Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
In the title compound, [Ba{HOOC(C6H4)2CO2}2(H2O)2] or [Ba(C14H9O4)2(H2O)2], the Ba atoms are coordinated by nine O atoms, six from two 2′-carboxy­biphenyl-2-carboxyl­ate (Hbpdc) ligands and three from three coordinated water mol­ecules, resulting in the formation of face-sharing distorted monocapped square anti­prisms. The Hbpdc ligands bridge the Ba atoms to form a one-dimensional helical polymer, with a Ba...Ba distance across the chain of 4.1386 (17) Å. Adjacent chains are parallel to each other. The two independent ligands are tetra­dentate and have the same coordination mode, exhibiting μ-oxo bridges and η8-chelation. The crystal structure is further stabilized by hydrogen bonds within each chain.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270107001874/gd3066sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270107001874/gd3066Isup2.hkl
Contains datablock I

CCDC reference: 614335

Comment top

The design of supra-molecular architectures employing dicarboxylic acids as ambidentate and templating ligands, with metals offering interesting connectivity, remains a topical research subject (Rao et al., 2004). The increasing interest is principally due to the tunability of the resulting extended frameworks, among them several layered compounds (Wan et al., 2002; Benmerad, Guehria-Laïdoudi, Bernardinelli & Balegroune, 2000), catena-polymers (Tu et al., 2005; Benmerad, Guehria-Laidoudi, Balegroune et al., 2000; Benmerad et al., 2004b) and three-dimensional cross-linked polynuclear units (Pan et al., 2001; Benmerad et al., 2004a; Djeghri et al., 2006). These compounds typically exhibit infinite M—O—M chains and several poly-membered rings, which favour interactions between the metals and create various kinds of voids.

Therefore, these materials are not only microporous, bringing out interesting chemical properties (ionic exchange), but have useful magnetic (Rueff et al., 2003; Mukherjee et al., 2004), electronic and optical (Kim et al., 2004; Thirumurugan et al., 2004; Millange et al., 2004) properties (electronic and/or magnetic exchange). These properties can be finely tuned, because the dimensionality of the framework, the interpenetration of pores and the orientation of the binding sites may be controlled, depending on synthesis conditions, as well as the characteristics of connectors and linkers.

Using this approach, we investigate the building-block methodology by using 2,2'-biphenyldicarboxylate as a relatively flexible ligand an and alkaline-earth metal as versatile connector. For this latter, a variable coordination number, in the range 7–12, provides the ability of adapting to many different environments. In the course of our studies on coordination polymers with interesting dimensionalities and functionalities, we have selected the barium–H2bdpc (H2bdpc is 2,2'-biphenyldicarboxylic acid) system, to extend this research with the title complex, [Ba(Hbdpc)2(H2O)2], (I).

Complex (I) is a one-dimensional helical polymer. The asymmetric unit contains one BaII atom, two coordinating water molecules and two tritopic ligands (Hbpdc-). As shown in Fig. 1, the Ba atom is nine-coordinate. Although they are crystallographically independent, the two ligands exhibit the same coordination mode, involving only one O atom from each end functional group, forming a µ-oxo bridge through atoms O4 and O7, respectively, for ligand L1 and ligand L2, and η8 chelation, analogous to the so-called `malonate mode' in the α,ω-aliphatic dicarboxylates.

In the present compound, and in the absence of any bridging exo ligand, this connectivity, seems to exist only with alkaline-earth and rare-earth biphenyldicarboxylates (Thirumurugan et al., 2003, 2004; Wang et al., 2004). As a consequence, a dramatic twist is observed, as shown by the helix formed by the spacer with torsion angles of -84.0 (2)° (C2—C7—C8—C13] in L1 and 84.8 (3)° [C16—C21—C22—C27] in L2.

A comparison with the biphenate compounds presenting the same connectivity shows the great distortions induced in the resulting nine-membered ring. The torsion angles between the two phenyl rings are far from what it has been reported (Thirumurugan et al., 2003,2004), being equal to -5.3 (3)° (C1—C2—C7—C8) and 10.3 (3)° (C14—C13—C8—C7) for L1, and 4.6 (3)° (C15—C16—C21—C22) and -10.9 (3)° (C28—C27—C22—C21) for L2. Several other twists are observed within each diphenyl unit. The functional ends are inclined at 52.28 and 55.52° to each other owing to the helical arrangement of the spacer; between the carboxylate or the carboxylic groups and the corresponding linking phenyl rings, the dihedral angles are small (40.15 and 39.29°, and 59.05 and 53.26°), and the two phenyl rings are nearly perpendicular to each other with dihedral angles of 82.32 and 81.86°. However this geometry is similar to those found in the pure acid (Fronczek et al., 1987) and is not unusual.

The formation of helical chains in one-dimensional coordination polymers is relatively common, particularly when the connectors are running in a zigzag fashion, as in this case. The metal lies in the centre of two square planes formed by atoms O4, O7i, O4i and O7 (see Table 1 for symmetry code), which are the O atoms of the carboxylate functional ends, and the set of atoms O1, O1W, O5 and OW2, comprising the O atoms of the second carboxylate groups.

The two square MO4 and MO2(H2O)2 structural features are almost planar [the maximum deviations being 0.0551 (8) and 0.0031 (3) Å, respectively] and nearly parallel to each other; the dihedral angle between them is 3.11 (7)°. The coordination environment of the Ba atom is completed by the water molecule O1Wi at the apex position of these two squares. The resulting coordination polyhedron is a distorted monocapped square antiprism. The Ba—O bond lengths present a small dispersion [2.6922 (19)–2.9144 (15) Å] and remain within the range reported for barium carboxylate complexes (Bae et al., 2002). The 36 different bond angles around the metal lie in the range 66.35 (4)–142.99 (4)°, which is comparable to that for α,ω-aliphatic dicarboxylates, in the same connectivity. Fig. 2 shows the infinite one-dimensional chain and face-sharing barium polyhedra. Within the chain, each Ba atom is linked to two others, via three bridging O atoms, one from a water molecule (O1W) and two triply coordinated atoms (O4 and O7) from carboxylate groups.

From this point of view, this network, built up from decorated chains of BaO9 monocapped square antiprisms, is somewhat similar to the recently reported tancoite-related structures (Thirumurugan et al., 2003, 2004). The Ba····Ba distance across the chain is 4.1386 (19) Å. The phenyl rings belonging to the same chain are parallel to each other and the distances between these parallel rings are in the range 3.90–4.42 Å. Adjacent chains are parallel to each other.

There are no direct ππ interactions between the biphenyl groups within the chain, nor along adjacent chains. Several intrachain hydrogen bonds are observed. They involve the two hydrogen-bonding acceptors from uncoordinated carboxylate atoms O3 from L1 and O8 from L2. In each ligand, the same H atom is shared between the protonated end and the deprotonated one of the symmetrical ligands [O3···H2 = 2.670 (2) Å and O8···H6A = 2.677 (2) Å]. Two other, weaker, hydrogen bonds involve the water molecule O1W and the atoms that are not bonded to the metal [O3···O1W = 2.753 (2) Å and O8···O1W = 2.755 (2) Å].

Related literature top

For related literature, see: Bae et al. (2002); Benmerad et al. (2004a, 2004b); Benmerad, Guehria-Laïdoudi, Bernardinelli & Balegroune (2000); Benmerad, Guehria-Laidoudi, Balegroune, Birkedal & Chapuis (2000); Djeghri et al. (2006); Fronczek et al. (1987); Kim et al. (2004); Millange et al. (2004); Mukherjee et al. (2004); Pan et al. (2001); Rao et al. (2004); Rueff et al. (2003); Thirumurugan et al. (2003, 2004); Tu et al. (2005); Wan et al. (2002); Wang et al. (2004).

Experimental top

A mixture of diphenic acid (0.484 g, 2 mmol) and barium hydroxide octahydrate (0.473 g, 1.5 mmol) in water (20 ml) was heated (353–363 K) and stirred for 30 min, and the resulting mixture was filtered. Colourless single crystals were obtained after several weeks at 313 K.

Refinement top

H atoms attached to C atoms were placed in calculated positions and treated as riding, with C—H distances of 0.95 Å and the Uiso(H) values of 1.2Ueq(C). H atoms of water molecules and hydroxyl groups were located in a difference Fourier map and refined with an O—H distance restraint of 0.85 (1) Å and Uiso(H) values of 0.5 Å2.

Computing details top

Data collection: COLLECT (Nonius, 1997); cell refinement: DENZO–SMN (Otwinowski & Minor, 1997); data reduction: DENZO–SMN; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. : A view of the coordination environment around the Ba atom, including the labelling scheme, with 50% probability displacement ellipsoids. [Symmetry codes: (i) 1/2 - x, -1/2 + y, 1/2 - z; (ii) 1/2 - x, -1/2 + y, 1/2 - z.]
[Figure 2] Fig. 2. : The one-dimensional chain of BaO9 polyhedra, viewed along the b axis. [Symmetry codes: (i) 1/2 - x, -1/2 + y, 1/2 - z; (ii) 1/2 - x, -1/2 + y, 1/2 - z; (iii) x, y - 1, z.]
catena-Poly[aquabarium(II)]-µ-aqua-bis(µ-2-carboxybiphenyl-2- carboxylato)barium(II)] top
Crystal data top
[Ba(C14H9O4)2(H2O)2]F(000) = 1304
Mr = 655.80Dx = 1.690 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 2140 reflections
a = 16.418 (5) Åθ = 2.4–25.2°
b = 7.171 (4) ŵ = 1.60 mm1
c = 22.428 (5) ÅT = 294 K
β = 102.543 (5)°Prism, colourles
V = 2577.5 (17) Å30.40 × 0.10 × 0.05 mm
Z = 4
Data collection top
Nonius KappaCCD area-detector
diffractometer
11547 independent reflections
Radiation source: fine-focus sealed tube9372 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.045
ω and ϕ scansθmax = 35.6°, θmin = 2.8°
Absorption correction: empirical (using intensity measurements)
(DENZO–SMN; Otwinowski & Minor, 1997)
h = 026
Tmin = 0.619, Tmax = 0.917k = 011
11569 measured reflectionsl = 3635
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.030Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.069H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0177P)2 + 2.6715P]
where P = (Fo2 + 2Fc2)/3
11547 reflections(Δ/σ)max = 0.007
370 parametersΔρmax = 0.80 e Å3
6 restraintsΔρmin = 0.90 e Å3
Crystal data top
[Ba(C14H9O4)2(H2O)2]V = 2577.5 (17) Å3
Mr = 655.80Z = 4
Monoclinic, P21/nMo Kα radiation
a = 16.418 (5) ŵ = 1.60 mm1
b = 7.171 (4) ÅT = 294 K
c = 22.428 (5) Å0.40 × 0.10 × 0.05 mm
β = 102.543 (5)°
Data collection top
Nonius KappaCCD area-detector
diffractometer
11547 independent reflections
Absorption correction: empirical (using intensity measurements)
(DENZO–SMN; Otwinowski & Minor, 1997)
9372 reflections with I > 2σ(I)
Tmin = 0.619, Tmax = 0.917Rint = 0.045
11569 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0306 restraints
wR(F2) = 0.069H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.80 e Å3
11547 reflectionsΔρmin = 0.90 e Å3
370 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ba10.222786 (6)0.036792 (13)0.203900 (4)0.02144 (3)
O10.31678 (10)0.0351 (2)0.11565 (6)0.0368 (3)
O20.35314 (12)0.2308 (2)0.04892 (7)0.0422 (4)
O30.31488 (9)0.4883 (2)0.11605 (7)0.0337 (3)
O40.32954 (9)0.33399 (19)0.20375 (6)0.0293 (3)
O50.05186 (9)0.0355 (2)0.16062 (7)0.0397 (3)
O60.04340 (11)0.2325 (2)0.11083 (10)0.0565 (5)
O70.13835 (8)0.33648 (18)0.23587 (6)0.0283 (2)
O80.05696 (9)0.4857 (2)0.15822 (7)0.0344 (3)
O1W0.20646 (8)0.32653 (18)0.17341 (6)0.0275 (2)
O2W0.15789 (12)0.2371 (3)0.09483 (8)0.0465 (4)
C10.35535 (11)0.3818 (2)0.15706 (8)0.0252 (3)
C20.43886 (11)0.3092 (3)0.15061 (9)0.0277 (3)
C30.50233 (14)0.3021 (3)0.20294 (11)0.0398 (5)
H30.49090.33670.24120.048*
C40.58206 (15)0.2454 (4)0.20004 (13)0.0518 (6)
H40.62520.24310.23590.062*
C50.59833 (14)0.1923 (4)0.14474 (14)0.0539 (7)
H50.65300.15450.14250.065*
C60.53558 (14)0.1936 (4)0.09252 (12)0.0437 (5)
H60.54740.15400.05490.052*
C70.45477 (12)0.2523 (3)0.09428 (9)0.0301 (3)
C80.39019 (12)0.2419 (3)0.03610 (8)0.0282 (3)
C90.38657 (14)0.3799 (3)0.00829 (10)0.0365 (4)
H90.42210.48560.00030.044*
C100.33199 (16)0.3649 (3)0.06465 (10)0.0428 (5)
H100.32920.46220.09380.051*
C110.28182 (15)0.2107 (4)0.07876 (10)0.0430 (5)
H110.24450.20150.11750.052*
C120.28597 (14)0.0686 (3)0.03624 (9)0.0353 (4)
H120.25300.04040.04640.042*
C130.33864 (12)0.0856 (3)0.02143 (8)0.0282 (3)
C140.33561 (11)0.0644 (3)0.06736 (8)0.0280 (3)
C150.06747 (10)0.3828 (2)0.20513 (8)0.0255 (3)
C160.00739 (11)0.3109 (3)0.22602 (8)0.0269 (3)
C170.00296 (14)0.3050 (3)0.28894 (10)0.0378 (4)
H170.04750.33930.31630.045*
C180.07065 (18)0.2502 (4)0.31188 (12)0.0499 (6)
H180.06720.24910.35470.060*
C190.14327 (17)0.1971 (4)0.27222 (13)0.0543 (7)
H190.19050.16130.28770.065*
C200.14756 (14)0.1959 (4)0.21005 (12)0.0466 (5)
H200.19750.15550.18330.056*
C210.08038 (11)0.2525 (3)0.18556 (9)0.0301 (4)
C220.09045 (11)0.2416 (3)0.11774 (9)0.0304 (4)
C230.13609 (14)0.3795 (3)0.08145 (11)0.0428 (5)
H230.15540.48430.10030.051*
C240.15393 (17)0.3671 (4)0.01836 (12)0.0540 (7)
H240.18340.46490.00560.065*
C250.12910 (15)0.2138 (4)0.00959 (11)0.0505 (6)
H250.14120.20580.05290.061*
C260.08626 (13)0.0704 (4)0.02525 (10)0.0412 (5)
H260.07140.03840.00590.049*
C270.06497 (11)0.0859 (3)0.08876 (9)0.0301 (4)
C280.01266 (11)0.0646 (3)0.12426 (9)0.0304 (4)
H1A0.1597 (10)0.381 (4)0.1657 (12)0.046*
H1B0.2377 (14)0.383 (4)0.1539 (11)0.046*
H2A0.1200 (13)0.313 (3)0.0983 (12)0.046*
H2B0.1956 (13)0.301 (3)0.0842 (12)0.046*
H20.3444 (17)0.313 (3)0.0737 (10)0.046*
H6A0.0136 (14)0.319 (3)0.1304 (11)0.046*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ba10.02512 (5)0.01712 (4)0.02099 (4)0.00041 (3)0.00260 (3)0.00034 (3)
O10.0496 (9)0.0365 (7)0.0281 (6)0.0021 (7)0.0168 (6)0.0006 (6)
O20.0655 (11)0.0275 (7)0.0404 (8)0.0039 (7)0.0262 (8)0.0044 (6)
O30.0367 (7)0.0342 (7)0.0331 (7)0.0095 (6)0.0139 (6)0.0088 (5)
O40.0351 (7)0.0276 (6)0.0267 (6)0.0018 (5)0.0105 (5)0.0004 (5)
O50.0300 (7)0.0401 (8)0.0421 (8)0.0031 (6)0.0073 (6)0.0012 (7)
O60.0419 (9)0.0298 (8)0.0823 (13)0.0006 (7)0.0204 (9)0.0002 (8)
O70.0233 (6)0.0270 (6)0.0318 (6)0.0004 (5)0.0001 (5)0.0026 (5)
O80.0277 (6)0.0350 (7)0.0383 (7)0.0008 (5)0.0022 (5)0.0104 (6)
O1W0.0280 (6)0.0227 (6)0.0325 (6)0.0011 (5)0.0080 (5)0.0035 (5)
O2W0.0567 (11)0.0433 (9)0.0378 (8)0.0056 (8)0.0064 (8)0.0067 (7)
C10.0289 (8)0.0211 (7)0.0265 (7)0.0018 (6)0.0078 (6)0.0024 (6)
C20.0257 (8)0.0244 (7)0.0335 (9)0.0022 (6)0.0079 (6)0.0014 (6)
C30.0354 (10)0.0379 (11)0.0422 (11)0.0018 (8)0.0001 (8)0.0037 (9)
C40.0328 (11)0.0503 (14)0.0644 (16)0.0022 (10)0.0068 (10)0.0047 (12)
C50.0251 (9)0.0552 (15)0.0806 (19)0.0050 (10)0.0099 (11)0.0051 (14)
C60.0319 (10)0.0459 (12)0.0578 (14)0.0010 (9)0.0196 (9)0.0053 (11)
C70.0274 (8)0.0274 (8)0.0379 (9)0.0022 (7)0.0123 (7)0.0009 (7)
C80.0308 (8)0.0267 (8)0.0306 (8)0.0018 (7)0.0146 (7)0.0011 (6)
C90.0472 (11)0.0290 (9)0.0391 (10)0.0010 (8)0.0218 (9)0.0028 (8)
C100.0586 (14)0.0374 (11)0.0370 (10)0.0082 (10)0.0208 (10)0.0122 (9)
C110.0491 (12)0.0498 (13)0.0293 (9)0.0050 (10)0.0068 (9)0.0071 (9)
C120.0399 (10)0.0384 (11)0.0281 (8)0.0024 (8)0.0087 (7)0.0014 (7)
C130.0317 (8)0.0286 (8)0.0270 (8)0.0010 (7)0.0123 (6)0.0008 (6)
C140.0270 (8)0.0297 (9)0.0278 (8)0.0023 (6)0.0072 (6)0.0012 (6)
C150.0230 (7)0.0234 (7)0.0284 (8)0.0003 (6)0.0021 (6)0.0038 (6)
C160.0251 (7)0.0249 (7)0.0306 (8)0.0013 (6)0.0057 (6)0.0022 (6)
C170.0410 (11)0.0404 (11)0.0331 (10)0.0059 (9)0.0104 (8)0.0052 (8)
C180.0615 (16)0.0529 (14)0.0426 (12)0.0067 (12)0.0274 (11)0.0046 (11)
C190.0445 (13)0.0661 (17)0.0605 (16)0.0079 (12)0.0296 (12)0.0019 (13)
C200.0273 (9)0.0586 (15)0.0546 (14)0.0075 (10)0.0104 (9)0.0039 (12)
C210.0236 (8)0.0293 (8)0.0369 (9)0.0014 (6)0.0051 (7)0.0017 (7)
C220.0226 (7)0.0315 (9)0.0336 (9)0.0024 (7)0.0015 (6)0.0029 (7)
C230.0376 (10)0.0319 (10)0.0523 (13)0.0006 (8)0.0048 (9)0.0054 (9)
C240.0505 (14)0.0505 (15)0.0513 (14)0.0032 (11)0.0099 (11)0.0223 (12)
C250.0433 (12)0.0719 (18)0.0316 (10)0.0061 (12)0.0026 (9)0.0141 (11)
C260.0321 (9)0.0577 (14)0.0320 (9)0.0003 (9)0.0033 (7)0.0001 (9)
C270.0224 (7)0.0359 (9)0.0297 (8)0.0007 (7)0.0008 (6)0.0015 (7)
C280.0250 (8)0.0337 (9)0.0313 (8)0.0025 (7)0.0031 (6)0.0022 (7)
Geometric parameters (Å, º) top
Ba1—O1W2.6922 (19)C7—C81.494 (3)
Ba1—O72.7360 (16)C8—C91.396 (3)
Ba1—O42.7598 (17)C8—C131.400 (3)
Ba1—O7i2.7836 (14)C9—C101.386 (3)
Ba1—O12.8091 (15)C9—H90.9500
Ba1—O52.8113 (17)C10—C111.374 (4)
Ba1—O4i2.8136 (14)C10—H100.9500
Ba1—O2W2.8373 (18)C11—C121.387 (3)
Ba1—O1Wii2.9144 (15)C11—H110.9500
Ba1—Ba1ii4.1386 (17)C12—C131.396 (3)
Ba1—Ba1i4.1386 (17)C12—H120.9500
O1—C141.208 (2)C13—C141.498 (3)
O2—C141.315 (2)C15—C161.499 (3)
O2—H20.84 (2)C16—C171.398 (3)
O3—C11.267 (2)C16—C211.401 (3)
O4—C11.259 (2)C17—C181.379 (3)
O5—C281.206 (2)C17—H170.9500
O6—C281.315 (3)C18—C191.377 (4)
O6—H6A0.853 (10)C18—H180.9500
O7—C151.261 (2)C19—C201.381 (4)
O8—C151.266 (2)C19—H190.9500
O1W—H1A0.85 (2)C20—C211.395 (3)
O1W—H1B0.85 (2)C20—H200.9500
O2W—H2A0.84 (2)C21—C221.496 (3)
O2W—H2B0.85 (2)C22—C231.392 (3)
C1—C21.503 (3)C22—C271.401 (3)
C2—C31.391 (3)C23—C241.384 (4)
C2—C71.405 (3)C23—H230.9500
C3—C41.386 (3)C24—C251.371 (4)
C3—H30.9500C24—H240.9500
C4—C51.378 (4)C25—C261.387 (4)
C4—H40.9500C25—H250.9500
C5—C61.382 (4)C26—C271.395 (3)
C5—H50.9500C26—H260.9500
C6—C71.401 (3)C27—C281.497 (3)
C6—H60.9500
O1W—Ba1—O7142.99 (4)C7—C2—C1122.61 (16)
O1W—Ba1—O4140.83 (4)C4—C3—C2120.9 (2)
O7—Ba1—O475.63 (5)C4—C3—H3119.6
O1W—Ba1—O7i69.50 (4)C2—C3—H3119.6
O7—Ba1—O7i133.34 (3)C5—C4—C3119.6 (2)
O4—Ba1—O7i86.89 (5)C5—C4—H4120.2
O1W—Ba1—O171.53 (4)C3—C4—H4120.2
O7—Ba1—O1135.71 (4)C4—C5—C6120.4 (2)
O4—Ba1—O172.22 (5)C4—C5—H5119.8
O7i—Ba1—O174.33 (5)C6—C5—H5119.8
O1W—Ba1—O572.36 (4)C5—C6—C7121.0 (2)
O7—Ba1—O573.19 (5)C5—C6—H6119.5
O4—Ba1—O5136.77 (4)C7—C6—H6119.5
O7i—Ba1—O5136.33 (5)C6—C7—C2118.34 (19)
O1—Ba1—O5112.51 (5)C6—C7—C8117.20 (18)
O1W—Ba1—O4i69.96 (4)C2—C7—C8124.39 (16)
O7—Ba1—O4i87.71 (5)C9—C8—C13118.04 (18)
O4—Ba1—O4i134.07 (3)C9—C8—C7119.98 (18)
O7i—Ba1—O4i74.03 (4)C13—C8—C7121.57 (17)
O1—Ba1—O4i136.57 (5)C10—C9—C8121.0 (2)
O5—Ba1—O4i73.58 (5)C10—C9—H9119.5
O1W—Ba1—O2W105.83 (5)C8—C9—H9119.5
O7—Ba1—O2W73.24 (5)C11—C10—C9120.6 (2)
O4—Ba1—O2W74.20 (5)C11—C10—H10119.7
O7i—Ba1—O2W142.59 (5)C9—C10—H10119.7
O1—Ba1—O2W69.28 (5)C10—C11—C12119.7 (2)
O5—Ba1—O2W68.65 (5)C10—C11—H11120.2
O4i—Ba1—O2W141.15 (5)C12—C11—H11120.1
O1W—Ba1—O1Wii124.23 (4)C11—C12—C13120.0 (2)
O7—Ba1—O1Wii66.99 (4)C11—C12—H12120.0
O4—Ba1—O1Wii67.57 (4)C13—C12—H12120.0
O7i—Ba1—O1Wii66.35 (4)C12—C13—C8120.58 (18)
O1—Ba1—O1Wii124.03 (5)C12—C13—C14117.91 (17)
O5—Ba1—O1Wii123.46 (4)C8—C13—C14121.47 (17)
O4i—Ba1—O1Wii66.52 (4)O1—C14—O2123.80 (18)
O2W—Ba1—O1Wii129.93 (5)O1—C14—C13123.01 (18)
O1W—Ba1—Ba1ii164.61 (3)O2—C14—C13113.16 (16)
O7—Ba1—Ba1ii41.86 (3)O7—C15—O8123.42 (17)
O4—Ba1—Ba1ii42.55 (3)O7—C15—C16117.43 (16)
O7i—Ba1—Ba1ii98.01 (4)O8—C15—C16119.15 (15)
O1—Ba1—Ba1ii114.77 (3)C17—C16—C21119.64 (18)
O5—Ba1—Ba1ii115.05 (3)C17—C16—C15117.36 (16)
O4i—Ba1—Ba1ii98.47 (4)C21—C16—C15123.00 (17)
O2W—Ba1—Ba1ii89.55 (5)C18—C17—C16121.0 (2)
O1Wii—Ba1—Ba1ii40.39 (3)C18—C17—H17119.5
O1W—Ba1—Ba1i44.54 (4)C16—C17—H17119.5
O7—Ba1—Ba1i128.04 (4)C19—C18—C17119.5 (2)
O4—Ba1—Ba1i126.97 (4)C19—C18—H18120.2
O7i—Ba1—Ba1i40.99 (3)C17—C18—H18120.2
O1—Ba1—Ba1i95.80 (4)C18—C19—C20120.1 (2)
O5—Ba1—Ba1i95.95 (4)C18—C19—H19120.0
O4i—Ba1—Ba1i41.55 (3)C20—C19—H19120.0
O2W—Ba1—Ba1i150.37 (4)C19—C20—C21121.6 (2)
O1Wii—Ba1—Ba1i79.69 (4)C19—C20—H20119.2
Ba1ii—Ba1—Ba1i120.08 (3)C21—C20—H20119.2
C14—O1—Ba1161.94 (14)C20—C21—C16118.04 (19)
C14—O2—H2110.3 (19)C20—C21—C22117.58 (18)
C1—O4—Ba1122.66 (11)C16—C21—C22124.36 (17)
C1—O4—Ba1ii133.08 (12)C23—C22—C27118.17 (19)
Ba1—O4—Ba1ii95.90 (5)C23—C22—C21118.96 (19)
C28—O5—Ba1158.34 (15)C27—C22—C21122.36 (17)
C28—O6—H6A113.8 (18)C24—C23—C22121.3 (2)
C15—O7—Ba1121.55 (11)C24—C23—H23119.4
C15—O7—Ba1ii133.67 (12)C22—C23—H23119.4
Ba1—O7—Ba1ii97.14 (5)C25—C24—C23120.1 (2)
Ba1—O1W—Ba1i95.07 (4)C25—C24—H24120.0
Ba1—O1W—H1A122.3 (19)C23—C24—H24120.0
Ba1i—O1W—H1A101.3 (18)C24—C25—C26120.1 (2)
Ba1—O1W—H1B124.0 (19)C24—C25—H25119.9
Ba1i—O1W—H1B99.4 (18)C26—C25—H25119.9
H1A—O1W—H1B107 (3)C25—C26—C27120.0 (2)
Ba1—O2W—H2A113.2 (19)C25—C26—H26120.0
Ba1—O2W—H2B110.9 (19)C27—C26—H26120.0
H2A—O2W—H2B106 (3)C26—C27—C22120.23 (19)
O4—C1—O3123.33 (17)C26—C27—C28118.23 (19)
O4—C1—C2117.69 (16)C22—C27—C28121.52 (17)
O3—C1—C2118.98 (16)O5—C28—O6123.39 (19)
C3—C2—C7119.79 (18)O5—C28—C27123.56 (19)
C3—C2—C1117.60 (17)O6—C28—C27113.03 (16)
O1W—Ba1—O1—C1477.3 (4)O3—C1—C2—C739.5 (3)
O7—Ba1—O1—C1472.4 (4)C7—C2—C3—C42.1 (3)
O4—Ba1—O1—C14117.8 (4)C1—C2—C3—C4176.8 (2)
O7i—Ba1—O1—C14150.5 (4)C2—C3—C4—C51.1 (4)
O5—Ba1—O1—C1416.3 (4)C3—C4—C5—C60.6 (4)
O4i—Ba1—O1—C14105.9 (4)C4—C5—C6—C71.3 (4)
O2W—Ba1—O1—C1438.4 (4)C5—C6—C7—C20.3 (3)
O1Wii—Ba1—O1—C14163.3 (4)C5—C6—C7—C8177.7 (2)
Ba1ii—Ba1—O1—C14117.8 (4)C3—C2—C7—C61.4 (3)
Ba1i—Ba1—O1—C14115.2 (4)C1—C2—C7—C6177.52 (19)
O1W—Ba1—O4—C151.19 (16)C3—C2—C7—C8175.73 (19)
O7—Ba1—O4—C1120.93 (14)C1—C2—C7—C85.3 (3)
O7i—Ba1—O4—C1102.72 (14)C6—C7—C8—C979.4 (2)
O1—Ba1—O4—C128.19 (13)C2—C7—C8—C9103.4 (2)
O5—Ba1—O4—C176.04 (15)C6—C7—C8—C1393.1 (2)
O4i—Ba1—O4—C1166.86 (13)C2—C7—C8—C1384.0 (2)
O2W—Ba1—O4—C144.64 (14)C13—C8—C9—C101.6 (3)
O1Wii—Ba1—O4—C1168.38 (15)C7—C8—C9—C10174.46 (19)
Ba1ii—Ba1—O4—C1151.87 (16)C8—C9—C10—C111.9 (3)
Ba1i—Ba1—O4—C1111.96 (13)C9—C10—C11—C120.1 (4)
O1W—Ba1—O4—Ba1ii156.94 (5)C10—C11—C12—C132.4 (3)
O7—Ba1—O4—Ba1ii30.94 (4)C11—C12—C13—C82.7 (3)
O7i—Ba1—O4—Ba1ii105.41 (5)C11—C12—C13—C14175.06 (19)
O1—Ba1—O4—Ba1ii179.95 (5)C9—C8—C13—C120.6 (3)
O5—Ba1—O4—Ba1ii75.83 (7)C7—C8—C13—C12172.05 (18)
O4i—Ba1—O4—Ba1ii41.27 (6)C9—C8—C13—C14177.01 (17)
O2W—Ba1—O4—Ba1ii107.23 (6)C7—C8—C13—C1410.3 (3)
O1Wii—Ba1—O4—Ba1ii39.75 (4)Ba1—O1—C14—O2101.2 (4)
Ba1i—Ba1—O4—Ba1ii96.18 (4)Ba1—O1—C14—C1376.7 (5)
O1W—Ba1—O5—C2876.5 (4)C12—C13—C14—O1119.4 (2)
O7—Ba1—O5—C28117.2 (4)C8—C13—C14—O158.4 (3)
O4—Ba1—O5—C2871.6 (4)C12—C13—C14—O258.8 (2)
O7i—Ba1—O5—C28106.6 (4)C8—C13—C14—O2123.5 (2)
O1—Ba1—O5—C2816.0 (4)Ba1—O7—C15—O885.0 (2)
O4i—Ba1—O5—C28150.2 (4)Ba1ii—O7—C15—O857.0 (2)
O2W—Ba1—O5—C2839.0 (4)Ba1—O7—C15—C1695.12 (17)
O1Wii—Ba1—O5—C28163.6 (4)Ba1ii—O7—C15—C16122.89 (15)
Ba1ii—Ba1—O5—C28118.0 (4)O7—C15—C16—C1739.2 (2)
Ba1i—Ba1—O5—C28114.8 (4)O8—C15—C16—C17140.73 (19)
O1W—Ba1—O7—C1549.80 (16)O7—C15—C16—C21141.45 (18)
O4—Ba1—O7—C15121.94 (14)O8—C15—C16—C2138.6 (3)
O7i—Ba1—O7—C15166.66 (13)C21—C16—C17—C182.9 (3)
O1—Ba1—O7—C1577.52 (15)C15—C16—C17—C18176.5 (2)
O5—Ba1—O7—C1527.73 (13)C16—C17—C18—C191.2 (4)
O4i—Ba1—O7—C15101.27 (14)C17—C18—C19—C201.1 (4)
O2W—Ba1—O7—C1544.43 (14)C18—C19—C20—C211.8 (4)
O1Wii—Ba1—O7—C15166.67 (14)C19—C20—C21—C160.2 (4)
Ba1ii—Ba1—O7—C15153.33 (16)C19—C20—C21—C22178.5 (2)
Ba1i—Ba1—O7—C15112.06 (13)C17—C16—C21—C202.1 (3)
O1W—Ba1—O7—Ba1ii156.87 (5)C15—C16—C21—C20177.21 (19)
O4—Ba1—O7—Ba1ii31.39 (4)C17—C16—C21—C22176.12 (19)
O7i—Ba1—O7—Ba1ii40.01 (6)C15—C16—C21—C224.6 (3)
O1—Ba1—O7—Ba1ii75.82 (7)C20—C21—C22—C2378.2 (3)
O5—Ba1—O7—Ba1ii178.93 (5)C16—C21—C22—C23103.5 (2)
O4i—Ba1—O7—Ba1ii105.40 (5)C20—C21—C22—C2793.4 (2)
O2W—Ba1—O7—Ba1ii108.90 (6)C16—C21—C22—C2784.8 (3)
O1Wii—Ba1—O7—Ba1ii40.00 (4)C27—C22—C23—C241.9 (3)
Ba1i—Ba1—O7—Ba1ii94.61 (4)C21—C22—C23—C24173.9 (2)
O7—Ba1—O1W—Ba1i96.41 (7)C22—C23—C24—C252.3 (4)
O4—Ba1—O1W—Ba1i96.33 (6)C23—C24—C25—C260.2 (4)
O7i—Ba1—O1W—Ba1i39.75 (4)C24—C25—C26—C273.0 (4)
O1—Ba1—O1W—Ba1i119.43 (5)C25—C26—C27—C223.3 (3)
O5—Ba1—O1W—Ba1i118.58 (5)C25—C26—C27—C28175.0 (2)
O4i—Ba1—O1W—Ba1i40.10 (4)C23—C22—C27—C260.9 (3)
O2W—Ba1—O1W—Ba1i179.41 (5)C21—C22—C27—C26170.81 (18)
O1Wii—Ba1—O1W—Ba1i0.330 (16)C23—C22—C27—C28177.38 (18)
Ba1ii—Ba1—O1W—Ba1i2.65 (13)C21—C22—C27—C2810.9 (3)
Ba1—O4—C1—O384.8 (2)Ba1—O5—C28—O697.7 (4)
Ba1ii—O4—C1—O355.2 (2)Ba1—O5—C28—C2780.9 (4)
Ba1—O4—C1—C295.76 (17)C26—C27—C28—O5125.9 (2)
Ba1ii—O4—C1—C2124.20 (15)C22—C27—C28—O552.4 (3)
O4—C1—C2—C340.0 (2)C26—C27—C28—O652.8 (3)
O3—C1—C2—C3139.4 (2)C22—C27—C28—O6128.9 (2)
O4—C1—C2—C7141.03 (18)
Symmetry codes: (i) x+1/2, y1/2, z+1/2; (ii) x+1/2, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1A···O8iii0.85 (2)1.91 (2)2.755 (3)173 (3)
O1W—H1B···O3iii0.85 (2)1.91 (3)2.753 (3)175 (2)
O2—H2···O3iii0.84 (2)1.84 (2)2.670 (3)170 (2)
O6—H6A···O8iii0.85 (2)1.84 (2)2.677 (3)169 (2)
Symmetry code: (iii) x, y1, z.

Experimental details

Crystal data
Chemical formula[Ba(C14H9O4)2(H2O)2]
Mr655.80
Crystal system, space groupMonoclinic, P21/n
Temperature (K)294
a, b, c (Å)16.418 (5), 7.171 (4), 22.428 (5)
β (°) 102.543 (5)
V3)2577.5 (17)
Z4
Radiation typeMo Kα
µ (mm1)1.60
Crystal size (mm)0.40 × 0.10 × 0.05
Data collection
DiffractometerNonius KappaCCD area-detector
diffractometer
Absorption correctionEmpirical (using intensity measurements)
(DENZO–SMN; Otwinowski & Minor, 1997)
Tmin, Tmax0.619, 0.917
No. of measured, independent and
observed [I > 2σ(I)] reflections
11569, 11547, 9372
Rint0.045
(sin θ/λ)max1)0.819
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.069, 1.04
No. of reflections11547
No. of parameters370
No. of restraints6
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.80, 0.90

Computer programs: COLLECT (Nonius, 1997), DENZO–SMN (Otwinowski & Minor, 1997), DENZO–SMN, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEP-3 (Farrugia, 1997), SHELXL97.

Selected bond lengths (Å) top
Ba1—O1W2.6922 (19)Ba1—O52.8113 (17)
Ba1—O72.7360 (16)Ba1—O4i2.8136 (14)
Ba1—O42.7598 (17)Ba1—O2W2.8373 (18)
Ba1—O7i2.7836 (14)Ba1—O1Wii2.9144 (15)
Ba1—O12.8091 (15)Ba1—Ba1ii4.1386 (17)
Symmetry codes: (i) x+1/2, y1/2, z+1/2; (ii) x+1/2, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1A···O8iii0.85 (2)1.91 (2)2.755 (3)173 (3)
O1W—H1B···O3iii0.85 (2)1.91 (3)2.753 (3)175 (2)
O2—H2···O3iii0.84 (2)1.84 (2)2.670 (3)170 (2)
O6—H6A···O8iii0.85 (2)1.84 (2)2.677 (3)169 (2)
Symmetry code: (iii) x, y1, z.
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds