.4836 (3) | 0.6521 (2) | 0.0338 (5) | |
O2 | −0.0076 (4) | 0.7238 (3) | 0.6864 (2) | 0.0337 (5) | |
O3 | 0.1745 (5) | 0.6532 (3) | 0.4633 (2) | 0.0450 (6) | |
H3 | 0.289 (13) | 0.618 (8) | 0.423 (6) | 0.10 (2)* | |
O4 | 0.5174 (5) | 0.8017 (3) | 0.6031 (3) | 0.0446 (6) | |
H4 | 0.657 (12) | 0.763 (7) | 0.627 (4) | 0.067 (15)* | |
S1 | −0.3455 (3) | 0.23998 (12) | 0.97557 (9) | 0.0543 (3) | |
C1 | −0.1611 (8) | 0.3520 (4) | 0.8756 (3) | 0.0362 (7) | |
N1 | 0.0297 (6) | 0.2922 (3) | 0.7906 (3) | 0.0362 (6) | |
H1 | 0.111 (8) | 0.356 (5) | 0.753 (3) | 0.030 (10)* | |
C2 | 0.0922 (8) | 0.1389 (4) | 0.7590 (3) | 0.0367 (7) | |
N2 | −0.1802 (8) | 0.5071 (4) | 0.8752 (3) | 0.0416 (7) | |
H21 | −0.118 (10) | 0.566 (6) | 0.817 (4) | 0.054 (13)* | |
H22 | −0.290 (9) | 0.550 (5) | 0.924 (4) | 0.042 (11)* | |
N3 | 0.2708 (9) | 0.1196 (4) | 0.6664 (3) | 0.0546 (9) | |
H31 | 0.368 (12) | 0.030 (7) | 0.646 (5) | 0.073 (16)* | |
H32 | 0.306 (13) | 0.213 (9) | 0.634 (5) | 0.09 (2)* | |
N4 | −0.0123 (9) | 0.0163 (4) | 0.8138 (3) | 0.0525 (9) | |
H41 | −0.150 (9) | 0.031 (5) | 0.871 (4) | 0.050 (12)* | |
H42 | 0.019 (10) | −0.063 (6) | 0.769 (4) | 0.051 (12)* | |
Atomic displacement parameters (Å2) top | U11 | U22 | U33 | U12 | U13 | U23 |
As1 | 0.01797 (19) | 0.0306 (2) | 0.0371 (2) | 0.00060 (12) | −0.00229 (12) | −0.00070 (13) |
O1 | 0.0299 (11) | 0.0347 (11) | 0.0366 (11) | 0.0054 (9) | −0.0040 (8) | −0.0017 (8) |
O2 | 0.0203 (9) | 0.0374 (11) | 0.0432 (12) | −0.0004 (8) | 0.0006 (8) | −0.0076 (9) |
O3 | 0.0345 (13) | 0.0569 (15) | 0.0435 (14) | 0.0138 (11) | −0.0087 (10) | −0.0021 (11) |
O4 | 0.0192 (10) | 0.0337 (12) | 0.0818 (19) | −0.0032 (9) | −0.0094 (11) | 0.0041 (12) |
S1 | 0.0714 (7) | 0.0427 (5) | 0.0464 (5) | −0.0061 (5) | 0.0201 (5) | 0.0008 (4) |
C1 | 0.0391 (17) | 0.0381 (17) | 0.0315 (15) | −0.0051 (13) | −0.0041 (12) | 0.0002 (12) |
N1 | 0.0437 (15) | 0.0276 (13) | 0.0371 (14) | −0.0010 (11) | 0.0014 (12) | 0.0008 (10) |
C2 | 0.0420 (17) | 0.0319 (15) | 0.0364 (16) | 0.0033 (13) | −0.0074 (13) | −0.0018 (12) |
N2 | 0.0545 (18) | 0.0386 (15) | 0.0300 (14) | −0.0025 (13) | 0.0103 (13) | −0.0039 (12) |
N3 | 0.063 (2) | 0.0394 (17) | 0.059 (2) | 0.0075 (16) | 0.0208 (17) | 0.0031 (15) |
N4 | 0.070 (2) | 0.0326 (16) | 0.053 (2) | −0.0065 (15) | 0.0153 (17) | −0.0054 (13) |
Geometric parameters (Å, º) top
As1—O2 | 1.649 (2) | N1—H1 | 0.80 (5) |
As1—O1 | 1.666 (2) | C2—N4 | 1.292 (5) |
As1—O4 | 1.704 (2) | C2—N3 | 1.322 (5) |
As1—O3 | 1.706 (3) | N2—H21 | 0.84 (4) |
O3—H3 | 0.78 (5) | N2—H22 | 0.83 (5) |
O4—H4 | 0.81 (5) | N3—H31 | 0.91 (6) |
S1—C1 | 1.686 (4) | N3—H32 | 0.86 (6) |
C1—N2 | 1.305 (5) | N4—H41 | 0.91 (5) |
C1—N1 | 1.378 (4) | N4—H42 | 0.84 (5) |
N1—C2 | 1.364 (4) | | |
| | | |
O2—As1—O1 | 113.83 (11) | C1—N1—H1 | 115 (3) |
O2—As1—O4 | 107.10 (12) | N4—C2—N3 | 120.0 (3) |
O1—As1—O4 | 111.59 (11) | N4—C2—N1 | 123.8 (3) |
O2—As1—O3 | 107.43 (11) | N3—C2—N1 | 116.2 (3) |
O1—As1—O3 | 113.10 (12) | C1—N2—H21 | 123 (3) |
O4—As1—O3 | 103.05 (14) | C1—N2—H22 | 118 (3) |
As1—O3—H3 | 112 (5) | H21—N2—H22 | 117 (4) |
As1—O4—H4 | 107 (4) | C2—N3—H31 | 126 (3) |
N2—C1—N1 | 113.5 (3) | C2—N3—H32 | 109 (4) |
N2—C1—S1 | 122.0 (3) | H31—N3—H32 | 124 (5) |
N1—C1—S1 | 124.5 (3) | C2—N4—H41 | 119 (3) |
C2—N1—C1 | 130.4 (3) | C2—N4—H42 | 107 (3) |
C2—N1—H1 | 115 (3) | H41—N4—H42 | 129 (4) |
Hydrogen-bond geometry (Å, º) top
D—H···A | D—H | H···A | D···A | D—H···A |
O3—H3···O1i | 0.78 (5) | 1.83 (5) | 2.599 (3) | 169 (5) |
O4—H4···O2ii | 0.81 (5) | 1.76 (5) | 2.555 (3) | 166 (6) |
N1—H1···O1 | 0.80 (5) | 2.03 (5) | 2.806 (4) | 166 (4) |
N2—H21···O2 | 0.84 (4) | 2.06 (4) | 2.897 (4) | 173 (5) |
N2—H22···S1iii | 0.83 (5) | 2.66 (5) | 3.449 (3) | 160 (4) |
N3—H31···O4iv | 0.91 (6) | 2.08 (6) | 2.974 (4) | 168 (5) |
N3—H32···O1 | 0.86 (6) | 2.35 (6) | 3.133 (4) | 150 (5) |
N4—H41···S1 | 0.91 (5) | 2.28 (5) | 3.007 (4) | 136 (4) |
N4—H42···O2iv | 0.84 (5) | 2.05 (6) | 2.867 (4) | 164 (5) |
Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) x+1, y, z; (iii) −x−1, −y+1, −z+2; (iv) x, y−1, z. |
Experimental details
| (Ia) | (Ib) | (Ic) | (Id) |
Crystal data |
Chemical formula | C2H7N4S+·ClO4− | C2H7N4S+·HO4S− | C2H7N4S+·H2O4P− | C2H7N4S+·H2AsO4− |
Mr | 218.63 | 216.24 | 216.16 | 260.11 |
Crystal system, space group | Triclinic, P1 | Triclinic, P1 | Triclinic, P1 | Triclinic, P1 |
Temperature (K) | 295 | 295 | 295 | 295 |
a, b, c (Å) | 5.8011 (9), 8.4511 (14), 9.430 (2) | 7.8371 (11), 8.103 (2), 8.104 (2) | 4.5229 (8), 8.3241 (11), 11.574 (2) | 4.7250 (8), 8.4071 (10), 11.3841 (19) |
α, β, γ (°) | 109.15 (2), 91.441 (10), 104.639 (11) | 60.88 (1), 65.99 (1), 87.54 (2) | 88.160 (12), 86.191 (11), 87.359 (10) | 89.402 (11), 86.840 (12), 88.871 (14) |
V (Å3) | 419.59 (15) | 402.85 (17) | 434.15 (13) | 451.41 (12) |
Z | 2 | 2 | 2 | 2 |
Radiation type | Mo Kα | Mo Kα | Mo Kα | Mo Kα |
µ (mm−1) | 0.69 | 0.65 | 0.54 | 3.98 |
Crystal size (mm) | 0.37 × 0.22 × 0.14 | 0.37 × 0.27 × 0.22 | 0.38 × 0.18 × 0.17 | 0.38 × 0.14 × 0.12 |
|
Data collection |
Diffractometer | Kuma KM-4 diffractometer with CCD area detector | Kuma KM-4 diffractometer with CCD area detector | Kuma KM-4 diffractometer with CDD area detector | Kuma KM-4 diffractometer with CCD area detector |
Absorption correction | Analytical (face-indexed; SHELXTL; Sheldrick, 2008) | Analytical (face-indexed; SHELXTL; Sheldrick, 2008) | Analytical (face-indexed; SHELXTL; Sheldrick, 2008) | Analytical (face-indexed; SHELXTL; Sheldrick, 2008) |
Tmin, Tmax | 0.785, 0.910 | 0.796, 0.871 | 0.812, 0.909 | 0.513, 0.642 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 5108, 2110, 1516 | 4199, 1917, 1731 | 4924, 2067, 1757 | 4770, 2149, 1927 |
Rint | 0.016 | 0.005 | 0.012 | 0.013 |
(sin θ/λ)max (Å−1) | 0.693 | 0.658 | 0.660 | 0.661 |
|
Refinement |
R[F2 > 2σ(F2)], wR(F2), S | 0.036, 0.097, 1.00 | 0.029, 0.070, 1.01 | 0.027, 0.072, 1.00 | 0.041, 0.109, 1.01 |
No. of reflections | 2110 | 1917 | 2067 | 2149 |
No. of parameters | 137 | 134 | 145 | 136 |
H-atom treatment | All H-atom parameters refined | All H-atom parameters refined | All H-atom parameters refined | All H-atom parameters refined |
Δρmax, Δρmin (e Å−3) | 0.29, −0.35 | 0.52, −0.49 | 0.27, −0.26 | 1.02, −0.93 |
Hydrogen-bond geometry (Å, º) for (Ia) top
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···O1i | 0.81 (2) | 2.40 (2) | 3.159 (3) | 156.5 (19) |
N2—H21···O2i | 0.78 (2) | 2.32 (3) | 3.050 (3) | 156 (2) |
N2—H22···S1ii | 0.80 (3) | 2.63 (3) | 3.434 (2) | 177 (2) |
N3—H31···O4iii | 0.85 (2) | 2.44 (3) | 3.245 (3) | 158 (2) |
N3—H31···O4iv | 0.85 (2) | 2.50 (2) | 3.104 (2) | 129 (2) |
N3—H32···O1i | 0.78 (3) | 2.35 (3) | 3.082 (3) | 159 (3) |
N4—H42···O2iii | 0.86 (3) | 2.22 (3) | 3.014 (3) | 153 (2) |
N4—H41···S1 | 0.90 (3) | 2.25 (3) | 2.981 (2) | 138 (3) |
Symmetry codes: (i) x+1, y, z; (ii) −x+1, −y+1, −z+2; (iii) x+1, y−1, z; (iv) −x+2, −y+1, −z+1. |
Hydrogen-bond geometry (Å, º) for (Ib) top
D—H···A | D—H | H···A | D···A | D—H···A |
O3—H3···O1i | 0.86 (3) | 1.83 (3) | 2.6714 (19) | 166 (2) |
N1—H1···O2ii | 0.84 (2) | 2.29 (2) | 3.073 (2) | 155.2 (17) |
N2—H21···O2ii | 0.83 (2) | 2.19 (2) | 2.963 (2) | 154.0 (19) |
N2—H22···O4iii | 0.89 (2) | 2.30 (2) | 3.164 (2) | 166 (2) |
N3—H31···O1iv | 0.87 (2) | 2.23 (2) | 3.080 (2) | 168 (2) |
N3—H32···O4ii | 0.85 (2) | 2.19 (2) | 3.031 (2) | 168 (2) |
N4—H41···S1 | 0.92 (2) | 2.22 (2) | 2.9798 (18) | 140.4 (19) |
N4—H41···O3i | 0.92 (2) | 2.47 (2) | 3.029 (2) | 119.6 (17) |
N4—H42···O2iv | 0.85 (3) | 2.22 (3) | 3.021 (2) | 159 (2) |
Symmetry codes: (i) −x+1, −y, −z+1; (ii) x−1, y+1, z; (iii) x, y+1, z; (iv) x−1, y, z. |
Hydrogen-bond geometry (Å, º) for (Ic) top
D—H···A | D—H | H···A | D···A | D—H···A |
O3—H3···O1i | 0.84 (2) | 1.76 (2) | 2.5994 (17) | 171.0 (19) |
O4—H4···O2ii | 0.79 (2) | 1.73 (3) | 2.5123 (15) | 171 (3) |
N1—H1···O1 | 0.890 (19) | 1.948 (19) | 2.8273 (18) | 169.3 (16) |
N2—H21···O2 | 0.855 (19) | 2.035 (19) | 2.874 (2) | 166.4 (16) |
N2—H21···O2 | 0.855 (19) | 2.035 (19) | 2.874 (2) | 166.4 (16) |
N2—H22···S1iii | 0.81 (2) | 2.68 (2) | 3.4677 (19) | 163.3 (18) |
N4—H42···O2iv | 0.893 (19) | 2.00 (2) | 2.8682 (19) | 162.9 (16) |
N4—H41···S1 | 0.790 (19) | 2.36 (2) | 3.0028 (19) | 138.9 (17) |
N3—H31···O4iv | 0.81 (2) | 2.16 (2) | 2.964 (2) | 171.0 (17) |
N3—H32···O1 | 0.88 (2) | 2.55 (2) | 3.234 (2) | 136.2 (17) |
N3—H32···O4i | 0.88 (2) | 2.57 (2) | 3.182 (2) | 127.8 (17) |
Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) x+1, y, z; (iii) −x−1, −y+1, −z+2; (iv) x, y−1, z. |
Hydrogen-bond geometry (Å, º) for (Id) top
D—H···A | D—H | H···A | D···A | D—H···A |
O3—H3···O1i | 0.78 (5) | 1.83 (5) | 2.599 (3) | 169 (5) |
O4—H4···O2ii | 0.81 (5) | 1.76 (5) | 2.555 (3) | 166 (6) |
N1—H1···O1 | 0.80 (5) | 2.03 (5) | 2.806 (4) | 166 (4) |
N2—H21···O2 | 0.84 (4) | 2.06 (4) | 2.897 (4) | 173 (5) |
N2—H22···S1iii | 0.83 (5) | 2.66 (5) | 3.449 (3) | 160 (4) |
N3—H31···O4iv | 0.91 (6) | 2.08 (6) | 2.974 (4) | 168 (5) |
N3—H32···O1 | 0.86 (6) | 2.35 (6) | 3.133 (4) | 150 (5) |
N4—H41···S1 | 0.91 (5) | 2.28 (5) | 3.007 (4) | 136 (4) |
N4—H42···O2iv | 0.84 (5) | 2.05 (6) | 2.867 (4) | 164 (5) |
Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) x+1, y, z; (iii) −x−1, −y+1, −z+2; (iv) x, y−1, z. |
A comparison of selected geometrical parameters for
1-(diaminomethylene)thiouron-1-ium in (Ia), (Ib), (Ic) and (Id ) and
the ab-initio MO-calculated values topBond/angle | (Ia) | (Ib) | (Ic) | (Id) | MO calculateda |
C1—S1 | 1.6656 (19) | 1.6615 (16) | 1.6800 (16) | 1.686 (4) | 1.662 |
C1—N1 | 1.396 (2) | 1.3902 (18) | 1.3827 (19) | 1.378 (4) | 1.421 |
C1—N2 | 1.308 (2) | 1.3212 (19) | 1.3130 (19) | 1.305 (5) | 1.348 |
N1—C2 | 1.364 (2) | 1.3685 (19) | 1.3639 (18) | 1.364 (4) | 1.368 |
C2—N3 | 1.322 (3) | 1.313 (2) | 1.309 (2) | 1.322 (5) | 1.343 |
C2—N4 | 1.283 (3) | 1.303 (2) | 1.303 (2) | 1.292 (5) | 1.319 |
N2—C1—N1 | 112.58(18 | 112.97 (14) | 112.91 (14) | 113.5 (3) | 111.4 |
N2—C1—S1 | 122.50 (16) | 121.75 (12) | 122.04 (12) | 122.0 (3) | 122.9 |
N1—C1—S1 | 124.92 (14) | 125.27 (11) | 125.04 (11) | 124.5 (3) | 125.7 |
C2—N1—C1 | 130.08 (17) | 129.74 (13) | 130.34 (13) | 130.4 (3) | 129.9 |
N4—C2—N3 | 121.6 (2) | 121.22 (15) | 120.67 (15) | 120.0 (3) | 121.3 |
N4—C2—N1 | 122.37 (18) | 121.83 (14) | 123.09 (14) | 123.8 (3) | 121.8 |
N3—C2—N1 | 116.0 (2) | 116.94 (14) | 116.22 (14) | 116.2 (3) | 117.0 |
C2—N1—C1—N2 | -178.84 (20) | -171.84 (15) | -177.85 (15) | -174.98 (35) | 172.0 |
N3—C2—N1—C1 | -179.55 (19) | -179.50 (15) | 177.32 (15) | 174.51 (37) | -174.8 |
Note: (a) data from Perpétuo & Janczak (2008). |
Deviations of the atoms from the mean least-squares plane defined by the
non-H atoms of 1-(diaminomethylene)thiouron-1-ium in (Ia), (Ib), (Ic) and (Id)
and in the gas phase as obtained by MO calculations. topAtom | (Ia) | (Ib) | (Ic) | (Id) | MO calculateda |
N2 | -0.0151 (13) | 0.0939 (10) | -0.0030 (9) | -0.0297 (23) | -0.0551 |
C1 | 0.0051 (16) | -0.0080 (12) | -0.0018 (12) | -0.0066 (29) | 0.0015 |
S1 | 0.0148 (10) | -0.1058 (8) | -0.0120 (8) | 0.0090 (20) | 0.0290 |
N1 | 0.0046 (15) | -0.0484 (12) | 0.0257 (12) | 0.0575 (28) | 0.0757 |
C2 | 0.0007 (16) | 0.0008 (16) | -0.0033 (13) | 0.0067 (32) | 0.0006 |
N3 | 0.0106 (12) | -0.0673 (10) | -0.0186 (10) | -0.0186 (25) | -0.0057 |
N4 | -0.0207 (13) | 0.1347 (10) | -0.0129 (10) | -0.0183 (25) | -0.0453 |
Note: (a) data from Perpétuo & Janczak (2008). |
Subscribe to Acta Crystallographica Section C: Structural Chemistry
The full text of this article is available to subscribers to the journal.
If you have already registered and are using a computer listed in your registration details, please email
support@iucr.org for assistance.
1-(Diaminomethylene)thiourea and its imino tautomer, i.e. 2-imino-4-thiobiuret, are potentially interesting compounds that can be used in crystal engineering to build up extended frameworks, since they contain arrays of hydrogen-bonding sites (Janczak & Perpétuo, 2008). In addition, both tautomers have different potential coordination modes, since they can act as N,N or N,S ligands and can form several different types of complexes with metal ions. The coordination of metal ions by these tautomers is possible by both the neutral and the deprotonated (anionic) forms (Doxiadi et al., 2003). Beyond these known complexes, 2-imino-4-thiobiuret and 1-(diaminomethylene)thiourea can form salts with acids (Perpétuo & Janczak, 2008). We present here the crystal structures of 1-(diaminomethylene)thiouron-1-ium perchlorate, (Ia), and hydrogen sulfate, (Ib), as well as the isomorphic dihydrogen phosphate, (Ic), and dihydrogen arsenate, (Id); the conformations of the cations are compared with that of the neutral molecule as well as with those in the chloride, bromide and iodide salts.
The asymmetric units of the title compounds are illustrated in Figs. 1(a)–1(d). The two arms of the 1-(diaminomethylene)thiouron-1-ium cation containing the N1/C2/N3/N4 and N1/C1/N2/S1 fragments are planar but twisted from coplanarity at the central atom N1. The dihedral angle between the planes defined by the N1/C2/N3/N4 and N1/C1/N2/S1 arms is 1.4 (1)° in (Ia), 9.8 (1)° in (Ib), 4.4 (1)° in (Ic) and 2.1 (1)° in (Id). Therefore, the 1-(diaminomethylene)thiouron-1-ium cations in the crystals of (Ia) and (Id) are almost planar [the deviations of the non-H atoms from the mean plane are smaller than 0.021 (1) Å in (Ia) and 0.058 (1) Å in (Id); see Table 6]. A similar nonplanar, twisted conformation of the cation is observed in the crystals of other salts, as shown by their dihedral angles [22.9 (1)° for the chloride, 15.2 (1)° for the bromide and 4.2 (1)° for the iodide (Perpétuo & Janczak, 2008)]. Ab-initio molecular orbital (MO) calculations indicate that the most stable conformation of the 1-(diaminomethylene)thiouron-1-ium cation is twisted with a dihedral angle of 6.2° (Perpétuo & Janczak, 2008). In single crystals, the neutral 1-(diaminomethylene)thiourea molecule also has a twisted conformation, with a dihedral angle of 22.2 (1)°, while the MO-calculated dihedral angle is 6.6° (Janczak & Perpétuo, 2008).
In the present crystal structures, the respective C—N and C—S bond lengths are very similar (Table 5). The C—N bonds involving the central N1 atom are significantly longer than the C—N bonds linking the amine groups. The values of the C1—S1 bond lengths in these salts are shorter than that in the neutral molecule of 1-(diaminomethylene)thiourea [1.7364 (9) Å; Janczak & Perpétuo, 2008] and are comparable to those found in the crystals of 1-(diaminomethylene)thiouron-1-ium chloride, bromide and iodide (Perpétuo & Janczak, 2008) as well as in thiourea derivatives (average C—S distance of 1.663 Å; Allen et al. 1997). The C1—S1 bond lengths in (Ia)–(Id) are slightly longer than the pure double C═S bond as observed in thioformaldehyde, CH2S [1.6109 (8) Å; Johnson et al., 1971], but shorter than the distance of 1.74 Å which represents 50% double-bond character (Abrahams, 1956; Allen et al. 1987). Thus the bond order of C1—S1 in (Ia)–(Id) is somewhat less than 2, because of the partial delocalization of the π electrons of the double C1—S1 and C2—N1 bonds over the single C—N bonds linking the NH2 groups. This results in a shortening of the single C—NH2 bonds and the elongation of the double double C1═S1 and C2═N1 bonds. Thus the bond order of the C—N bonds linking the amine groups is greater than that of the C—N bonds involving the central N1 atom. Ab-initio MO calculations show that interaction of atom S1 with the amine group (N4) leads to the rotation of both arms of the 1-(diaminomethylene)thiouron-1-ium cation around the C—N1 bond by 6.2°, as well as the distortion of the C—N—C, N—C—N and N—C—S angles from 120°, as expected for sp2-hydridization. The protonation of the central N1 atom decreases the steric effect of the lone-pair of electrons at atom N1 and makes the C1—N1—C2 angle greater by ~6° in comparison with the neutral molecule (Janczak & Perpétuo, 2008), which is consistent with the valence-shell electron-pair repulsion model (Gillespie, 1992). The anionic species of (Ia)–(Id) each exhibit a slightly distorted tetrahedral geometry, with bond lengths and angles typical of those found in several crystals of this kind (Allen, 2002).
In all of the title crystal structures, besides the interionic interactions, the oppositely charged units interact through hydrogen-bonding systems. Atom S1 contains two lone-pair electrons and so acts as a hydrogen-bond acceptor. The non-bonded S···H contact requires that the distance between the S and H atoms is shorter than the sum of the van der Waals radii of these atoms [rS = 1.80 Å (Bondi, 1964) and rH = 1.10 Å (Rowland & Taylor, 1996]. Besides S···H contacts, N—H···O contacts between the oppositely charged units with distances shorter than the sum of the van der Waals radii of O and H atoms are observed in these structures [rO = 1.52 Å and rH = 1.10 Å; Bondi, 1964; Pauling, 1960]. In (Ia) (Table 1), 1-(diaminomethylene)thiouron-1-ium cations related by inversion interact via a pair of N—H···S hydrogen bonds, forming a dimeric structure (Fig. 2a). These dimers are linked via N—H···O hydrogen bonds with ClO4- anions, forming layers that are arranged almost parallel to the (102) crystallographic plane and are separated by a distance of ~3.58 Å.
In (Ib), the 1-(diaminomethylene)thiouron-1-ium cations are discrete and they are surrounded by the HSO4- counter-ions (Fig. 2b). HSO4- anions related by inversion interact by a pair of O2—H2···O1i hydrogen bonds [O3—H3 in Table 2; also note that there are some small discrepancies between the O,N—H distances in Tables 1 and 2 and those given in the CIF _geom_bond loops], forming centrosymmetric dimers. The discrete 1-(diaminomethylene)thiouron-1-ium cations interact via N—H···O hydrogen bonds with the (HSO4-)2 dimers, forming double layers that are parallel to the (001) crystallographic plane (Table 2). The sheets in the double layers are interconnected by N—H···O hydrogen bonds, while between the double layers no hydrogen bonds are observed (Fig. 2b). The sheets in the double layer are separated by a distance of ~3.22 Å and the double layers by ~2.92 Å.
In the isomorphic structures of (Ic) and (Id) (Tables 3 and 4), and as found in (Ia), the 1-(diaminomethylene)thiouron-1-ium cations interact via N—H···S hydrogen bonds, forming centrosymmetric dimers. The anions, i.e. H2PO4- or H2AsO4-, are involved in two pairs of almost linear O—H···O hydrogen bonds to form pseudo-one-dimensional chains that run almost parallel to the [100] direction (Fig. 3a). The anionic chains interconnect the cationic dimers by N—H···O hydrogen bonds, forming a three-dimensional hydrogen-bonded network (Fig. 3b). In the crystal structures of (Ic) and (Id), the dimeric cations form a stacking structure with a distance between the mean planes of the dimers of 3.71 (1) and 3.42 (1) Å, respectively.
This study illustrates the utility of 1-(diaminomethylene)thiourea in crystal engineering for developing a variety of supramolecular structures, namely layers, double layers and three-dimensional networks.