Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
In the title compound, [Cu(C14H9NO3)(H2O)2],pairs of complexes are linked into dimers by three O—H...O hydrogen bonds. Strong O—H...O hydrogen bonds link the dimers into one-dimensional chains that further assemble into tubes through π–π and C—H...π inter­actions.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270106013242/gd3011sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270106013242/gd3011Isup2.hkl
Contains datablock I

CCDC reference: 609408

Comment top

(E)-2-(2-Hydroxybenzylideneamino)benzoic acid is a tridentate ligand, many of whose metal complexes have been studied (Clague et al., 1993; Asgedom et al., 1997; Dey et al., 1999; Redshaw & Elsegood, 2001; Rosair et al., 2002; Shan et al., 2003). As the result of our interest in Schiff base metal complexes as model compounds for the study of the active sites of metalloenzymes, we have investigated the title compound, (I), and we report here its structure.

Compound (I) (Fig. 1) crystallizes with Z = 18 in space group R3, and consists of two independent Cu(C14H9NO3) complexes. In each complex, the Cu atom is coordinated by one N atom and four O atoms from two water molecules and one E-2-(2-hydroxybenzylideneamino)benzoic acid molecule, adopting square-pyramidal geometry, similar to that in [Cu(C14H9NO3)(C5H5N)2]·H2O (Li et al.,1995) but n contrast to [Cu(C14H9NO3)(C3H4N2)], in which the Cu atom is four-coordinate with a square geometry (Gao et al., 2000). Although the two complexes have the same coordination spheres, the corresponding bonds around atoms Cu1 and Cu2 are significantly different (Table 1), especially the Cu—O distances between the Cu atom and the apical water ligands. The two aryl rings in each complex make dihedral angles of 58.7 (2) and 58.4 (2)°, respectively. The two complexes are connected to each other by three strong O—H···O hydrogen bonds to form a dimer in which the Cu···Cu distance is 4.674 (1) Å.

The supramolecular interactions (Table 2) are illustrated in Figs. 2 and 3. Four intermolecular O—H···O hydrogen bonds, with two coordinated water molecules as hydrogen-bond donors and two carboxyl O atoms of the ligand as acceptors, link the dimers to one-dimensional chains along the c axis (Fig. 2). Because of the relatively strong intermolecular hydrogen bonding, neighbouring dimers are connected closely, the Cu1···Cu2(x, y, 1 + z) separation being 5.304 (1) Å, leaving atoms Cu1 and Cu2 arranged in a zigzag shape in the chains. Six such chains, related to each other by a rotation of 60° in the (001) plane, are connected through ππstacking interactions between the C1–C6 and C15–C20 aryl rings, with Cg1···Cg2(y, −x + y, 1 − z) (Cg1 is the centroid of the C1–C6 ring and Cg2 is the centroid of the C15—C20 ring), Cg1···Cg2(y, −x + y, 2 − z), Cg2···Cg1(x-y, x, 1 − z) and Cg2···Cg1(x-y, x, 2 − z) distances of 3.677 (3), 3.548 (3), 3.677 (4) and 3.548 (4) Å, and interplanar spacings of 3.250, 3.263, 3.279 and 3.302 Å, respectively, assembling the six chains into a tube (Fig. 3). Additionally, a C—H···π interaction (Fig. 3a) between the C23/H23 group and the C9–C13 aryl ring (centroid Cg3) in a neighbouring chain, with a C23···Cg3(xy, x, 2 − z) separation of 3.618 (9) Å, also takes part in the stabilization of the tubes.

Large voids in the structure were examined using PLATON (Spek, 2003). In the three-dimensional structure of (I), there are three channels along the c axis (Fig. 3), accounting in total for 1518.3 Å3 per unit cell, i.e. some 11.4% of the total volume. The channels lie along a threefold inversion centre with an average cross-sectional area of ca 70.6 Å2 and an average diameter of ca 9.5 Å. The channels in (I) appear to be occupied by water molecules; their behaviour is intractable, possibly due to dynamic disorder.

Experimental top

Compound (I) was synthesized by adding an ethanol solution (15 ml) of E-2-(2-hydroxybenzylideneamino)benzoic acid (0.120 g) to an aqueous solution (5 ml) of Cu(C2H3O2)2·H2O (0.102 g). The mixed solution was refluxed at 333 K for 2 h; the pH was then adjusted to 7 with 0.1 mol dm−3 NaOH and the solution was filtered while it cooled to room temperature. Dark-blue needle-shaped crystals of (I) were obtained from the filtrate at room temperature after two weeks.

Refinement top

H atoms attached to C atoms were placed in geometrically idealized positions, with C—H = 0.93 Å, and refined with Uiso(H) values of 1.2Ueq(C). H atoms attached to O atoms were located from difference Fourier maps and refined as riding in their as-found positions with Uiso(H) values of 1.2Ueq(O). The O—H distances are in the range 0.82–0.91 Å. Examination of the refined structure using PLATON (Spek, 2003) revealed the presence of voids having a total volume of 1518.3 Å3 per unit cell, arranged into three channels along the c axis with the centres at approximately (0, 0, 0), (1/3, 2/3, 4/5), and (2/3, 1/3, 1/2). No electron density greater than 0.63 e Å3 could be found in the area of the void, and so no definitive solvent molecule could be found. Since the electron count per void is 51 from SQUEEZE (Spek, 2003) results and, considering the symmetry of the voids, six water molecules per void may be reasonable; these voids are certainly large enough. The large voids also slightly increased the final Rvalue.

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL/PC (Sheldrick, 1999); software used to prepare material for publication: SHELXTL/PC.

Figures top
[Figure 1] Fig. 1. The structure of (I), with displacement ellipsoids drawn at the 30% probability level for non-H atoms. Dotted lines indicate hydrogen bonds.
[Figure 2] Fig. 2. The one-dimensional chain along the c axis, constructed from O—H···O hydrogen bonding.
[Figure 3] Fig. 3. (a) The six-membered ring built from ππ stacking and C—H···π interactions(dashed lines), with centroid (0, 0, 0). Dotted lines indicate O—H···O interactions. H atoms not involved in hydogen bonding have been omitted. [Symmetry code: (i) y, −x + y, 2 − z]. (b) An ab projection of the crystal structure of (I), showing the [001] channels (color code for the online issue: Cu, green; N, blue; O, red; C and H, gray).
cis-Diaqua[(E)-2-(2-oxidobenzylideneamino-κO)benzoato-κO']copper(II) top
Crystal data top
[Cu(C14H9NO3)(H2O)2]Dx = 1.517 Mg m3
Mr = 338.81Mo Kα radiation, λ = 0.71073 Å
Trigonal, R3Cell parameters from 1391 reflections
Hall symbol: -R 3θ = 2.3–17.0°
a = 46.263 (2) ŵ = 1.49 mm1
c = 7.2030 (7) ÅT = 298 K
V = 13350.9 (15) Å3Needles, dark-blue
Z = 360.24 × 0.09 × 0.01 mm
F(000) = 6228
Data collection top
Bruker SMART 1K CCD area-detector
diffractometer
5220 independent reflections
Radiation source: fine-focus sealed tube3659 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.000
ω scansθmax = 25.0°, θmin = 1.5°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2000)
h = 5426
Tmin = 0.715, Tmax = 0.985k = 055
5220 measured reflectionsl = 08
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.072Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.160H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0697P)2 + 7.9408P]
where P = (Fo2 + 2Fc2)/3
5220 reflections(Δ/σ)max = 0.001
379 parametersΔρmax = 0.63 e Å3
0 restraintsΔρmin = 0.61 e Å3
Crystal data top
[Cu(C14H9NO3)(H2O)2]Z = 36
Mr = 338.81Mo Kα radiation
Trigonal, R3µ = 1.49 mm1
a = 46.263 (2) ÅT = 298 K
c = 7.2030 (7) Å0.24 × 0.09 × 0.01 mm
V = 13350.9 (15) Å3
Data collection top
Bruker SMART 1K CCD area-detector
diffractometer
5220 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2000)
3659 reflections with I > 2σ(I)
Tmin = 0.715, Tmax = 0.985Rint = 0.000
5220 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0720 restraints
wR(F2) = 0.160H-atom parameters constrained
S = 1.04Δρmax = 0.63 e Å3
5220 reflectionsΔρmin = 0.61 e Å3
379 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.190904 (18)0.222020 (19)0.97110 (10)0.0251 (2)
O10.16768 (10)0.19144 (11)0.7725 (5)0.0314 (10)
O20.20649 (10)0.24159 (10)1.2173 (5)0.0270 (10)
O30.24209 (11)0.26156 (13)1.4501 (6)0.0452 (13)
O40.14922 (10)0.22217 (11)1.0221 (6)0.0380 (12)
H4A0.13590.21770.93110.046*
H4B0.14840.23721.08620.046*
O50.21484 (11)0.26883 (10)0.7888 (6)0.0380 (11)
H5A0.23640.27910.75100.046*
H5B0.20120.26040.68820.046*
N10.22883 (11)0.21479 (12)0.9458 (6)0.0214 (11)
C10.16729 (16)0.16270 (15)0.7572 (8)0.0277 (15)
C20.13990 (17)0.13477 (18)0.6774 (8)0.0374 (17)
H20.12140.13620.64040.045*
C30.14000 (19)0.10532 (17)0.6530 (9)0.0438 (19)
H30.12180.08730.59690.053*
C40.1666 (2)0.10199 (17)0.7100 (9)0.0433 (19)
H40.16630.08190.69350.052*
C50.19330 (18)0.12825 (16)0.7903 (8)0.0347 (17)
H50.21080.12550.83210.042*
C60.19551 (16)0.15991 (16)0.8131 (8)0.0284 (15)
C70.22537 (16)0.18693 (15)0.8888 (8)0.0271 (14)
H70.24390.18410.89750.033*
C80.26063 (14)0.24078 (14)1.0005 (8)0.0235 (13)
C90.28862 (16)0.24834 (16)0.8928 (9)0.0331 (16)
H90.28610.23620.78500.040*
C100.32002 (16)0.27355 (17)0.9435 (10)0.0416 (18)
H100.33850.27820.87080.050*
C110.32391 (16)0.29177 (17)1.1018 (10)0.0417 (18)
H110.34500.30861.13750.050*
C120.29639 (16)0.28499 (17)1.2072 (9)0.0363 (16)
H120.29930.29751.31360.044*
C130.26453 (15)0.26009 (15)1.1598 (8)0.0260 (14)
C140.23604 (16)0.25394 (15)1.2861 (8)0.0274 (14)
Cu20.125236 (18)0.237059 (19)0.53174 (10)0.0265 (2)
O60.10684 (10)0.20564 (11)0.7302 (5)0.0344 (11)
O70.13891 (10)0.25999 (10)0.2926 (5)0.0274 (10)
O80.13426 (14)0.28805 (15)0.0616 (6)0.0645 (17)
O90.15570 (10)0.22038 (11)0.4856 (6)0.0390 (12)
H9A0.16030.20950.56320.047*
H9B0.17000.22680.39920.047*
O100.16392 (12)0.28662 (14)0.7373 (6)0.0585 (15)
H10A0.15790.29120.83440.070*
H10B0.18570.29860.73080.070*
N20.09147 (12)0.24974 (13)0.5646 (6)0.0252 (12)
C150.07471 (16)0.18645 (16)0.7482 (8)0.0294 (15)
C160.06151 (19)0.15433 (17)0.8259 (8)0.0402 (18)
H160.07610.14690.86080.048*
C170.0279 (2)0.13366 (17)0.8517 (9)0.0436 (19)
H170.02020.11260.90300.052*
C180.0051 (2)0.14340 (18)0.8032 (9)0.047 (2)
H180.01760.12910.82190.057*
C190.01661 (15)0.17468 (17)0.7265 (8)0.0354 (17)
H190.00150.18160.69370.042*
C200.05135 (15)0.19640 (16)0.6975 (8)0.0276 (15)
C210.06180 (15)0.22910 (16)0.6232 (7)0.0255 (14)
H210.04590.23580.61700.031*
C220.09928 (15)0.28254 (15)0.5119 (8)0.0265 (14)
C230.08879 (17)0.30033 (18)0.6227 (10)0.0455 (19)
H230.07660.29060.73000.055*
C240.09639 (19)0.3322 (2)0.5743 (12)0.060 (2)
H240.08920.34390.64780.072*
C250.11456 (18)0.34640 (19)0.4175 (13)0.055 (2)
H250.12010.36800.38520.066*
C260.12476 (17)0.32898 (18)0.3072 (11)0.0458 (19)
H260.13650.33880.19890.055*
C270.11800 (14)0.29691 (15)0.3530 (8)0.0264 (14)
C280.13100 (15)0.28052 (16)0.2270 (8)0.0306 (15)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0258 (4)0.0341 (5)0.0223 (4)0.0202 (4)0.0012 (3)0.0043 (3)
O10.040 (3)0.038 (3)0.024 (2)0.025 (2)0.009 (2)0.010 (2)
O20.027 (2)0.034 (3)0.023 (2)0.017 (2)0.0033 (18)0.0045 (19)
O30.037 (3)0.072 (4)0.027 (3)0.027 (3)0.005 (2)0.016 (2)
O40.032 (3)0.059 (3)0.035 (3)0.032 (2)0.009 (2)0.016 (2)
O50.038 (3)0.040 (3)0.030 (3)0.015 (2)0.001 (2)0.000 (2)
N10.021 (3)0.026 (3)0.021 (3)0.015 (2)0.003 (2)0.002 (2)
C10.039 (4)0.031 (4)0.012 (3)0.016 (3)0.006 (3)0.003 (3)
C20.043 (4)0.049 (5)0.018 (3)0.021 (4)0.004 (3)0.005 (3)
C30.046 (5)0.031 (4)0.034 (4)0.004 (4)0.002 (3)0.012 (3)
C40.073 (6)0.024 (4)0.030 (4)0.023 (4)0.008 (4)0.002 (3)
C50.062 (5)0.031 (4)0.025 (3)0.033 (4)0.012 (3)0.006 (3)
C60.035 (4)0.035 (4)0.016 (3)0.019 (3)0.003 (3)0.002 (3)
C70.033 (4)0.036 (4)0.020 (3)0.023 (3)0.006 (3)0.002 (3)
C80.018 (3)0.026 (3)0.024 (3)0.009 (3)0.001 (3)0.003 (3)
C90.033 (4)0.038 (4)0.033 (4)0.022 (3)0.007 (3)0.003 (3)
C100.019 (4)0.042 (4)0.059 (5)0.011 (3)0.016 (3)0.005 (4)
C110.023 (4)0.029 (4)0.062 (5)0.005 (3)0.000 (3)0.001 (4)
C120.033 (4)0.041 (4)0.040 (4)0.021 (4)0.007 (3)0.013 (3)
C130.031 (4)0.030 (4)0.022 (3)0.019 (3)0.001 (3)0.006 (3)
C140.029 (4)0.025 (4)0.029 (4)0.015 (3)0.003 (3)0.001 (3)
Cu20.0258 (4)0.0380 (5)0.0230 (4)0.0214 (4)0.0040 (3)0.0041 (3)
O60.027 (3)0.057 (3)0.026 (2)0.025 (2)0.0041 (19)0.013 (2)
O70.031 (2)0.033 (3)0.024 (2)0.020 (2)0.0059 (19)0.0051 (19)
O80.092 (5)0.111 (5)0.032 (3)0.082 (4)0.021 (3)0.026 (3)
O90.042 (3)0.067 (3)0.031 (3)0.044 (3)0.014 (2)0.018 (2)
O100.052 (3)0.105 (5)0.032 (3)0.049 (3)0.014 (2)0.008 (3)
N20.023 (3)0.035 (3)0.021 (3)0.018 (3)0.009 (2)0.002 (2)
C150.033 (4)0.039 (4)0.016 (3)0.019 (3)0.004 (3)0.001 (3)
C160.054 (5)0.040 (4)0.027 (4)0.023 (4)0.002 (3)0.007 (3)
C170.057 (5)0.029 (4)0.031 (4)0.010 (4)0.009 (4)0.007 (3)
C180.050 (5)0.040 (5)0.031 (4)0.007 (4)0.004 (4)0.009 (3)
C190.023 (4)0.049 (5)0.019 (3)0.006 (3)0.002 (3)0.014 (3)
C200.031 (4)0.041 (4)0.013 (3)0.020 (3)0.000 (3)0.004 (3)
C210.026 (4)0.043 (4)0.017 (3)0.024 (3)0.001 (3)0.004 (3)
C220.031 (4)0.028 (4)0.031 (4)0.023 (3)0.010 (3)0.010 (3)
C230.040 (4)0.038 (5)0.052 (5)0.015 (4)0.011 (4)0.014 (4)
C240.051 (5)0.046 (5)0.089 (7)0.028 (4)0.008 (5)0.023 (5)
C250.038 (5)0.031 (4)0.103 (7)0.022 (4)0.005 (5)0.004 (4)
C260.034 (4)0.043 (5)0.057 (5)0.017 (4)0.012 (4)0.015 (4)
C270.018 (3)0.031 (4)0.032 (3)0.014 (3)0.003 (3)0.003 (3)
C280.027 (4)0.039 (4)0.025 (4)0.016 (3)0.009 (3)0.009 (3)
Geometric parameters (Å, º) top
Cu1—O11.919 (4)Cu2—O61.909 (4)
Cu1—N11.952 (4)Cu2—N21.938 (5)
Cu1—O21.957 (4)Cu2—O91.944 (4)
Cu1—O41.967 (4)Cu2—O71.955 (4)
Cu1—O52.290 (4)Cu2—O102.559 (5)
Cu1—Cu24.674 (1)O6—C151.302 (7)
O1—C11.325 (7)O7—C281.267 (7)
O2—C141.288 (7)O8—C281.229 (7)
O3—C141.225 (7)O9—H9A0.8480
O4—H4A0.8505O9—H9B0.8458
O4—H4B0.8536O10—H10A0.8187
O5—H5A0.9042O10—H10B0.8742
O5—H5B0.9097N2—C211.290 (7)
N1—C71.284 (7)N2—C221.424 (7)
N1—C81.413 (7)C15—C161.410 (9)
C1—C21.403 (9)C15—C201.418 (8)
C1—C61.433 (9)C16—C171.372 (10)
C2—C31.376 (9)C16—H160.9300
C2—H20.9300C17—C181.382 (10)
C3—C41.379 (10)C17—H170.9300
C3—H30.9300C18—C191.383 (9)
C4—C51.354 (9)C18—H180.9300
C4—H40.9300C19—C201.422 (8)
C5—C61.426 (8)C19—H190.9300
C5—H50.9300C20—C211.442 (8)
C6—C71.429 (9)C21—H210.9300
C7—H70.9300C22—C271.388 (8)
C8—C91.396 (8)C22—C231.396 (8)
C8—C131.409 (8)C23—C241.379 (10)
C9—C101.382 (9)C23—H230.9300
C9—H90.9300C24—C251.364 (11)
C10—C111.376 (9)C24—H240.9300
C10—H100.9300C25—C261.373 (10)
C11—C121.377 (9)C25—H250.9300
C11—H110.9300C26—C271.394 (9)
C12—C131.385 (8)C26—H260.9300
C12—H120.9300C27—C281.489 (8)
C13—C141.507 (8)
O1—Cu1—N191.36 (18)O6—Cu2—N291.10 (19)
O1—Cu1—O2163.21 (18)O6—Cu2—O987.79 (17)
N1—Cu1—O290.52 (18)N2—Cu2—O9174.2 (2)
O1—Cu1—O487.33 (18)O6—Cu2—O7166.71 (19)
N1—Cu1—O4170.10 (19)N2—Cu2—O791.97 (18)
O2—Cu1—O487.96 (17)O9—Cu2—O787.86 (17)
O1—Cu1—O595.59 (17)O6—Cu2—O1095.44 (17)
N1—Cu1—O593.28 (18)N2—Cu2—O1088.08 (18)
O2—Cu1—O5100.96 (16)O9—Cu2—O1097.68 (17)
O4—Cu1—O596.62 (17)O7—Cu2—O1097.59 (16)
C1—O1—Cu1121.6 (4)C15—O6—Cu2121.1 (4)
C14—O2—Cu1128.1 (4)C28—O7—Cu2126.8 (4)
Cu1—O4—H4A116.5Cu2—O9—H9A124.7
Cu1—O4—H4B123.4Cu2—O9—H9B125.3
H4A—O4—H4B107.0H9A—O9—H9B108.2
Cu1—O5—H5A123.6Cu2—O10—H10A123.4
Cu1—O5—H5B98.6Cu2—O10—H10B127.2
H5A—O5—H5B109.2H10A—O10—H10B108.3
C7—N1—C8119.8 (5)C21—N2—C22119.0 (5)
C7—N1—Cu1122.0 (4)C21—N2—Cu2122.4 (4)
C8—N1—Cu1118.1 (4)C22—N2—Cu2118.5 (4)
O1—C1—C2120.7 (6)O6—C15—C16120.2 (6)
O1—C1—C6120.8 (5)O6—C15—C20123.3 (6)
C2—C1—C6118.4 (6)C16—C15—C20116.5 (6)
C3—C2—C1121.0 (7)C17—C16—C15122.1 (7)
C3—C2—H2119.5C17—C16—H16119.0
C1—C2—H2119.5C15—C16—H16119.0
C2—C3—C4121.2 (6)C16—C17—C18121.5 (7)
C2—C3—H3119.4C16—C17—H17119.2
C4—C3—H3119.4C18—C17—H17119.2
C5—C4—C3119.4 (7)C17—C18—C19119.0 (7)
C5—C4—H4120.3C17—C18—H18120.5
C3—C4—H4120.3C19—C18—H18120.5
C4—C5—C6122.4 (7)C18—C19—C20120.4 (7)
C4—C5—H5118.8C18—C19—H19119.8
C6—C5—H5118.8C20—C19—H19119.8
C5—C6—C7119.0 (6)C15—C20—C19120.6 (6)
C5—C6—C1117.4 (6)C15—C20—C21121.8 (6)
C7—C6—C1123.7 (6)C19—C20—C21117.6 (6)
N1—C7—C6125.5 (6)N2—C21—C20124.9 (5)
N1—C7—H7117.2N2—C21—H21117.5
C6—C7—H7117.2C20—C21—H21117.5
C9—C8—C13119.0 (6)C27—C22—C23120.4 (6)
C9—C8—N1119.9 (5)C27—C22—N2119.7 (5)
C13—C8—N1121.0 (5)C23—C22—N2119.9 (6)
C10—C9—C8121.1 (6)C24—C23—C22120.6 (7)
C10—C9—H9119.4C24—C23—H23119.7
C8—C9—H9119.4C22—C23—H23119.7
C11—C10—C9119.8 (6)C25—C24—C23119.4 (7)
C11—C10—H10120.1C25—C24—H24120.3
C9—C10—H10120.1C23—C24—H24120.3
C10—C11—C12119.7 (6)C24—C25—C26120.4 (7)
C10—C11—H11120.2C24—C25—H25119.8
C12—C11—H11120.2C26—C25—H25119.8
C11—C12—C13122.1 (6)C25—C26—C27121.9 (7)
C11—C12—H12118.9C25—C26—H26119.1
C13—C12—H12118.9C27—C26—H26119.1
C12—C13—C8118.3 (6)C22—C27—C26117.3 (6)
C12—C13—C14118.3 (5)C22—C27—C28125.0 (5)
C8—C13—C14123.3 (5)C26—C27—C28117.7 (6)
O3—C14—O2122.5 (6)O8—C28—O7122.2 (6)
O3—C14—C13118.4 (6)O8—C28—C27118.0 (6)
O2—C14—C13119.0 (5)O7—C28—C27119.7 (5)
N1—Cu1—O1—C142.3 (4)N2—Cu2—O6—C1542.2 (5)
O2—Cu1—O1—C154.0 (8)O9—Cu2—O6—C15132.1 (5)
O4—Cu1—O1—C1127.8 (4)O7—Cu2—O6—C1561.1 (9)
O5—Cu1—O1—C1135.8 (4)O10—Cu2—O6—C15130.4 (4)
O1—Cu1—O2—C14116.5 (7)O6—Cu2—O7—C28116.2 (8)
N1—Cu1—O2—C1420.0 (5)N2—Cu2—O7—C2812.9 (5)
O4—Cu1—O2—C14169.8 (5)O9—Cu2—O7—C28172.9 (5)
O5—Cu1—O2—C1473.4 (5)O10—Cu2—O7—C2875.4 (5)
O1—Cu1—N1—C730.0 (5)O6—Cu2—N2—C2131.0 (5)
O2—Cu1—N1—C7133.3 (5)O7—Cu2—N2—C21136.1 (5)
O5—Cu1—N1—C7125.7 (5)O10—Cu2—N2—C21126.4 (5)
O1—Cu1—N1—C8152.9 (4)O6—Cu2—N2—C22152.6 (4)
O2—Cu1—N1—C843.8 (4)O7—Cu2—N2—C2240.3 (4)
O5—Cu1—N1—C857.2 (4)O10—Cu2—N2—C2257.2 (4)
Cu1—O1—C1—C2149.6 (4)Cu2—O6—C15—C16148.9 (5)
Cu1—O1—C1—C633.6 (7)Cu2—O6—C15—C2032.9 (7)
O1—C1—C2—C3176.9 (6)O6—C15—C16—C17178.3 (6)
C6—C1—C2—C30.0 (9)C20—C15—C16—C170.1 (9)
C1—C2—C3—C41.6 (10)C15—C16—C17—C180.3 (10)
C2—C3—C4—C50.5 (10)C16—C17—C18—C190.2 (10)
C3—C4—C5—C62.1 (10)C17—C18—C19—C200.2 (9)
C4—C5—C6—C7176.2 (6)O6—C15—C20—C19177.9 (5)
C4—C5—C6—C13.6 (9)C16—C15—C20—C190.5 (8)
O1—C1—C6—C5179.3 (5)O6—C15—C20—C210.7 (9)
C2—C1—C6—C52.4 (8)C16—C15—C20—C21177.6 (5)
O1—C1—C6—C70.4 (9)C18—C19—C20—C150.6 (9)
C2—C1—C6—C7177.3 (6)C18—C19—C20—C21177.8 (6)
C8—N1—C7—C6173.7 (5)C22—N2—C21—C20173.7 (5)
Cu1—N1—C7—C69.3 (8)Cu2—N2—C21—C209.9 (8)
C5—C6—C7—N1167.6 (6)C15—C20—C21—N213.2 (9)
C1—C6—C7—N112.7 (9)C19—C20—C21—N2169.6 (5)
C7—N1—C8—C944.1 (8)C21—N2—C22—C27137.8 (6)
Cu1—N1—C8—C9138.7 (5)Cu2—N2—C22—C2738.8 (7)
C7—N1—C8—C13138.0 (6)C21—N2—C22—C2343.8 (8)
Cu1—N1—C8—C1339.1 (7)Cu2—N2—C22—C23139.7 (5)
C13—C8—C9—C102.3 (9)C27—C22—C23—C241.0 (10)
N1—C8—C9—C10179.8 (6)N2—C22—C23—C24179.5 (6)
C8—C9—C10—C110.5 (11)C22—C23—C24—C250.5 (12)
C9—C10—C11—C120.8 (11)C23—C24—C25—C261.0 (12)
C10—C11—C12—C130.3 (11)C24—C25—C26—C272.0 (12)
C11—C12—C13—C81.5 (10)C23—C22—C27—C261.9 (9)
C11—C12—C13—C14178.5 (6)N2—C22—C27—C26179.6 (6)
C9—C8—C13—C122.8 (9)C23—C22—C27—C28178.8 (6)
N1—C8—C13—C12179.4 (5)N2—C22—C27—C280.4 (9)
C9—C8—C13—C14179.7 (5)C25—C26—C27—C222.5 (10)
N1—C8—C13—C142.5 (9)C25—C26—C27—C28178.3 (6)
Cu1—O2—C14—O3170.2 (5)Cu2—O7—C28—O8163.3 (5)
Cu1—O2—C14—C1311.4 (8)Cu2—O7—C28—C2718.1 (8)
C12—C13—C14—O325.6 (9)C22—C27—C28—O8149.7 (7)
C8—C13—C14—O3151.3 (6)C26—C27—C28—O829.5 (9)
C12—C13—C14—O2152.9 (6)C22—C27—C28—O731.7 (9)
C8—C13—C14—O230.2 (9)C26—C27—C28—O7149.1 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O10—H10B···O50.872.402.882 (7)115
O10—H10A···O8i0.821.932.727 (6)163
O9—H9B···O2ii0.851.972.813 (5)174
O9—H9A···O10.851.842.667 (6)166
O5—H5A···O3ii0.902.372.842 (6)112
O4—H4B···O7i0.851.992.814 (6)161
O4—H4A···O60.851.862.711 (6)177
C23—H23···Cg3iii0.932.873.618 (9)139
Symmetry codes: (i) x, y, z+1; (ii) x, y, z1; (iii) xy, x, z+2.

Experimental details

Crystal data
Chemical formula[Cu(C14H9NO3)(H2O)2]
Mr338.81
Crystal system, space groupTrigonal, R3
Temperature (K)298
a, c (Å)46.263 (2), 7.2030 (7)
V3)13350.9 (15)
Z36
Radiation typeMo Kα
µ (mm1)1.49
Crystal size (mm)0.24 × 0.09 × 0.01
Data collection
DiffractometerBruker SMART 1K CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2000)
Tmin, Tmax0.715, 0.985
No. of measured, independent and
observed [I > 2σ(I)] reflections
5220, 5220, 3659
Rint0.000
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.072, 0.160, 1.04
No. of reflections5220
No. of parameters379
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.63, 0.61

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SAINT, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL/PC (Sheldrick, 1999), SHELXTL/PC.

Selected geometric parameters (Å, º) top
Cu1—O11.919 (4)Cu2—O61.909 (4)
Cu1—N11.952 (4)Cu2—N21.938 (5)
Cu1—O21.957 (4)Cu2—O91.944 (4)
Cu1—O41.967 (4)Cu2—O71.955 (4)
Cu1—O52.290 (4)Cu2—O102.559 (5)
Cu1—Cu24.674 (1)
O1—Cu1—N191.36 (18)O6—Cu2—N291.10 (19)
O1—Cu1—O2163.21 (18)O6—Cu2—O987.79 (17)
N1—Cu1—O290.52 (18)N2—Cu2—O9174.2 (2)
O1—Cu1—O487.33 (18)O6—Cu2—O7166.71 (19)
N1—Cu1—O4170.10 (19)N2—Cu2—O791.97 (18)
O2—Cu1—O487.96 (17)O9—Cu2—O787.86 (17)
O1—Cu1—O595.59 (17)O6—Cu2—O1095.44 (17)
N1—Cu1—O593.28 (18)N2—Cu2—O1088.08 (18)
O2—Cu1—O5100.96 (16)O9—Cu2—O1097.68 (17)
O4—Cu1—O596.62 (17)O7—Cu2—O1097.59 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O10—H10B···O50.872.402.882 (7)115
O10—H10A···O8i0.821.932.727 (6)163
O9—H9B···O2ii0.851.972.813 (5)174
O9—H9A···O10.851.842.667 (6)166
O5—H5A···O3ii0.902.372.842 (6)112
O4—H4B···O7i0.851.992.814 (6)161
O4—H4A···O60.851.862.711 (6)177
C23—H23···Cg3iii0.932.873.618 (9)139
Symmetry codes: (i) x, y, z+1; (ii) x, y, z1; (iii) xy, x, z+2.
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds