Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
In 2,4-diamino-5-(4-chloro­phenyl)-6-ethyl­pyrimidin-1-ium (pyri­methaminium, PMNH) 4-methyl­benzoate, C12H14ClN4+·C8H7O2, (I), pyrimethaminium 3-hydroxy­picolinate, C12H14ClN4+·C6H4NO3, (II), and pyrimethaminium 2,4-dichloro­benzoate, C12H14ClN4+·C7H3Cl2O2, (III), the PMNH cations inter­act with the carboxyl­ate groups of the corresponding anion via nearly parallel N—H...O hydrogen bonds, forming R22(8) ring motifs. A description of the observed arrays of quadruple hydrogen bonds in (I) and (II) in terms of hydrogen donors and acceptors (the DA model), their graph-set motifs and the resulting supra­molecular ladder is given. In (III), supra­molecular chains along the b axis and helical chains along the a axis are formed via N—H...O hydrogen bonds involving the 2-amino and 4-amino groups of the PMNH cation, respectively. Weak Cl...Cl inter­actions are also found in (III).

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270110002337/ga3142sup1.cif
Contains datablocks global, I, II, III

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270110002337/ga3142Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270110002337/ga3142IIsup3.hkl
Contains datablock II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270110002337/ga3142IIIsup4.hkl
Contains datablock III

CCDC references: 774075; 774076; 774077

Comment top

Pyrimethamine (PMN) is an antifolate drug used in the treatment of malaria. In the chemotherapy of malaria and neoplastic diseases, substituted 2,4-diaminopyrimidines are widely employed as metabolic inhibitors of pathways leading to the synthesis of proteins and nucleic acids (Hitchings & Burchall, 1965). PMN acts against malarial parasites by selectively inhibiting their dihydrofolate reductase–thymidylate synthase (Sardarian et al., 2003). PMN is also used along with other drugs for the treatment of opportunistic infections in patients suffering from AIDS (Tanaka et al., 2004). 2-Aminopyrimidine and its derivatives form good adducts as they readily form hydrogen-bonded patterns through their stereochemically associated amine group and ring N atom (Lynch et al., 2000). The crystal structures of PMN (Sethuraman & Thomas Muthiah, 2002) and many of its salts have been reported from our laboratory (Sethuraman et al., 2003; Stanley et al., 2005). The present study of the title salts, pyrimethaminium 4-methylbenzoate, (I), pyrimethaminium 3-hydroxypicolinate, (II), and pyrimethaminium 2,4-dichlorobenzoate, (III), was undertaken to obtain more information regarding patterns of hydrogen bonding in these types of compounds.

Views of compounds (I)–(III) are shown in Figs. 1–3 and comparitive geometric parameters are given in Table 1. In these compounds, the asymmetric unit contains one pyrimethaminium cation, together with a 4-methylbenzoate anion in (I), a 3-hydroxypicolinate anion in (II) and a 2,4-dichlorobenzoate anion in (III). As expected, in all three crystal structures the PMNH cations are protonated at the N1 position. The dihedral angle between the 2,4-diaminopyrimidine and 4-chlorophenyl planes is 80.11 (14)° in (I), 68.28 (9)° in (II) and 72.50 (8)° in (III). These values are close to those observed in modelling studies of dihydrofolate reductase pyrimethamine (DHFR–PMN) complexes (Sansom et al., 1989). Such modelling studies of DHFR–PMN complexes indicate that this dihedral angle is important for the proper docking of the drug molecule at the active site of the enzyme (Sansom et al., 1989). By contrast, the value of the C5—C6—C7—C8 torsion angle (Table 1), representing the deviation of the ethyl group from the pyrimidine plane, is not very important, as it does not affect the overall binding energy of the enzyme–drug complex (Sansom et al., 1989).

In each of (I)–(III), the carboxylate group of the respective anion (4-methylbenzoate, 3-hydroxypicolinate and 2,4-dichlorobenzoate, respectively) interacts with the protonated pyrimidine moiety of PMNH in a linear fashion through a pair of N—H···O hydrogen bonds, to form an eight-membered R22(8) ring motif (Etter, 1990; Bernstein et al., 1995) (Figs. 1–3). This motif has been observed in modelling studies of DHFR–PMN complexes (Sansom et al., 1989), and it is one of the 24 most frequently observed motifs in organic crystal structures (Allen et al., 1998).

In (I), the R22(8) motifs are crosslinked via N—H···O hydrogen bonds to produce a DDAA array (where D is a hydrogen-bond donor and A is a hydrogen-bond acceptor) of quadruple hydrogen bonds (Table 1); this can be represented by the graph-set notations R22(8) and R42(8) (see Fig. 4). The inversion-centre-related PMNH cations are also base-paired via N—H···N hydrogen bonds involving the unprotonated pyrimidine N atom and the 4-amino group (Table 2). This type of base pairing, also with an R22(8) motif, has been observed in many diaminopyrimidinecarboxylate salts (Stanley et al., 2005). In addition to the base pairing, a hydrogen-bonded acceptor (O1) bridges the 4-amino and 2-amino groups on the sides of the pairing, leading to a complementary linear DADA array of quadruple hydrogen bonds with rings having graph-set notation R22(8) and R32(8). In general, only one of the motifs (DADA or DDAA array) has been identified at any one time in diaminopyrimidinecarboxylate salts. Here, both the DADA and DDAA array motifs co-exist in an alternating manner to form a hydrogen-bonded supramolecular ladder (Fig. 4).

In (II) (Table 3), inversion-related molecules are connected via N2—H···N5 hydrogen bonds to form an array with an R44(14) ring motif. This array is futher crosslinked via N—H···O hydrogen bonds (Fig. 5). A typical intramolecular hydrogen bond exists between the hydroxy and carboxylate groups of the 3-hydroxypicolinate anion to form a six-membered hydrogen-bonded ring [S(6), Fig. 2].

In (III), the 2-amino group of the PMNH cation interacts with one of the carboxylate O atoms (O1) through an N—H···O hydrogen bond, to form a supramolecular chain motif C21(6) along the b axis (Fig. 6). In addition, the 4-amino group of the PMNH cation interacts with one of the carboxylate O atoms (O2) through an N—H···O hydrogen bond, to form a helical chain along the a axis (Fig. 7) with motif C21(8). Details of these hydrogen bonds are given in Table 4. Further, the cations and anions are linked by weak Cl···Cl interactions (Table 5) which are not observed in compounds (I) and (II).

In conclusion, in all three crystal stuctures the PMNH cation interacts with the carboxylate O atoms via N—H···O hydrogen bonds to form the frequently observed hydrogen-bonded eight-membered R22(8) ring motif. In compound (I), the R22(8) motifs are further bridged by N—H···O hydrogen bonds on either side, forming a DDAA array of quadruple hydrogen bonds. In (I), N4—H···N3 base pairing is observed, while there is none in compounds (II) and (III). In (I), both DADA and DDAA array motifs co-exist in an alternating manner to form a hydrogen-bonded supramolecular ladder. Thus, it appears that the variation in supramolecular organization depends in part on the nature of the side chain attached to the anionic ring, viz. 4-methylbenzoate, 3-hydroxypicolinate or 2,4-dichlorobenzoate.

Experimental top

Compounds (I)–(III) were prepared by mixing hot methanol solutions (20 ml) of pyrimethamine (62 mg; Shah Pharma Chemicals, India) with hot aqueous solutions (Volume?) of the corresponding acid [4-methylbenzoic acid (34 mg, Loba Chemie) for (I), 3-hydroxypicolinic acid (34 mg, Loba Chemie) for (II) and 2,4-dichlorobenzoic acid (47 mg, Loba Chemie) for (III)] in a 1:1 molar ratio, and warming for 30 min over a water bath. Each solution was cooled slowly and kept at room temperature. After a few days, colourless crystals were obtained in each case.

Refinement top

All H atoms were positioned geometrically and refined using a riding model, with C—H = 0.93–0.97 Å and N—H = 0.86 Å in (I)–(III), and O—H = 0.82 Å in (II), and with Uiso(H) = 1.5Ueq(C,O) for OH groups in (II) and for all methyl groups, and Uiso(H) = 1.2Ueq(C,N) for all other H atoms.

Computing details top

For all compounds, data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii. Dashed lines indicate hydrogen bonds.
[Figure 2] Fig. 2. The asymmetric unit of (II), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii. Dashed lines indicate hydrogen bonds.
[Figure 3] Fig. 3. The asymmetric unit of (III), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii. Dashed lines indicate hydrogen bonds.
[Figure 4] Fig. 4. A view of the DADA and DDAA arrays of hydrogen bonds leading to a supramolecular ladder in (I). Dashed lines indicate hydrogen bonds and H atoms not involved in hydrogen bonding have been omitted. [Symmetry codes: (i) -x + 1, y, -z + 3/2; (ii) -x + 1/2, -y + 1/2, -z + 1; (iii) x - 1/2, -y + 1/2, z - 1/2.]
[Figure 5] Fig. 5. The crystal structure of (II). Dashed lines indicate hydrogen bonds and H atoms not involved in hydrogen bonding have been omitted. [Symmetry codes: (i) -x + 2, -y + 1, -z + 1; (ii) -x + 2, y + 1/2, -z + 3/2.]
[Figure 6] Fig. 6. N—H···O hydrogen-bonding patterns in the supramolecular chain of (III). Dashed lines indicate hydrogen bonds and H atoms not involved in hydrogen bonding have been omitted. [Symmetry code: (i) -x + 3/2, y + 1/2, z.]
[Figure 7] Fig. 7. View of the N—H···O hydrogen bonds responsible for the spiral type of hydrogen bonding in (III). Dashed lines indicate hydrogen bonds and H atoms not involved in hydrogen bonding have been omitted. [Symmetry code: (ii) x + 1/2, -y + 3/2, -z + 1.]
(I) 2,4-diamino-5-(4-chlorophenyl)-6-ethylpyrimidin-1-ium 4-methylbenzoate top
Crystal data top
C12H14ClN4+·C8H7O2F(000) = 1616
Mr = 384.86Dx = 1.247 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 3398 reflections
a = 17.1373 (3) Åθ = 1.8–24.5°
b = 16.4776 (3) ŵ = 0.21 mm1
c = 16.6127 (3) ÅT = 293 K
β = 119.080 (1)°Prism, colourless
V = 4099.77 (13) Å30.15 × 0.12 × 0.12 mm
Z = 8
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
3398 independent reflections
Radiation source: fine-focus sealed tube2474 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.038
ϕ and ω scansθmax = 24.5°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 1919
Tmin = 0.970, Tmax = 0.975k = 1919
32486 measured reflectionsl = 1919
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.047H-atom parameters constrained
wR(F2) = 0.144 w = 1/[σ2(Fo2) + (0.0658P)2 + 3.2788P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
3398 reflectionsΔρmax = 0.42 e Å3
247 parametersΔρmin = 0.39 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc* = kFc[1+0.001Fc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0027 (4)
Crystal data top
C12H14ClN4+·C8H7O2V = 4099.77 (13) Å3
Mr = 384.86Z = 8
Monoclinic, C2/cMo Kα radiation
a = 17.1373 (3) ŵ = 0.21 mm1
b = 16.4776 (3) ÅT = 293 K
c = 16.6127 (3) Å0.15 × 0.12 × 0.12 mm
β = 119.080 (1)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
3398 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
2474 reflections with I > 2σ(I)
Tmin = 0.970, Tmax = 0.975Rint = 0.038
32486 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0470 restraints
wR(F2) = 0.144H-atom parameters constrained
S = 1.04Δρmax = 0.42 e Å3
3398 reflectionsΔρmin = 0.39 e Å3
247 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.30822 (8)0.39451 (7)0.04367 (7)0.1284 (5)
N10.48427 (13)0.14845 (13)0.52582 (12)0.0611 (7)
N20.44626 (15)0.11987 (15)0.63640 (14)0.0813 (9)
N30.35105 (12)0.19873 (12)0.51388 (12)0.0528 (6)
N40.26177 (13)0.28077 (13)0.39515 (13)0.0667 (8)
C20.42561 (15)0.15605 (15)0.55722 (15)0.0554 (8)
C40.33485 (14)0.23610 (14)0.43547 (15)0.0506 (7)
C50.39374 (15)0.22935 (14)0.39751 (15)0.0534 (8)
C60.46936 (15)0.18496 (15)0.44614 (15)0.0576 (8)
C70.54004 (18)0.17130 (18)0.41872 (19)0.0742 (10)
C80.5349 (3)0.0906 (3)0.3791 (3)0.1290 (19)
C90.37267 (15)0.27061 (15)0.30981 (16)0.0564 (8)
C100.41131 (18)0.34358 (17)0.30932 (19)0.0703 (10)
C110.3911 (2)0.38150 (18)0.2270 (2)0.0799 (11)
C120.3324 (2)0.3462 (2)0.1463 (2)0.0776 (11)
C130.2929 (2)0.2741 (2)0.1443 (2)0.0900 (11)
C140.3130 (2)0.23686 (18)0.22632 (18)0.0759 (10)
O10.64302 (12)0.09524 (12)0.75217 (12)0.0764 (7)
O20.61921 (13)0.05308 (13)0.61543 (13)0.0884 (8)
C150.74092 (15)0.00252 (15)0.74470 (16)0.0580 (8)
C160.76369 (17)0.04889 (16)0.68968 (19)0.0667 (9)
C170.8389 (2)0.09686 (19)0.7290 (3)0.0904 (14)
C180.8935 (2)0.0998 (2)0.8236 (3)0.1095 (16)
C190.8693 (2)0.0547 (3)0.8768 (2)0.1027 (14)
C200.79429 (17)0.00652 (19)0.83934 (18)0.0764 (10)
C210.66182 (16)0.05275 (16)0.70211 (16)0.0591 (8)
C220.9769 (3)0.1533 (4)0.8658 (4)0.192 (3)
H10.531900.120100.556500.0730*
H2A0.411200.124100.659600.0980*
H2B0.494700.092100.664600.0980*
H4A0.227500.284700.419300.0800*
H4B0.248500.305900.344700.0800*
H7A0.534000.212200.374000.0890*
H7B0.598400.177900.472500.0890*
H8A0.538500.049800.422100.1930*
H8B0.583500.083900.366400.1930*
H8C0.479300.085300.323000.1930*
H100.451400.367800.364800.0840*
H110.417700.430700.227100.0960*
H130.252900.250400.088500.1080*
H140.285700.187800.225400.0910*
H160.728000.047600.626000.0800*
H170.853400.127900.691300.1090*
H190.904700.056600.940500.1230*
H200.779500.023300.877500.0910*
H22A0.969800.196400.823900.2880*
H22B0.985300.175800.922700.2880*
H22C1.028100.121200.877200.2880*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.1810 (11)0.1438 (9)0.0940 (7)0.0300 (7)0.0932 (7)0.0522 (6)
N10.0549 (11)0.0839 (14)0.0490 (11)0.0213 (10)0.0288 (9)0.0102 (10)
N20.0817 (15)0.1171 (19)0.0622 (13)0.0446 (14)0.0484 (12)0.0364 (13)
N30.0491 (11)0.0684 (12)0.0463 (10)0.0099 (9)0.0274 (9)0.0073 (9)
N40.0601 (12)0.0950 (16)0.0580 (12)0.0274 (11)0.0389 (10)0.0266 (11)
C20.0545 (13)0.0689 (15)0.0479 (13)0.0099 (12)0.0290 (11)0.0040 (11)
C40.0480 (12)0.0623 (14)0.0456 (12)0.0039 (11)0.0259 (10)0.0035 (10)
C50.0514 (13)0.0672 (15)0.0479 (12)0.0050 (11)0.0291 (11)0.0042 (11)
C60.0554 (13)0.0745 (16)0.0494 (13)0.0068 (12)0.0306 (11)0.0024 (11)
C70.0702 (16)0.098 (2)0.0689 (17)0.0213 (15)0.0451 (14)0.0120 (15)
C80.142 (3)0.149 (4)0.138 (3)0.000 (3)0.101 (3)0.038 (3)
C90.0544 (13)0.0725 (16)0.0537 (14)0.0113 (12)0.0353 (12)0.0078 (11)
C100.0693 (16)0.0784 (18)0.0685 (17)0.0022 (14)0.0377 (14)0.0082 (14)
C110.084 (2)0.0795 (19)0.099 (2)0.0102 (16)0.0624 (19)0.0246 (17)
C120.089 (2)0.098 (2)0.0673 (19)0.0240 (17)0.0550 (17)0.0249 (16)
C130.110 (2)0.107 (2)0.0544 (17)0.003 (2)0.0411 (17)0.0100 (16)
C140.0881 (19)0.0864 (19)0.0568 (16)0.0091 (15)0.0381 (15)0.0066 (14)
O10.0703 (11)0.1006 (14)0.0644 (11)0.0182 (10)0.0375 (9)0.0077 (10)
O20.0814 (13)0.1205 (17)0.0544 (11)0.0424 (12)0.0261 (10)0.0025 (10)
C150.0539 (13)0.0667 (15)0.0588 (14)0.0059 (11)0.0317 (12)0.0124 (11)
C160.0681 (16)0.0658 (16)0.0751 (17)0.0087 (13)0.0419 (14)0.0075 (13)
C170.097 (2)0.081 (2)0.124 (3)0.0313 (17)0.078 (2)0.0307 (19)
C180.090 (2)0.132 (3)0.130 (3)0.056 (2)0.072 (2)0.078 (3)
C190.075 (2)0.157 (3)0.080 (2)0.035 (2)0.0407 (17)0.061 (2)
C200.0655 (16)0.107 (2)0.0627 (16)0.0114 (15)0.0359 (14)0.0235 (15)
C210.0543 (13)0.0722 (16)0.0533 (15)0.0071 (12)0.0281 (12)0.0016 (12)
C220.150 (4)0.246 (6)0.214 (6)0.136 (4)0.116 (4)0.146 (5)
Geometric parameters (Å, º) top
Cl1—C121.739 (3)C7—H7B0.9700
O1—C211.243 (3)C7—H7A0.9700
O2—C211.259 (3)C8—H8C0.9600
N1—C61.360 (3)C8—H8A0.9600
N1—C21.345 (4)C8—H8B0.9600
N2—C21.326 (3)C10—H100.9300
N3—C41.342 (3)C11—H110.9300
N3—C21.323 (3)C13—H130.9300
N4—C41.320 (3)C14—H140.9300
N1—H10.8600C15—C161.385 (4)
N2—H2B0.8600C15—C201.384 (4)
N2—H2A0.8600C15—C211.495 (4)
N4—H4A0.8600C16—C171.376 (5)
N4—H4B0.8600C17—C181.385 (6)
C4—C51.431 (4)C18—C191.364 (6)
C5—C91.485 (3)C18—C221.529 (7)
C5—C61.360 (4)C19—C201.376 (5)
C6—C71.504 (4)C16—H160.9300
C7—C81.467 (6)C17—H170.9300
C9—C141.378 (4)C19—H190.9300
C9—C101.375 (4)C20—H200.9300
C10—C111.386 (4)C22—H22A0.9600
C11—C121.355 (4)C22—H22B0.9600
C12—C131.360 (5)C22—H22C0.9600
C13—C141.377 (4)
Cl1···C19i3.507 (4)C14···H4B2.9100
Cl1···H19i3.0100C16···H14xi3.0200
Cl1···H13ii3.0600C16···H11iii3.0900
O1···N4iii3.043 (3)C17···H11iii3.0600
O1···N22.988 (3)C17···H14xi2.9900
O1···N2iv2.947 (3)C21···H12.6100
O2···N12.586 (3)C21···H2B2.7000
O1···H2B2.2300H1···O12.8900
O1···H202.5400H1···O21.7300
O1···H2Aiv2.1400H1···C83.0100
O1···H4Biii2.3600H1···H2B2.2300
O1···H12.8900H1···H7B2.3900
O2···H11.7300H1···H8A2.5700
O2···H162.4400H1···C212.6100
O2···H2B2.7100H2A···H4Av2.5700
O2···H8A2.8100H2A···O1iv2.1400
N1···O22.586 (3)H2B···O12.2300
N1···C213.415 (3)H2B···H12.2300
N2···O1iv2.947 (3)H2B···C8xi3.0800
N2···O12.988 (3)H2B···O22.7100
N2···N2iv3.299 (3)H2B···C212.7000
N3···N4v2.996 (3)H4A···N3v2.1400
N4···N3v2.996 (3)H4A···H2Av2.5700
N4···O1vi3.043 (3)H4A···C2v3.0000
N4···C143.399 (4)H4A···C4v3.1000
N1···H8A2.8300H4B···C142.9100
N3···H4Av2.1400H4B···O1vi2.3600
C2···C22vii3.496 (7)H4B···C92.5300
C7···C103.512 (4)H7A···C92.6200
C10···C73.512 (4)H7A···C102.8400
C10···C20vi3.529 (4)H7B···H12.3900
C11···C16vi3.383 (4)H8A···O22.8100
C11···C11viii3.427 (5)H8A···H12.5700
C11···C15vi3.380 (4)H8A···N12.8300
C14···N43.399 (4)H11···C16vi3.0900
C15···C11iii3.380 (4)H11···C17vi3.0600
C16···C11iii3.383 (4)H11···H11viii2.5400
C19···Cl1ix3.507 (4)H11···C11viii3.0900
C20···C10iii3.529 (4)H13···Cl1ii3.0600
C21···N13.415 (3)H14···C16xi3.0200
C22···C2x3.496 (7)H14···C17xi2.9900
C2···H22Avii3.1000H16···O22.4400
C2···H4Av3.0000H17···H22A2.4200
C4···H4Av3.1000H19···H22B2.5000
C6···H22Bvii2.9900H19···Cl1ix3.0100
C8···H13.0100H20···O12.5400
C8···H2Bxi3.0800H22A···H172.4200
C9···H7A2.6200H22A···C2x3.1000
C9···H4B2.5300H22B···H192.5000
C10···H7A2.8400H22B···C6x2.9900
C11···H11viii3.0900
C2—N1—C6120.9 (2)C7—C8—H8C109.00
C2—N3—C4117.5 (2)H8A—C8—H8B110.00
C2—N1—H1120.00H8A—C8—H8C109.00
C6—N1—H1119.00H8B—C8—H8C110.00
C2—N2—H2A120.00C9—C10—H10120.00
C2—N2—H2B120.00C11—C10—H10120.00
H2A—N2—H2B120.00C10—C11—H11120.00
H4A—N4—H4B120.00C12—C11—H11120.00
C4—N4—H4A120.00C12—C13—H13121.00
C4—N4—H4B120.00C14—C13—H13121.00
N1—C2—N3123.0 (2)C9—C14—H14119.00
N2—C2—N3120.0 (3)C13—C14—H14119.00
N1—C2—N2117.0 (2)C16—C15—C20118.7 (3)
N3—C4—N4116.5 (2)C16—C15—C21120.4 (2)
N3—C4—C5122.3 (2)C20—C15—C21120.9 (2)
N4—C4—C5121.2 (2)C15—C16—C17120.2 (3)
C4—C5—C6116.9 (2)C16—C17—C18121.3 (3)
C4—C5—C9120.7 (2)C17—C18—C19117.7 (4)
C6—C5—C9122.4 (2)C17—C18—C22120.4 (4)
N1—C6—C5119.3 (2)C19—C18—C22121.9 (4)
N1—C6—C7115.5 (2)C18—C19—C20122.2 (3)
C5—C6—C7125.2 (2)C15—C20—C19119.9 (3)
C6—C7—C8113.0 (3)O1—C21—O2124.6 (3)
C5—C9—C10121.2 (2)O1—C21—C15119.8 (2)
C5—C9—C14120.7 (2)O2—C21—C15115.6 (2)
C10—C9—C14118.1 (2)C15—C16—H16120.00
C9—C10—C11120.7 (3)C17—C16—H16120.00
C10—C11—C12119.5 (3)C16—C17—H17119.00
Cl1—C12—C11118.8 (3)C18—C17—H17119.00
Cl1—C12—C13119.8 (2)C18—C19—H19119.00
C11—C12—C13121.4 (3)C20—C19—H19119.00
C12—C13—C14118.9 (3)C15—C20—H20120.00
C9—C14—C13121.5 (3)C19—C20—H20120.00
C6—C7—H7A109.00C18—C22—H22A109.00
C6—C7—H7B109.00C18—C22—H22B110.00
C8—C7—H7A109.00C18—C22—H22C109.00
C8—C7—H7B109.00H22A—C22—H22B110.00
H7A—C7—H7B108.00H22A—C22—H22C109.00
C7—C8—H8A109.00H22B—C22—H22C109.00
C7—C8—H8B109.00
C6—N1—C2—N2178.6 (2)C14—C9—C10—C110.5 (5)
C6—N1—C2—N30.1 (4)C5—C9—C14—C13179.8 (3)
C2—N1—C6—C50.4 (4)C10—C9—C14—C130.7 (5)
C2—N1—C6—C7179.8 (2)C9—C10—C11—C120.2 (5)
C4—N3—C2—N10.5 (3)C10—C11—C12—Cl1179.7 (3)
C4—N3—C2—N2178.0 (2)C10—C11—C12—C130.1 (6)
C2—N3—C4—N4177.6 (2)Cl1—C12—C13—C14180.0 (3)
C2—N3—C4—C51.6 (3)C11—C12—C13—C140.4 (6)
N3—C4—C5—C62.0 (3)C12—C13—C14—C90.7 (5)
N3—C4—C5—C9179.0 (2)C20—C15—C16—C171.0 (4)
N4—C4—C5—C6177.1 (2)C21—C15—C16—C17177.0 (3)
N4—C4—C5—C91.9 (3)C16—C15—C20—C191.3 (5)
C4—C5—C6—N11.3 (3)C21—C15—C20—C19176.7 (3)
C4—C5—C6—C7179.3 (2)C16—C15—C21—O1178.6 (3)
C9—C5—C6—N1179.7 (2)C16—C15—C21—O20.4 (4)
C9—C5—C6—C70.4 (4)C20—C15—C21—O10.7 (4)
C4—C5—C9—C1099.0 (3)C20—C15—C21—O2178.3 (3)
C4—C5—C9—C1480.5 (3)C15—C16—C17—C180.3 (5)
C6—C5—C9—C1079.9 (3)C16—C17—C18—C191.3 (6)
C6—C5—C9—C14100.6 (3)C16—C17—C18—C22179.8 (4)
N1—C6—C7—C876.8 (3)C17—C18—C19—C201.0 (6)
C5—C6—C7—C8102.6 (3)C22—C18—C19—C20179.9 (4)
C5—C9—C10—C11180.0 (3)C18—C19—C20—C150.3 (6)
Symmetry codes: (i) x1/2, y+1/2, z1; (ii) x+1/2, y+1/2, z; (iii) x+1/2, y+1/2, z+1/2; (iv) x+1, y, z+3/2; (v) x+1/2, y+1/2, z+1; (vi) x1/2, y+1/2, z1/2; (vii) x+3/2, y+1/2, z+3/2; (viii) x+1, y, z+1/2; (ix) x+1/2, y1/2, z+1; (x) x+3/2, y1/2, z+3/2; (xi) x+1, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O20.861.732.586 (3)173
N2—H2A···O1iv0.862.142.947 (3)157
N2—H2B···O10.862.232.988 (3)147
N4—H4A···N3v0.862.142.996 (3)176
N4—H4B···O1vi0.862.363.043 (3)136
Symmetry codes: (iv) x+1, y, z+3/2; (v) x+1/2, y+1/2, z+1; (vi) x1/2, y+1/2, z1/2.
(II) 2,4-diamino-(p-chlorophenyl)-6-ethylpyrimidinium 3-hydroxypicolinate' top
Crystal data top
C12H14ClN4+·C6H4NO3F(000) = 808
Mr = 387.82Dx = 1.387 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 5622 reflections
a = 11.2563 (3) Åθ = 1.9–30.4°
b = 14.3968 (4) ŵ = 0.24 mm1
c = 11.7902 (3) ÅT = 293 K
β = 103.625 (1)°Prism, colourless
V = 1856.89 (9) Å30.22 × 0.20 × 0.18 mm
Z = 4
Data collection top
Bruker SMART APEX II CCD area detector
diffractometer
5622 independent reflections
Radiation source: fine-focus sealed tube3927 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
ϕ and ω scansθmax = 30.4°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 1515
Tmin = 0.950, Tmax = 0.959k = 2020
21858 measured reflectionsl = 1516
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.051Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.153H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0709P)2 + 0.5158P]
where P = (Fo2 + 2Fc2)/3
5622 reflections(Δ/σ)max = 0.001
246 parametersΔρmax = 0.39 e Å3
0 restraintsΔρmin = 0.35 e Å3
Crystal data top
C12H14ClN4+·C6H4NO3V = 1856.89 (9) Å3
Mr = 387.82Z = 4
Monoclinic, P21/cMo Kα radiation
a = 11.2563 (3) ŵ = 0.24 mm1
b = 14.3968 (4) ÅT = 293 K
c = 11.7902 (3) Å0.22 × 0.20 × 0.18 mm
β = 103.625 (1)°
Data collection top
Bruker SMART APEX II CCD area detector
diffractometer
5622 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
3927 reflections with I > 2σ(I)
Tmin = 0.950, Tmax = 0.959Rint = 0.028
21858 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0510 restraints
wR(F2) = 0.153H-atom parameters constrained
S = 1.05Δρmax = 0.39 e Å3
5622 reflectionsΔρmin = 0.35 e Å3
246 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > 2sigma(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.66240 (6)0.62306 (4)1.38986 (4)0.0694 (2)
N10.82081 (12)0.54460 (9)0.75791 (11)0.0375 (4)
N20.96003 (13)0.58674 (10)0.65198 (12)0.0423 (4)
N30.96070 (12)0.66575 (9)0.82133 (13)0.0416 (4)
N40.95778 (15)0.74277 (11)0.98868 (15)0.0585 (6)
C20.91478 (14)0.59983 (10)0.74512 (13)0.0352 (4)
C40.91457 (14)0.67436 (11)0.91553 (15)0.0401 (5)
C50.82281 (14)0.61243 (11)0.93933 (14)0.0369 (4)
C60.77637 (14)0.54923 (11)0.85573 (13)0.0357 (4)
C70.68328 (16)0.47616 (12)0.86360 (16)0.0464 (5)
C80.7442 (3)0.38982 (17)0.9185 (3)0.0912 (12)
C90.78431 (14)0.61809 (11)1.05183 (13)0.0371 (4)
C100.86250 (18)0.59219 (16)1.15633 (17)0.0577 (7)
C110.8264 (2)0.59431 (17)1.26033 (17)0.0626 (7)
C120.71056 (17)0.62210 (12)1.26052 (15)0.0450 (5)
C130.63071 (18)0.64809 (18)1.15934 (17)0.0623 (7)
C140.66868 (18)0.64717 (17)1.05624 (16)0.0604 (7)
O10.89470 (11)0.40927 (9)0.54067 (11)0.0504 (4)
O20.71175 (11)0.43050 (9)0.57770 (10)0.0477 (4)
O30.51752 (11)0.39159 (12)0.42491 (13)0.0606 (5)
N50.79256 (12)0.33747 (10)0.32772 (12)0.0414 (4)
C150.71958 (14)0.36663 (10)0.39545 (13)0.0348 (4)
C160.59211 (14)0.36258 (12)0.35892 (15)0.0416 (5)
C170.54154 (17)0.32534 (15)0.24937 (16)0.0550 (6)
C180.61739 (19)0.29373 (17)0.18254 (17)0.0613 (7)
C190.74202 (18)0.30191 (15)0.22363 (16)0.0552 (6)
C200.78153 (14)0.40452 (10)0.51336 (13)0.0361 (4)
H10.788900.506200.703400.0450*
H2A1.019000.621000.641200.0510*
H2B0.930400.544000.602400.0510*
H4A1.013100.779300.974600.0700*
H4B0.930600.750701.050300.0700*
H7A0.628700.499500.909600.0560*
H7B0.634800.462100.786000.0560*
H8A0.804800.370600.878000.1370*
H8B0.684400.341600.913800.1370*
H8C0.782800.401800.998800.1370*
H100.941400.572901.156400.0690*
H110.880500.577001.329600.0750*
H130.551600.666201.159900.0750*
H140.614900.666700.987900.0730*
H30.558300.412500.486600.0910*
H170.457200.322000.221800.0660*
H180.585000.267000.110100.0740*
H190.792700.281800.176700.0660*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0910 (4)0.0813 (4)0.0453 (3)0.0149 (3)0.0348 (3)0.0063 (2)
N10.0422 (7)0.0389 (7)0.0336 (6)0.0089 (5)0.0133 (5)0.0064 (5)
N20.0446 (7)0.0464 (7)0.0403 (7)0.0052 (6)0.0191 (6)0.0020 (6)
N30.0420 (7)0.0364 (7)0.0514 (8)0.0057 (5)0.0208 (6)0.0068 (6)
N40.0592 (10)0.0552 (9)0.0695 (11)0.0239 (7)0.0323 (8)0.0289 (8)
C20.0372 (7)0.0331 (7)0.0374 (7)0.0008 (6)0.0129 (6)0.0027 (6)
C40.0371 (8)0.0379 (8)0.0476 (9)0.0035 (6)0.0147 (7)0.0085 (7)
C50.0367 (7)0.0387 (8)0.0379 (8)0.0028 (6)0.0140 (6)0.0041 (6)
C60.0382 (7)0.0358 (7)0.0354 (7)0.0031 (6)0.0132 (6)0.0017 (6)
C70.0496 (9)0.0480 (9)0.0463 (9)0.0161 (7)0.0208 (7)0.0087 (7)
C80.0942 (19)0.0500 (12)0.128 (3)0.0174 (12)0.0234 (17)0.0184 (14)
C90.0390 (8)0.0388 (8)0.0347 (7)0.0011 (6)0.0113 (6)0.0047 (6)
C100.0469 (10)0.0817 (14)0.0449 (10)0.0213 (9)0.0114 (8)0.0027 (9)
C110.0654 (12)0.0847 (15)0.0368 (9)0.0300 (11)0.0100 (8)0.0077 (9)
C120.0557 (10)0.0462 (9)0.0364 (8)0.0040 (7)0.0174 (7)0.0011 (7)
C130.0453 (10)0.1000 (17)0.0438 (10)0.0204 (10)0.0149 (8)0.0011 (10)
C140.0477 (10)0.0974 (16)0.0351 (9)0.0231 (10)0.0075 (7)0.0031 (9)
O10.0370 (6)0.0601 (8)0.0513 (7)0.0040 (5)0.0046 (5)0.0165 (6)
O20.0473 (7)0.0586 (7)0.0405 (6)0.0020 (5)0.0167 (5)0.0113 (5)
O30.0372 (6)0.0900 (11)0.0571 (8)0.0004 (6)0.0162 (6)0.0172 (7)
N50.0393 (7)0.0477 (7)0.0392 (7)0.0016 (6)0.0133 (5)0.0068 (6)
C150.0365 (7)0.0340 (7)0.0343 (7)0.0004 (6)0.0094 (6)0.0008 (6)
C160.0372 (8)0.0470 (9)0.0412 (8)0.0011 (6)0.0104 (6)0.0008 (7)
C170.0394 (9)0.0755 (14)0.0461 (10)0.0024 (8)0.0018 (7)0.0070 (9)
C180.0573 (11)0.0815 (15)0.0412 (9)0.0047 (10)0.0041 (8)0.0170 (9)
C190.0527 (10)0.0729 (13)0.0418 (9)0.0012 (9)0.0147 (8)0.0159 (9)
C200.0394 (8)0.0333 (7)0.0359 (7)0.0020 (6)0.0095 (6)0.0013 (6)
Geometric parameters (Å, º) top
Cl1—C121.7347 (19)C9—C101.386 (3)
O1—C201.240 (2)C9—C141.380 (3)
O2—C201.270 (2)C10—C111.380 (3)
O3—C161.339 (2)C11—C121.364 (3)
O3—H30.8200C12—C131.366 (3)
N1—C61.363 (2)C13—C141.380 (3)
N1—C21.360 (2)C7—H7B0.9700
N2—C21.328 (2)C7—H7A0.9700
N3—C41.338 (2)C8—H8B0.9600
N3—C21.325 (2)C8—H8A0.9600
N4—C41.324 (2)C8—H8C0.9600
N1—H10.8600C10—H100.9300
N2—H2A0.8600C11—H110.9300
N2—H2B0.8600C13—H130.9300
N4—H4A0.8600C14—H140.9300
N4—H4B0.8600C15—C161.399 (2)
N5—C151.341 (2)C15—C201.503 (2)
N5—C191.328 (2)C16—C171.391 (3)
C4—C51.441 (2)C17—C181.369 (3)
C5—C61.353 (2)C18—C191.377 (3)
C5—C91.492 (2)C17—H170.9300
C6—C71.503 (2)C18—H180.9300
C7—C81.492 (3)C19—H190.9300
Cl1···C20i3.5913 (16)C19···H2Aiv3.0000
Cl1···O3ii3.3165 (15)C19···H8Axii3.0600
O1···N4iii2.982 (2)C20···H12.6600
O1···N52.7082 (19)C20···H4Aiii2.9100
O1···N2iv3.0962 (19)C20···H2B2.6700
O1···N22.8873 (19)C20···H32.4600
O2···O32.5462 (19)H1···O12.8500
O2···N12.7370 (18)H1···O21.8800
O3···O22.5462 (19)H1···C202.6600
O3···Cl1ii3.3165 (15)H1···H2B2.2700
O1···H4Aiii2.1700H1···H7B2.2700
O1···H2Aiv2.5900H2A···C15iv3.0800
O1···H2B2.0800H2A···N4vi2.6400
O1···H11v2.6400H2A···H4Avi2.4200
O1···H12.8500H2A···C19iv3.0000
O2···H31.8200H2A···O1iv2.5900
O2···H11.8800H2A···N5iv2.1500
O2···H7B2.8300H2A···H4Bvi2.2500
O2···H2B2.9100H2B···C202.6700
N1···O22.7370 (18)H2B···O22.9100
N2···O12.8873 (19)H2B···H12.2700
N2···N4vi3.116 (2)H2B···O12.0800
N2···O1iv3.0962 (19)H3···O21.8200
N2···N5iv2.948 (2)H3···C202.4600
N4···N2vii3.116 (2)H4A···H2Avii2.4200
N4···C103.280 (3)H4A···O1viii2.1700
N4···O1viii2.982 (2)H4A···C20viii2.9100
N5···N2iv2.948 (2)H4A···N5viii2.9200
N5···O12.7082 (19)H4B···C92.5200
N1···H8A2.9000H4B···H2Avii2.2500
N2···H4Bvi2.6100H4B···C102.7900
N2···H11v2.9400H4B···N2vii2.6100
N3···H19iv2.8700H7A···H142.6000
N4···H2Avii2.6400H7A···C92.7200
N5···H2Aiv2.1500H7A···C142.7100
N5···H4Aiii2.9200H7B···O22.8300
C7···C143.380 (3)H7B···H12.2700
C8···C19ix3.588 (4)H8A···N12.9000
C10···N43.280 (3)H8A···C19ix3.0600
C13···C17x3.523 (3)H8B···C15ix3.0400
C14···C73.380 (3)H8B···H13ii2.6000
C17···C13xi3.523 (3)H10···C2v3.0400
C19···C8xii3.588 (4)H11···N2v2.9400
C20···Cl1xiii3.5913 (16)H11···O1v2.6400
C2···H10v3.0400H13···C17x2.8300
C9···H7A2.7200H13···H8Bii2.6000
C9···H4B2.5200H14···H18xiv2.4700
C10···H4B2.7900H14···H7A2.6000
C14···H7A2.7100H14···C17xiv2.9400
C15···H8Bxii3.0400H14···C18xiv2.9500
C15···H2Aiv3.0800H14···H17xiv2.4200
C17···H13xi2.8300H17···H14xiv2.4200
C17···H14xiv2.9400H18···H14xiv2.4700
C18···H14xiv2.9500H19···N3iv2.8700
C16—O3—H3109.00C8—C7—H7A109.00
C2—N1—C6121.03 (13)C8—C7—H7B110.00
C2—N3—C4117.61 (14)H7A—C7—H7B108.00
C2—N1—H1119.00C6—C7—H7B109.00
C6—N1—H1119.00C7—C8—H8B109.00
C2—N2—H2A120.00H8A—C8—H8B109.00
C2—N2—H2B120.00H8A—C8—H8C109.00
H2A—N2—H2B120.00C7—C8—H8C109.00
C4—N4—H4A120.00H8B—C8—H8C110.00
C4—N4—H4B120.00C7—C8—H8A109.00
H4A—N4—H4B120.00C11—C10—H10119.00
C15—N5—C19118.82 (15)C9—C10—H10119.00
N2—C2—N3119.86 (15)C10—C11—H11120.00
N1—C2—N2117.94 (14)C12—C11—H11120.00
N1—C2—N3122.20 (14)C12—C13—H13120.00
N3—C4—C5122.71 (15)C14—C13—H13120.00
N3—C4—N4117.05 (15)C13—C14—H14119.00
N4—C4—C5120.24 (16)C9—C14—H14119.00
C4—C5—C6116.48 (15)N5—C15—C16122.11 (14)
C4—C5—C9120.73 (14)N5—C15—C20116.65 (14)
C6—C5—C9122.78 (15)C16—C15—C20121.24 (14)
N1—C6—C7114.73 (14)O3—C16—C15123.11 (15)
C5—C6—C7125.53 (15)O3—C16—C17118.98 (16)
N1—C6—C5119.59 (15)C15—C16—C17117.90 (16)
C6—C7—C8110.74 (18)C16—C17—C18119.24 (18)
C5—C9—C14121.62 (14)C17—C18—C19119.40 (19)
C5—C9—C10121.28 (15)N5—C19—C18122.50 (18)
C10—C9—C14117.08 (16)O1—C20—C15118.98 (14)
C9—C10—C11121.72 (19)O2—C20—C15116.22 (14)
C10—C11—C12119.31 (19)O1—C20—O2124.80 (14)
Cl1—C12—C13119.21 (15)C16—C17—H17120.00
Cl1—C12—C11120.03 (14)C18—C17—H17120.00
C11—C12—C13120.76 (18)C17—C18—H18120.00
C12—C13—C14119.34 (19)C19—C18—H18120.00
C9—C14—C13121.78 (18)N5—C19—H19119.00
C6—C7—H7A110.00C18—C19—H19119.00
C6—N1—C2—N2174.80 (14)N1—C6—C7—C887.0 (2)
C6—N1—C2—N35.8 (2)C5—C9—C10—C11177.86 (19)
C2—N1—C6—C52.8 (2)C14—C9—C10—C110.7 (3)
C2—N1—C6—C7172.89 (14)C5—C9—C14—C13176.7 (2)
C4—N3—C2—N12.6 (2)C10—C9—C14—C131.8 (3)
C4—N3—C2—N2178.01 (15)C9—C10—C11—C120.4 (3)
C2—N3—C4—N4177.41 (15)C10—C11—C12—C130.3 (3)
C2—N3—C4—C53.2 (2)C10—C11—C12—Cl1178.72 (17)
C19—N5—C15—C20178.81 (15)Cl1—C12—C13—C14179.84 (18)
C15—N5—C19—C180.1 (3)C11—C12—C13—C140.8 (3)
C19—N5—C15—C161.4 (2)C12—C13—C14—C91.9 (4)
N3—C4—C5—C65.9 (2)N5—C15—C16—O3179.76 (16)
N3—C4—C5—C9173.08 (15)N5—C15—C16—C171.2 (2)
N4—C4—C5—C6174.78 (16)C20—C15—C16—O30.0 (3)
N4—C4—C5—C96.3 (2)C20—C15—C16—C17179.05 (16)
C4—C5—C6—C7177.89 (15)N5—C15—C20—O11.9 (2)
C4—C5—C9—C1069.3 (2)N5—C15—C20—O2178.84 (14)
C9—C5—C6—N1176.28 (14)C16—C15—C20—O1177.92 (15)
C9—C5—C6—C71.0 (3)C16—C15—C20—O21.4 (2)
C4—C5—C6—N12.7 (2)O3—C16—C17—C18178.61 (19)
C6—C5—C9—C1468.9 (2)C15—C16—C17—C180.5 (3)
C4—C5—C9—C14112.3 (2)C16—C17—C18—C191.9 (3)
C6—C5—C9—C10109.6 (2)C17—C18—C19—N51.7 (3)
C5—C6—C7—C888.4 (2)
Symmetry codes: (i) x, y, z+1; (ii) x+1, y+1, z+2; (iii) x+2, y1/2, z+3/2; (iv) x+2, y+1, z+1; (v) x+2, y+1, z+2; (vi) x, y+3/2, z1/2; (vii) x, y+3/2, z+1/2; (viii) x+2, y+1/2, z+3/2; (ix) x, y+1/2, z+1/2; (x) x+1, y+1/2, z+3/2; (xi) x+1, y1/2, z+3/2; (xii) x, y+1/2, z1/2; (xiii) x, y, z1; (xiv) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O20.861.882.7370 (18)175
N2—H2A···O1iv0.862.593.0962 (19)119
N2—H2A···N5iv0.862.152.948 (2)154
N2—H2B···O10.862.082.8873 (19)157
O3—H3···O20.821.822.5462 (19)146
N4—H4A···O1viii0.862.172.982 (2)158
N4—H4B···N2vii0.862.613.116 (2)118
Symmetry codes: (iv) x+2, y+1, z+1; (vii) x, y+3/2, z+1/2; (viii) x+2, y+1/2, z+3/2.
(III) 2,4-diamino-(4-chlorophenyl)-6-ethylpyrimidinium 2,4-dichlorobenzoate top
Crystal data top
C12H14ClN4+·C7H3Cl2O2F(000) = 1808
Mr = 439.72Dx = 1.430 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 5639 reflections
a = 14.3808 (2) Åθ = 1.8–29.4°
b = 12.6799 (2) ŵ = 0.47 mm1
c = 22.4021 (3) ÅT = 293 K
V = 4084.96 (10) Å3Prism, colourless
Z = 80.25 × 0.22 × 0.20 mm
Data collection top
Bruker SMART APEX II CCD area-detector
diffractometer
5639 independent reflections
Radiation source: fine-focus sealed tube3791 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.033
ϕ and ω scansθmax = 29.4°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 1119
Tmin = 0.891, Tmax = 0.912k = 1217
26496 measured reflectionsl = 3030
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.042H-atom parameters constrained
wR(F2) = 0.118 w = 1/[σ2(Fo2) + (0.0442P)2 + 1.8433P]
where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max = 0.001
5639 reflectionsΔρmax = 0.48 e Å3
255 parametersΔρmin = 0.51 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc* = kFc[1+0.001Fc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0016 (3)
Crystal data top
C12H14ClN4+·C7H3Cl2O2V = 4084.96 (10) Å3
Mr = 439.72Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 14.3808 (2) ŵ = 0.47 mm1
b = 12.6799 (2) ÅT = 293 K
c = 22.4021 (3) Å0.25 × 0.22 × 0.20 mm
Data collection top
Bruker SMART APEX II CCD area-detector
diffractometer
5639 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
3791 reflections with I > 2σ(I)
Tmin = 0.891, Tmax = 0.912Rint = 0.033
26496 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.118H-atom parameters constrained
S = 1.01Δρmax = 0.48 e Å3
5639 reflectionsΔρmin = 0.51 e Å3
255 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > 2sigma(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl11.16200 (5)0.33814 (6)0.20424 (3)0.0878 (3)
N10.83136 (10)0.58234 (10)0.46549 (6)0.0349 (4)
N20.80363 (11)0.73723 (12)0.51484 (7)0.0462 (5)
N30.92006 (10)0.73383 (11)0.44467 (6)0.0386 (4)
N41.03918 (11)0.72461 (12)0.37804 (7)0.0504 (5)
C20.85241 (11)0.68540 (13)0.47439 (7)0.0348 (5)
C40.96752 (12)0.67725 (13)0.40467 (8)0.0371 (5)
C50.94500 (11)0.57010 (13)0.39029 (7)0.0354 (5)
C60.87640 (11)0.52406 (12)0.42301 (7)0.0331 (5)
C70.84999 (12)0.40996 (13)0.41939 (8)0.0394 (5)
C80.90786 (17)0.34450 (17)0.46207 (11)0.0662 (8)
C90.99831 (12)0.51108 (13)0.34432 (7)0.0372 (5)
C101.08977 (13)0.48089 (15)0.35500 (9)0.0484 (6)
C111.14047 (14)0.42735 (16)0.31203 (10)0.0547 (7)
C121.09873 (15)0.40420 (15)0.25855 (9)0.0514 (7)
C131.00845 (15)0.43143 (16)0.24713 (8)0.0521 (6)
C140.95886 (13)0.48576 (15)0.28998 (8)0.0448 (6)
Cl20.69947 (4)0.35207 (5)0.65836 (3)0.0674 (2)
Cl30.33345 (6)0.32074 (7)0.69141 (5)0.1177 (4)
O10.70611 (9)0.46896 (10)0.53099 (6)0.0513 (4)
O20.66023 (10)0.61880 (10)0.57229 (7)0.0623 (5)
C150.57511 (11)0.46659 (13)0.59459 (7)0.0363 (5)
C160.58815 (13)0.38883 (14)0.63712 (8)0.0422 (6)
C170.51428 (16)0.34230 (15)0.66646 (10)0.0570 (7)
C180.42618 (15)0.37455 (18)0.65230 (12)0.0638 (8)
C190.40979 (14)0.45014 (18)0.60983 (11)0.0625 (8)
C200.48434 (13)0.49682 (16)0.58148 (9)0.0486 (6)
C210.65385 (12)0.52255 (13)0.56385 (8)0.0378 (5)
H10.789000.553100.486900.0420*
H2A0.815600.802500.522000.0550*
H2B0.759900.705700.534000.0550*
H4A1.052900.788700.386900.0600*
H4B1.071600.691000.352000.0600*
H7A0.859300.384800.378900.0470*
H7B0.784600.402000.429100.0470*
H8A0.972500.351800.452200.0990*
H8B0.890100.271700.458900.0990*
H8C0.897700.368500.502200.0990*
H101.117300.496900.391500.0580*
H111.201700.407500.319300.0660*
H130.980800.413600.211000.0620*
H140.897800.505700.282100.0540*
H170.524200.290400.695100.0680*
H190.349300.469700.600300.0750*
H200.473800.549200.553200.0580*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.1036 (5)0.0906 (5)0.0691 (4)0.0491 (4)0.0325 (4)0.0026 (3)
N10.0362 (7)0.0280 (7)0.0405 (7)0.0031 (6)0.0069 (6)0.0021 (5)
N20.0525 (9)0.0296 (7)0.0564 (9)0.0025 (7)0.0152 (7)0.0075 (7)
N30.0412 (8)0.0296 (7)0.0449 (8)0.0041 (6)0.0036 (6)0.0020 (6)
N40.0505 (9)0.0386 (8)0.0620 (10)0.0132 (7)0.0177 (8)0.0076 (7)
C20.0363 (8)0.0284 (8)0.0396 (8)0.0003 (7)0.0012 (6)0.0012 (6)
C40.0373 (8)0.0325 (8)0.0414 (8)0.0038 (7)0.0009 (7)0.0012 (7)
C50.0347 (8)0.0325 (8)0.0390 (8)0.0020 (7)0.0016 (7)0.0036 (7)
C60.0335 (8)0.0294 (8)0.0364 (8)0.0004 (6)0.0022 (6)0.0028 (6)
C70.0431 (9)0.0305 (8)0.0445 (9)0.0048 (7)0.0052 (7)0.0055 (7)
C80.0732 (15)0.0431 (11)0.0823 (16)0.0058 (11)0.0038 (13)0.0134 (11)
C90.0365 (9)0.0320 (8)0.0431 (9)0.0030 (7)0.0061 (7)0.0012 (7)
C100.0412 (10)0.0493 (11)0.0547 (11)0.0004 (8)0.0008 (8)0.0080 (9)
C110.0393 (10)0.0507 (11)0.0740 (14)0.0086 (8)0.0094 (10)0.0012 (10)
C120.0619 (13)0.0417 (10)0.0506 (11)0.0148 (9)0.0212 (9)0.0036 (8)
C130.0662 (13)0.0520 (11)0.0380 (9)0.0120 (10)0.0043 (9)0.0013 (8)
C140.0436 (10)0.0488 (10)0.0419 (9)0.0083 (8)0.0026 (8)0.0008 (8)
Cl20.0547 (3)0.0690 (4)0.0784 (4)0.0048 (3)0.0097 (3)0.0230 (3)
Cl30.0870 (5)0.0880 (5)0.1782 (9)0.0426 (4)0.0789 (6)0.0259 (5)
O10.0563 (8)0.0334 (7)0.0642 (8)0.0011 (6)0.0258 (7)0.0041 (6)
O20.0612 (9)0.0311 (7)0.0946 (11)0.0042 (6)0.0317 (8)0.0089 (7)
C150.0349 (8)0.0320 (8)0.0419 (8)0.0021 (7)0.0040 (7)0.0068 (7)
C160.0421 (10)0.0336 (9)0.0509 (10)0.0020 (7)0.0051 (8)0.0017 (7)
C170.0668 (14)0.0374 (10)0.0669 (13)0.0107 (9)0.0211 (11)0.0014 (9)
C180.0489 (12)0.0490 (12)0.0935 (17)0.0204 (10)0.0317 (12)0.0228 (12)
C190.0344 (10)0.0610 (13)0.0921 (17)0.0033 (9)0.0055 (10)0.0252 (13)
C200.0404 (10)0.0467 (10)0.0588 (11)0.0038 (8)0.0023 (8)0.0088 (9)
C210.0378 (9)0.0311 (8)0.0444 (9)0.0018 (7)0.0045 (7)0.0007 (7)
Geometric parameters (Å, º) top
Cl1—C121.735 (2)C10—C111.385 (3)
Cl2—C161.7339 (19)C11—C121.372 (3)
Cl3—C181.735 (3)C12—C131.368 (3)
O1—C211.252 (2)C13—C141.380 (3)
O2—C211.238 (2)C7—H7A0.9700
N1—C61.368 (2)C7—H7B0.9700
N1—C21.356 (2)C8—H8A0.9600
N2—C21.321 (2)C8—H8B0.9600
N3—C21.329 (2)C8—H8C0.9600
N3—C41.336 (2)C10—H100.9300
N4—C41.334 (2)C11—H110.9300
N1—H10.8600C13—H130.9300
N2—H2A0.8600C14—H140.9300
N2—H2B0.8600C15—C161.384 (2)
N4—H4A0.8600C15—C201.392 (2)
N4—H4B0.8600C15—C211.503 (2)
C4—C51.433 (2)C16—C171.382 (3)
C5—C91.486 (2)C17—C181.369 (3)
C5—C61.361 (2)C18—C191.371 (3)
C6—C71.498 (2)C19—C201.380 (3)
C7—C81.515 (3)C17—H170.9300
C9—C101.391 (3)C19—H190.9300
C9—C141.381 (2)C20—H200.9300
Cl1···C19i3.570 (2)C2···H8Aviii3.0400
Cl1···Cl3ii3.1969 (11)C4···H8Cviii2.9100
Cl2···O13.2168 (15)C9···H4B2.5200
Cl3···Cl1iii3.1969 (11)C9···H7A2.6800
Cl2···H2Aiv3.1300C10···H4B2.6800
Cl3···H7Av3.0700C12···H17xi2.8800
O1···N12.7321 (19)C14···H7A2.7700
O1···C73.330 (2)C15···H2Aiv3.0700
O1···Cl23.2168 (15)C20···H4Avi2.9800
O1···N2iv2.964 (2)C21···H12.6300
O2···N4vi2.866 (2)C21···H2B2.8600
O2···N22.857 (2)C21···H4Avi3.0100
O1···H11.8800C21···H2Aiv2.9800
O1···H2Aiv2.1400H1···H7B2.3100
O1···H7B2.6800H1···O11.8800
O2···H4Avi2.1400H1···O22.7900
O2···H12.7900H1···C212.6300
O2···H2B2.0000H1···H2B2.2400
O2···H202.8500H2A···O1vii2.1400
N1···O12.7321 (19)H2A···C15vii3.0700
N2···O22.857 (2)H2A···Cl2vii3.1300
N2···O1vii2.964 (2)H2A···C21vii2.9800
N3···C8viii3.388 (3)H2B···H12.2400
N4···C103.217 (2)H2B···O22.0000
N4···O2ix2.866 (2)H2B···C212.8600
N3···H20ix2.8600H4A···O2ix2.1400
C4···C8viii3.493 (3)H4A···C20ix2.9800
C7···C143.432 (3)H4A···C21ix3.0100
C7···O13.330 (2)H4B···C92.5200
C8···C4viii3.493 (3)H4B···C102.6800
C8···N3viii3.388 (3)H7A···Cl3xi3.0700
C10···N43.217 (2)H7A···C92.6800
C13···C18i3.384 (3)H7A···C142.7700
C13···C17i3.407 (3)H7B···O12.6800
C14···C17i3.544 (3)H7B···H12.3100
C14···C73.432 (3)H8A···C2viii3.0400
C17···C14x3.544 (3)H8C···C4viii2.9100
C17···C13x3.407 (3)H17···C12v2.8800
C18···C13x3.384 (3)H20···O22.8500
C19···Cl1x3.570 (2)H20···N3vi2.8600
C2—N1—C6121.14 (14)H7A—C7—H7B108.00
C2—N3—C4117.51 (14)C7—C8—H8A109.00
C2—N1—H1119.00C7—C8—H8B110.00
C6—N1—H1119.00C7—C8—H8C109.00
C2—N2—H2A120.00H8A—C8—H8B109.00
C2—N2—H2B120.00H8A—C8—H8C109.00
H2A—N2—H2B120.00H8B—C8—H8C109.00
H4A—N4—H4B120.00C9—C10—H10120.00
C4—N4—H4A120.00C11—C10—H10120.00
C4—N4—H4B120.00C10—C11—H11121.00
N1—C2—N3122.34 (15)C12—C11—H11121.00
N2—C2—N3120.16 (15)C12—C13—H13120.00
N1—C2—N2117.50 (15)C14—C13—H13120.00
N3—C4—N4116.95 (15)C9—C14—H14119.00
N3—C4—C5122.99 (15)C13—C14—H14119.00
N4—C4—C5120.06 (15)C16—C15—C20117.94 (16)
C4—C5—C6116.71 (15)C16—C15—C21123.34 (15)
C4—C5—C9121.10 (14)C20—C15—C21118.67 (15)
C6—C5—C9122.09 (15)Cl2—C16—C15120.37 (14)
N1—C6—C5119.10 (14)Cl2—C16—C17117.68 (15)
N1—C6—C7116.06 (14)C15—C16—C17121.85 (17)
C5—C6—C7124.68 (15)C16—C17—C18118.3 (2)
C6—C7—C8110.83 (15)Cl3—C18—C17118.48 (19)
C5—C9—C10120.49 (15)Cl3—C18—C19119.55 (17)
C5—C9—C14121.07 (15)C17—C18—C19121.9 (2)
C10—C9—C14118.44 (16)C18—C19—C20119.07 (19)
C9—C10—C11120.87 (18)C15—C20—C19120.90 (18)
C10—C11—C12118.78 (19)O1—C21—O2125.45 (17)
Cl1—C12—C11119.10 (16)O1—C21—C15117.72 (15)
Cl1—C12—C13119.25 (15)O2—C21—C15116.81 (16)
C11—C12—C13121.65 (19)C16—C17—H17121.00
C12—C13—C14119.11 (18)C18—C17—H17121.00
C9—C14—C13121.13 (17)C18—C19—H19120.00
C6—C7—H7A109.00C20—C19—H19120.00
C6—C7—H7B110.00C15—C20—H20120.00
C8—C7—H7A110.00C19—C20—H20120.00
C8—C7—H7B110.00
C6—N1—C2—N2177.74 (15)C10—C9—C14—C130.3 (3)
C6—N1—C2—N33.1 (2)C9—C10—C11—C120.2 (3)
C2—N1—C6—C51.6 (2)C10—C11—C12—Cl1179.47 (15)
C2—N1—C6—C7177.30 (14)C10—C11—C12—C130.9 (3)
C4—N3—C2—N10.4 (2)Cl1—C12—C13—C14178.77 (15)
C2—N3—C4—C53.8 (2)C11—C12—C13—C141.6 (3)
C2—N3—C4—N4175.64 (15)C12—C13—C14—C91.2 (3)
C4—N3—C2—N2179.46 (16)C20—C15—C16—Cl2176.73 (14)
N3—C4—C5—C9178.42 (15)C20—C15—C16—C170.5 (3)
N3—C4—C5—C65.1 (2)C21—C15—C16—Cl20.8 (2)
N4—C4—C5—C6174.30 (16)C21—C15—C16—C17177.04 (17)
N4—C4—C5—C92.2 (2)C16—C15—C20—C190.4 (3)
C4—C5—C6—N12.2 (2)C21—C15—C20—C19178.01 (18)
C9—C5—C6—C73.4 (3)C16—C15—C21—O164.5 (2)
C4—C5—C9—C1069.9 (2)C16—C15—C21—O2117.1 (2)
C4—C5—C9—C14109.5 (2)C20—C15—C21—O1118.03 (19)
C6—C5—C9—C10106.3 (2)C20—C15—C21—O260.5 (2)
C6—C5—C9—C1474.3 (2)Cl2—C16—C17—C18176.69 (17)
C4—C5—C6—C7173.04 (15)C15—C16—C17—C180.4 (3)
C9—C5—C6—N1178.65 (14)C16—C17—C18—Cl3177.10 (16)
N1—C6—C7—C887.32 (19)C16—C17—C18—C190.7 (3)
C5—C6—C7—C888.1 (2)Cl3—C18—C19—C20176.24 (18)
C5—C9—C10—C11178.95 (17)C17—C18—C19—C201.5 (4)
C14—C9—C10—C110.5 (3)C18—C19—C20—C151.3 (3)
C5—C9—C14—C13179.66 (17)
Symmetry codes: (i) x+3/2, y+1, z1/2; (ii) x+1, y+1/2, z1/2; (iii) x1, y+1/2, z+1/2; (iv) x+3/2, y1/2, z; (v) x1/2, y+1/2, z+1; (vi) x1/2, y+3/2, z+1; (vii) x+3/2, y+1/2, z; (viii) x+2, y+1, z+1; (ix) x+1/2, y+3/2, z+1; (x) x+3/2, y+1, z+1/2; (xi) x+1/2, y+1/2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O10.861.882.7321 (19)171
N2—H2A···O1vii0.862.142.964 (2)159
N2—H2B···O20.862.002.857 (2)174
N4—H4A···O2ix0.862.142.866 (2)141
Symmetry codes: (vii) x+3/2, y+1/2, z; (ix) x+1/2, y+3/2, z+1.

Experimental details

(I)(II)(III)
Crystal data
Chemical formulaC12H14ClN4+·C8H7O2C12H14ClN4+·C6H4NO3C12H14ClN4+·C7H3Cl2O2
Mr384.86387.82439.72
Crystal system, space groupMonoclinic, C2/cMonoclinic, P21/cOrthorhombic, Pbca
Temperature (K)293293293
a, b, c (Å)17.1373 (3), 16.4776 (3), 16.6127 (3)11.2563 (3), 14.3968 (4), 11.7902 (3)14.3808 (2), 12.6799 (2), 22.4021 (3)
α, β, γ (°)90, 119.080 (1), 9090, 103.625 (1), 9090, 90, 90
V3)4099.77 (13)1856.89 (9)4084.96 (10)
Z848
Radiation typeMo KαMo KαMo Kα
µ (mm1)0.210.240.47
Crystal size (mm)0.15 × 0.12 × 0.120.22 × 0.20 × 0.180.25 × 0.22 × 0.20
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Bruker SMART APEX II CCD area detector
diffractometer
Bruker SMART APEX II CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2008)
Multi-scan
(SADABS; Bruker, 2008)
Multi-scan
(SADABS; Bruker, 2008)
Tmin, Tmax0.970, 0.9750.950, 0.9590.891, 0.912
No. of measured, independent and
observed [I > 2σ(I)] reflections
32486, 3398, 2474 21858, 5622, 3927 26496, 5639, 3791
Rint0.0380.0280.033
(sin θ/λ)max1)0.5830.7130.691
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.144, 1.04 0.051, 0.153, 1.05 0.042, 0.118, 1.01
No. of reflections339856225639
No. of parameters247246255
H-atom treatmentH-atom parameters constrainedH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.42, 0.390.39, 0.350.48, 0.51

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) for (I) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O20.86001.73002.586 (3)173.00
N2—H2A···O1i0.86002.14002.947 (3)157.00
N2—H2B···O10.86002.23002.988 (3)147.00
N4—H4A···N3ii0.86002.14002.996 (3)176.00
N4—H4B···O1iii0.86002.36003.043 (3)136.00
Symmetry codes: (i) x+1, y, z+3/2; (ii) x+1/2, y+1/2, z+1; (iii) x1/2, y+1/2, z1/2.
Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O20.86001.88002.7370 (18)175.00
N2—H2A···N5i0.86002.15002.948 (2)154.00
N2—H2B···O10.86002.08002.8873 (19)157.00
O3—H3···O20.82001.82002.5462 (19)146.00
N4—H4A···O1ii0.86002.17002.982 (2)158.00
Symmetry codes: (i) x+2, y+1, z+1; (ii) x+2, y+1/2, z+3/2.
Hydrogen-bond geometry (Å, º) for (III) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O10.86001.88002.7321 (19)171.00
N2—H2A···O1i0.86002.14002.964 (2)159.00
N2—H2B···O20.86002.00002.857 (2)174.00
N4—H4A···O2ii0.86002.14002.866 (2)141.00
Symmetry codes: (i) x+3/2, y+1/2, z; (ii) x+1/2, y+3/2, z+1.
Selected geometric parameters in (I), (II) and (III) (Å, °) top
(I)(II)(III)
Cl1—C121.739 (3)1.7347 (19)1.735 (2)
N1—C21.345 (4)1.360 (2)1.356 (2)
N1—C61.360 (3)1.363 (2)1.368 (2)
N3—C21.323 (3)1.325 (2)1.329 (2)
N3—C41.342 (3)1.338 (2)1.336 (2)
C5—C91.485 (3)1.492 (2)1.486 (2)
C2—N1—C6120.9 (2)121.03 (13)121.14 (14)
C2—N3—C4117.5 (2)117.61 (14)117.51 (14)
C5—C6—C7—C8-102.6 (3)-88.4 (2)88.1 (2)
Cl···Cl interactions (Å, °) in (III) top
XI···JIJXI···J
C12-Cl1···Cl3i3.1969 (11)140.52 (8)
C18-Cl3···Cl1ii3.1969 (11)152.35 (10)
Symmetry codes: (i) 1 + x, 1/2 - y, -1/2 + z; (ii) -1 + x, 1/2 - y, 1/2 + z.
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds