Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
catena-Poly[[[tetra­aqua­zinc(II)]-μ-4,4′-bipyridine-κ2N:N′] [[μ-thio­sulfato-κ2O:S-bis­[(thio­sulfato-κS)zinc(II)]]-di-μ-4,4′-pyridine-κ4N:N′] dihydrate], {[Zn(C10H8N2)(H2O)4][Zn2(S2O3)3(C10H8N2)2]·2H2O}n, is a polymeric zinc complex built up from thio­sulfate-containing anionic chains, where the Zn atom is tetra­hedrally coordinated, and aqua-containing cationic chains incorporating octa­hedrally coordinated Zn. In each type of chain, the 4,4′-bipyridine units act as spacers, and the chains run along three non-inter­secting almost orthogonal directions in space. The profusion of hydrogen-bond donors (all the H atoms of the water mol­ecules) and acceptors (the thio­sulfate O and S atoms) generates a very complex hydrogen-bonding scheme.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270107006166/gd3072sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270107006166/gd3072Isup2.hkl
Contains datablock I

CCDC reference: 641790

Comment top

Sulfur oxoanions (such as sulfate, sulfite and thiosulfate) are usually good ligands towards transition metal cations, and when used as the unique connecting agent their multidentate capacity makes them prone to generating tight and compact three-dimensional structures (e.g. Bear & Mumme, 1970; Bugli & Carré, 1980; Magnusson & Johansson,1981). In order to `open' the framework, it is possible to include bulkier (usually organic) ligands in the synthesis, whose connectivity properties might modify the final structural outcome. Thus, `chelating' N-heterocyclic bases, such as 2,2'-bipyridine and 1,10-phenanthroline, tend to act as `terminal' points in the connectivity chains, with a splitting action leading to monomers/dimers, chains or sheets, often tightly interdigitated and held together through aromatic ππ interactions (Díaz de Vivar et al., 2004, 2005, 2006).

On the other hand, when these chelating ligands are replaced by their `bridging' counterparts, such as 4,4'-bipyridine, more open frameworks are often obtained, which are becoming the object of active research owing to the interesting catalytic properties that some of these compounds display (Wu et al., 2002, and references therein). Here we report an interesting structure, ([Zn(C10H8N2)(H2O)4][Zn(C10H8N2)]2(S2O3)3]·2(H2O), (I), which contains an open framework where 4,4'-bipyridine acts as a spacer. To our knowledge, this is the first ZnII complex containing thiosulfate and 4,4'-bipyridine (4,4'-bipy).

In this structure two different one-dimensional arrays coexist, viz. a cationic chain consisting of one heterocyclic base unit and four water molecules bound to hexacoordinated Zn atom (Zn3), and a second array, describable as an anionic double chain providing for charge balance and built up around the two remaining four-coordinated Zn centres (Zn1 and Zn2), bound to two heterocyclic base units and to three thiosulfate anions (Fig. 1).

The environment around the Zn3 cation is a nearly perfect octahedron, with the equatorial plane formed by four evenly distributed water molecules [O1W–O4W; the angular span around Zn3 is 86.32 (5)–95.53 (6)°; the mean deviation from the least-squares equatorial plane is 0.01 (1) Å]. Two N atoms [N5ii and N6; symmetry code: (ii) x - 1/2, y + 1/2, z] from two symmetry-related 4,4'-bipy units occupy the axial positions [N5ii—Zn3—N6 = 176.36 (6)°; the largest deviation from the mean-plane normal is 3.5 (1)° for the Zn3—N5ii vector] and serve as the connector for the cationic one-dimensional structure which builds up along [110] and, due to the c-glide, also along [110], c/2 apart from the former.

On the other hand, the coordination polyhedra around Zn1 and Zn2 are similar to each other in with regard to coordination number (n = 4), but diverse both in their components and in their distortions with respect to an expected ideal tetrahedral geometry. Atom Zn1 coordinates to two donor N atoms [N1 and N2i; (i) x, -y, z + 1/2] from two symmetry-related 4,4'-bipy groups, and two S atoms (S2 and S4) from two different thiosulfate anions, determining a linear polymer where the organic ligand acts as a spacer between two symmetry-related metal ions. Zn2 is also four-coordinated and bound to two symmetry-related, independent 4,4'-bipy groups via two N atoms (N3 and N4i) and to two thiosulfate anions, this time through one O (O6) and one S (S6) atoms. When connected through the 4,4'-bipy molecule, these groups also define linear chains, parallel to the Zn1 couterpart. Each one of the Zn1 and Zn2 centers are in turn connected by one of the thiosulfate anions (acting in a bridging mode), thus forming a two-dimensional net through the Zn1—S4—S3—O6—Zn2 bridge.

The result is that the anionic part of the structure can be seen as ribbons resembling a twisted ladder (Fig 1), with the `uprights' defined by pairs of parallel 4,4'-bipy units and the `steps' by extended Zn2(S2O3)3 groups. At each `step' the expected straight direction of the ladder `breaks' in a 120° zigzag fashion (see insert in Fig. 1). The strips evolve parallel to each other along the c axis.

The thiosulfate anions display two different coordination modes, i.e. monodentate (µ-S) and bidentate (µ2– S,O), both of them quite frequent in the coordination behaviour of the anion. Both monodentate units present some kind of disorder (see Experimental).

As already stated, the three independent 4,4'-bipy units in the structure act as spacers, and all of the individual bipy groups lie out of the common mean plane [the dihedral angles are 39.3 (1), 30.8 (1) and 32.1 (1)° for the 4,4'-bipy units in the Zn1, Zn2 and Zn3 chains, respectively].

Fig. 2 shows how the three individual one-dimensional structures pack, the straight cationic chains running parallel to the [110] and [110] diagonals (each family c/2 away from one another; Fig. 2a), and the zigzag anionic ribbons running along [001] (Fig. 2b). The three types of chains evolve in space in much the way as the three independent sets of screw axes do in space group P212121, confirming a set of three non-intersecting one-dimensional structures. There is, however, a strong interaction between different chains, due to the very complex hydrogen-bonding scheme (Table 2), having the water molecules of the cationic chain as the donors and the thiosulfate units of the anionic chains as the acceptors.

Related literature top

For related literature, see: Bear & Mumme (1970); Bugli & Carré (1980); Díaz de Vivar, Baggio & Baggio (2004); Díaz de Vivar, Baggio, Garland & Baggio (2006); Díaz de Vivar, Baggio, Muñoz & Baggio (2005); Flack (1983); Magnusson & Johansson (1981); Wu et al. (2002).

Experimental top

4,4'-Bipyridine was dissolved in methanol and left to diffuse slowly at room temperature over an aqueous solution of Na2S2O3 and Zn acetate in a 1:1:1 molar ratio. Colorless crystalline aggregates of (I) appeared after ten days, from which crystals suitable for X-ray analysis could be separated.

Refinement top

The H atoms attached to C atoms were placed at calculated positions with C—H distances of 0.93 Å and allowed to ride. Those bound to O were located in difference maps and then refined with the sole restraint of a common, refinable O—H distance which converged to O—O = 0.78 (2) Å. For all H atoms, Uiso(H) = 1.2Ueq(carrier). Both monocoordinated thiosulfates (S1/S2/O1–O3 and S5/S6/O7–O9) presented some kind of disorder in the non-coordinated atoms and were refined with split models. The occupation factors for the major/minor components in each one refined to 0.727 (2)/0.273 (2) and 0.746 (8)/0.254 (8), respectively. The correct orientation of the structure with respect to the polar axis direction was determined by means of the Flack (1983) parameter.

Computing details top

Data collection: SMART-NT (Bruker, 2001); cell refinement: SAINT-NT (Bruker, 2001 ); data reduction: SAINT-NT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL-NT (Bruker, 2001); software used to prepare material for publication: SHELXTL-NT and PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I). The independent (symmetry-related) part is drawn in full (empty) 60% displacement ellipsoids. [Symmetry codes as in Table 1.] Insert: A lateral view of the anionic chain showing its zigzag character. See text for details.
[Figure 2] Fig. 2. Partial (and superimposable) projections of the structure along [110]. (a) The straight cationic chains, running along [110] (top to bottom in the figure) and [110] (coming out of the figure); the anionic chains have been omitted for clarity. (b) The zigzag anionic chains, running parallel to [001]. The cationic chains have been omitted for clarity.
catena-Poly[[[tetraaquazinc(II)]-µ-4,4'-bipyridine-κ2N:N'] [[µ-thiosulfato-bis[(thiosulfato-κS)zinc(II)]]-δi-µ-4,4'-bipyridine- κ4N:N'] dihydrate], {[Zn(C10H8N2)(H2O)4][Zn2(S2O3)3(C10H8N2)2]·2H2O top
Crystal data top
[Zn(C10H8N2)(H2O)4][Zn2(S2O3)3(C10H8N2)2]·2H2OF(000) = 2256
Mr = 1109.12Dx = 1.764 Mg m3
Monoclinic, CcMo Kα radiation, λ = 0.71073 Å
Hall symbol: C -2ycCell parameters from 8976 reflections
a = 16.6521 (8) Åθ = 2.2–26.8°
b = 15.5103 (7) ŵ = 2.08 mm1
c = 17.8922 (8) ÅT = 292 K
β = 115.340 (2)°Needles, colourless
V = 4176.4 (3) Å30.22 × 0.10 × 0.08 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
11611 independent reflections
Radiation source: fine-focus sealed tube11255 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.019
ϕ and ω scansθmax = 30.5°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2001)
h = 2323
Tmin = 0.657, Tmax = 0.851k = 2121
29188 measured reflectionsl = 2425
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.021H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.051 w = 1/[σ2(Fo2) + (0.0321P)2 + 3.2788P]
where P = (Fo2 + 2Fc2)/3
S = 0.90(Δ/σ)max = 0.001
11611 reflectionsΔρmax = 0.57 e Å3
601 parametersΔρmin = 0.41 e Å3
33 restraintsAbsolute structure: Flack (1983), 5223 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.006 (4)
Crystal data top
[Zn(C10H8N2)(H2O)4][Zn2(S2O3)3(C10H8N2)2]·2H2OV = 4176.4 (3) Å3
Mr = 1109.12Z = 4
Monoclinic, CcMo Kα radiation
a = 16.6521 (8) ŵ = 2.08 mm1
b = 15.5103 (7) ÅT = 292 K
c = 17.8922 (8) Å0.22 × 0.10 × 0.08 mm
β = 115.340 (2)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
11611 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2001)
11255 reflections with I > 2σ(I)
Tmin = 0.657, Tmax = 0.851Rint = 0.019
29188 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.021H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.051Δρmax = 0.57 e Å3
S = 0.90Δρmin = 0.41 e Å3
11611 reflectionsAbsolute structure: Flack (1983), 5223 Friedel pairs
601 parametersAbsolute structure parameter: 0.006 (4)
33 restraints
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Zn10.506296 (16)0.214055 (12)0.764435 (14)0.01624 (4)
Zn20.815865 (16)0.214606 (12)0.756011 (14)0.01682 (4)
Zn30.187644 (16)0.943038 (12)0.494361 (15)0.01606 (4)
S10.28056 (3)0.20858 (3)0.63651 (3)0.02315 (9)
S20.37876 (3)0.29449 (3)0.70333 (3)0.02001 (8)
O10.19702 (13)0.25547 (14)0.62438 (14)0.0347 (5)0.727 (2)
O20.29080 (13)0.13075 (11)0.68136 (11)0.0240 (4)0.727 (2)
O30.28276 (18)0.19666 (14)0.55588 (12)0.0360 (7)0.727 (2)
O1'0.2193 (2)0.2078 (3)0.6703 (3)0.0347 (5)0.273 (2)
O2'0.3345 (3)0.11557 (13)0.6663 (3)0.0240 (4)0.273 (2)
O3'0.2565 (4)0.2141 (3)0.55357 (16)0.0360 (7)0.273 (2)
S30.64585 (3)0.32708 (3)0.71417 (3)0.01710 (7)
S40.62986 (3)0.30474 (3)0.81847 (3)0.02232 (9)
O40.56063 (9)0.34455 (9)0.64475 (9)0.0239 (3)
O50.70769 (9)0.39970 (8)0.73298 (9)0.0241 (3)
O60.68629 (9)0.24840 (8)0.69697 (8)0.0203 (2)
S60.89218 (3)0.34017 (3)0.79887 (3)0.02089 (8)
S51.01481 (7)0.28980 (14)0.82700 (10)0.0213 (2)0.746 (8)
O71.0497 (2)0.3359 (3)0.7772 (2)0.0586 (11)0.746 (8)
O80.9964 (2)0.1984 (2)0.8026 (2)0.0418 (9)0.746 (8)
O91.0722 (2)0.2968 (2)0.91566 (15)0.0237 (6)0.746 (8)
S5'1.00633 (19)0.2716 (3)0.8283 (3)0.0213 (2)0.254 (8)
O7'1.0486 (6)0.2916 (8)0.7747 (6)0.0586 (11)0.254 (8)
O8'0.9861 (6)0.1789 (3)0.8276 (7)0.0418 (9)0.254 (8)
O9'1.0582 (8)0.3015 (6)0.9132 (4)0.0237 (6)0.254 (8)
O1W0.25487 (10)1.04994 (8)0.46700 (9)0.0228 (3)
H1WA0.2312 (16)1.0701 (15)0.4218 (11)0.027*
H1WB0.2647 (17)1.0912 (14)0.4959 (13)0.027*
O2W0.11426 (9)0.93124 (8)0.36631 (8)0.0184 (2)
H2WA0.1382 (15)0.9329 (15)0.3366 (14)0.022*
H2WB0.0782 (14)0.8959 (14)0.3546 (15)0.022*
O3W0.11534 (11)0.84142 (9)0.51492 (9)0.0281 (3)
H3WA0.0937 (18)0.8423 (17)0.5446 (15)0.034*
H3WB0.0985 (19)0.8008 (14)0.4853 (15)0.034*
O4W0.26703 (9)0.96777 (9)0.61957 (8)0.0217 (3)
H4WA0.2812 (17)1.0144 (11)0.6368 (15)0.026*
H4WB0.2610 (17)0.9406 (14)0.6552 (14)0.026*
O5W0.21065 (14)0.06823 (11)0.78084 (12)0.0408 (4)
H5WA0.226 (2)0.0982 (16)0.7528 (18)0.049*
H5WB0.209 (2)0.0201 (12)0.7633 (19)0.049*
O6W0.20182 (11)0.35697 (11)0.75755 (10)0.0342 (3)
H6WA0.2026 (19)0.3265 (18)0.7226 (15)0.041*
H6WB0.1615 (17)0.3432 (18)0.7671 (19)0.041*
N10.51344 (11)0.12740 (10)0.68164 (9)0.0198 (3)
N20.51540 (11)0.14315 (10)0.36497 (9)0.0197 (3)
C10.54338 (15)0.04666 (13)0.69979 (12)0.0281 (4)
H10.56200.02730.75380.034*
C20.54790 (15)0.00944 (13)0.64156 (12)0.0302 (4)
H20.57040.06480.65670.036*
C30.51852 (13)0.01799 (12)0.56033 (11)0.0208 (3)
C40.51798 (13)0.04008 (12)0.49416 (11)0.0202 (3)
C50.58620 (13)0.09795 (14)0.50645 (11)0.0251 (4)
H50.63380.10310.55830.030*
C60.58287 (13)0.14819 (13)0.44075 (11)0.0229 (4)
H60.62900.18660.44960.027*
C70.44739 (14)0.09023 (14)0.35419 (12)0.0282 (4)
H70.39920.08860.30250.034*
C80.44545 (14)0.03790 (13)0.41635 (12)0.0264 (4)
H80.39710.00220.40650.032*
C90.48578 (14)0.10159 (12)0.54081 (11)0.0238 (4)
H90.46530.12190.48690.029*
C100.48416 (15)0.15412 (12)0.60273 (12)0.0247 (4)
H100.46200.20990.58930.030*
N30.81107 (10)0.13083 (9)0.66614 (9)0.0173 (3)
N40.81513 (11)0.13647 (9)0.34783 (9)0.0197 (3)
C110.87227 (12)0.06798 (11)0.68251 (11)0.0189 (3)
H110.91600.06200.73630.023*
C120.87256 (12)0.01191 (11)0.62214 (10)0.0181 (3)
H120.91540.03110.63560.022*
C130.80766 (12)0.02078 (11)0.54101 (11)0.0169 (3)
C140.80893 (12)0.03473 (11)0.47386 (10)0.0173 (3)
C150.84242 (14)0.11850 (12)0.48972 (11)0.0236 (4)
H150.86320.14160.54270.028*
C160.84429 (15)0.16675 (12)0.42538 (12)0.0252 (4)
H160.86670.22260.43630.030*
C170.78189 (14)0.05641 (12)0.33254 (11)0.0231 (4)
H170.76110.03510.27890.028*
C180.77718 (14)0.00409 (12)0.39310 (11)0.0233 (4)
H180.75310.05100.38000.028*
C190.74361 (12)0.08519 (12)0.52497 (11)0.0199 (3)
H190.69860.09220.47190.024*
C200.74755 (12)0.13852 (12)0.58861 (11)0.0202 (3)
H200.70460.18120.57720.024*
N50.58913 (10)0.53134 (10)0.49699 (9)0.0183 (3)
N60.28520 (10)0.85075 (9)0.49811 (9)0.0179 (3)
C210.53659 (12)0.57403 (12)0.42838 (11)0.0204 (3)
H210.54000.56070.37920.024*
C220.47732 (12)0.63721 (11)0.42735 (11)0.0203 (3)
H220.44160.66500.37820.024*
C230.47169 (11)0.65888 (11)0.50055 (11)0.0164 (3)
C240.40875 (11)0.72623 (10)0.50079 (10)0.0163 (3)
C250.32883 (12)0.73809 (11)0.43085 (10)0.0185 (3)
H250.31560.70520.38360.022*
C260.26955 (12)0.79947 (11)0.43279 (11)0.0190 (3)
H260.21580.80560.38630.023*
C270.36312 (13)0.83934 (12)0.56534 (11)0.0223 (3)
H270.37580.87450.61110.027*
C280.42491 (12)0.77790 (12)0.56929 (11)0.0208 (3)
H280.47690.77110.61740.025*
C290.52583 (12)0.61430 (12)0.57197 (11)0.0186 (3)
H290.52450.62710.62220.022*
C300.58168 (12)0.55069 (11)0.56711 (11)0.0190 (3)
H300.61580.51970.61470.023*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.02311 (10)0.01515 (9)0.01188 (8)0.00213 (7)0.00885 (7)0.00093 (7)
Zn20.02526 (10)0.01402 (8)0.01251 (8)0.00142 (7)0.00935 (7)0.00042 (7)
Zn30.01805 (8)0.01595 (8)0.01451 (8)0.00518 (7)0.00727 (7)0.00002 (7)
S10.0254 (2)0.0270 (2)0.01743 (19)0.00822 (17)0.00956 (16)0.00593 (16)
S20.0235 (2)0.01519 (17)0.02064 (19)0.00259 (15)0.00876 (16)0.00050 (15)
O10.0245 (9)0.0313 (10)0.0398 (11)0.0014 (8)0.0056 (8)0.0091 (8)
O20.0287 (10)0.0167 (7)0.0232 (8)0.0039 (7)0.0078 (7)0.0024 (6)
O30.0672 (17)0.0219 (10)0.0195 (7)0.0096 (11)0.0192 (9)0.0070 (7)
O1'0.0245 (9)0.0313 (10)0.0398 (11)0.0014 (8)0.0056 (8)0.0091 (8)
O2'0.0287 (10)0.0167 (7)0.0232 (8)0.0039 (7)0.0078 (7)0.0024 (6)
O3'0.0672 (17)0.0219 (10)0.0195 (7)0.0096 (11)0.0192 (9)0.0070 (7)
S30.01949 (18)0.01656 (17)0.01780 (18)0.00122 (14)0.01040 (15)0.00127 (14)
S40.0273 (2)0.0270 (2)0.01579 (19)0.00875 (17)0.01217 (17)0.00633 (16)
O40.0224 (6)0.0299 (7)0.0219 (6)0.0040 (5)0.0119 (5)0.0049 (5)
O50.0236 (6)0.0184 (6)0.0340 (7)0.0002 (5)0.0160 (6)0.0030 (5)
O60.0244 (6)0.0191 (6)0.0192 (6)0.0026 (5)0.0111 (5)0.0014 (5)
S60.02029 (19)0.01776 (18)0.02089 (19)0.00043 (15)0.00524 (15)0.00147 (15)
S50.0179 (3)0.0283 (6)0.0175 (2)0.0005 (3)0.0073 (2)0.0016 (4)
O70.0411 (12)0.093 (3)0.0547 (14)0.0212 (18)0.0334 (11)0.047 (2)
O80.0354 (12)0.0327 (13)0.0324 (17)0.0155 (10)0.0091 (11)0.0138 (12)
O90.0162 (13)0.0254 (7)0.0191 (6)0.0015 (8)0.0023 (6)0.0003 (5)
S5'0.0179 (3)0.0283 (6)0.0175 (2)0.0005 (3)0.0073 (2)0.0016 (4)
O7'0.0411 (12)0.093 (3)0.0547 (14)0.0212 (18)0.0334 (11)0.047 (2)
O8'0.0354 (12)0.0327 (13)0.0324 (17)0.0155 (10)0.0091 (11)0.0138 (12)
O9'0.0162 (13)0.0254 (7)0.0191 (6)0.0015 (8)0.0023 (6)0.0003 (5)
O1W0.0275 (7)0.0187 (6)0.0195 (6)0.0017 (5)0.0075 (5)0.0010 (5)
O2W0.0198 (6)0.0188 (6)0.0177 (6)0.0013 (5)0.0092 (5)0.0016 (4)
O3W0.0436 (9)0.0242 (7)0.0249 (7)0.0065 (6)0.0227 (6)0.0048 (5)
O4W0.0275 (7)0.0206 (6)0.0166 (6)0.0071 (5)0.0092 (5)0.0010 (5)
O5W0.0641 (12)0.0336 (8)0.0453 (10)0.0111 (8)0.0429 (10)0.0116 (7)
O6W0.0289 (8)0.0382 (9)0.0313 (8)0.0063 (7)0.0089 (6)0.0060 (7)
N10.0271 (8)0.0178 (7)0.0134 (6)0.0007 (6)0.0078 (6)0.0028 (5)
N20.0261 (8)0.0169 (7)0.0165 (7)0.0015 (6)0.0095 (6)0.0002 (5)
C10.0431 (11)0.0235 (9)0.0129 (8)0.0101 (8)0.0073 (8)0.0004 (7)
C20.0445 (12)0.0245 (9)0.0157 (8)0.0141 (8)0.0072 (8)0.0009 (7)
C30.0256 (9)0.0201 (8)0.0150 (8)0.0027 (7)0.0072 (7)0.0029 (6)
C40.0288 (9)0.0167 (8)0.0146 (7)0.0004 (7)0.0088 (7)0.0025 (6)
C50.0248 (9)0.0318 (10)0.0130 (7)0.0050 (7)0.0026 (7)0.0047 (7)
C60.0235 (9)0.0259 (9)0.0174 (8)0.0040 (7)0.0069 (7)0.0048 (6)
C70.0303 (10)0.0322 (10)0.0152 (8)0.0108 (8)0.0030 (7)0.0044 (7)
C80.0287 (9)0.0282 (9)0.0180 (8)0.0089 (8)0.0058 (7)0.0044 (7)
C90.0367 (10)0.0215 (8)0.0152 (7)0.0019 (7)0.0130 (7)0.0012 (6)
C100.0414 (11)0.0164 (8)0.0171 (8)0.0009 (7)0.0132 (8)0.0005 (6)
N30.0239 (7)0.0164 (6)0.0128 (6)0.0008 (5)0.0089 (6)0.0010 (5)
N40.0280 (8)0.0151 (6)0.0166 (7)0.0001 (6)0.0100 (6)0.0005 (5)
C110.0235 (8)0.0174 (7)0.0134 (7)0.0023 (6)0.0056 (6)0.0001 (6)
C120.0230 (8)0.0160 (7)0.0149 (7)0.0019 (6)0.0077 (6)0.0001 (6)
C130.0230 (8)0.0132 (7)0.0149 (7)0.0011 (6)0.0086 (6)0.0005 (6)
C140.0213 (8)0.0163 (7)0.0152 (7)0.0006 (6)0.0086 (6)0.0020 (6)
C150.0371 (10)0.0182 (8)0.0148 (8)0.0048 (7)0.0105 (7)0.0010 (6)
C160.0417 (11)0.0164 (8)0.0176 (8)0.0051 (7)0.0129 (8)0.0001 (6)
C170.0352 (10)0.0210 (8)0.0123 (7)0.0044 (7)0.0095 (7)0.0018 (6)
C180.0352 (10)0.0172 (8)0.0172 (8)0.0074 (7)0.0111 (7)0.0022 (6)
C190.0230 (8)0.0205 (8)0.0140 (7)0.0035 (6)0.0059 (6)0.0001 (6)
C200.0234 (8)0.0190 (8)0.0182 (8)0.0054 (6)0.0088 (7)0.0014 (6)
N50.0198 (7)0.0185 (7)0.0181 (7)0.0031 (5)0.0097 (6)0.0014 (5)
N60.0213 (7)0.0169 (6)0.0166 (6)0.0038 (5)0.0092 (6)0.0004 (5)
C210.0250 (8)0.0232 (8)0.0170 (7)0.0066 (7)0.0130 (7)0.0030 (6)
C220.0252 (8)0.0208 (8)0.0175 (8)0.0086 (7)0.0116 (7)0.0058 (6)
C230.0163 (7)0.0161 (7)0.0176 (7)0.0031 (6)0.0081 (6)0.0002 (6)
C240.0173 (7)0.0168 (7)0.0169 (8)0.0040 (6)0.0092 (6)0.0017 (6)
C250.0212 (8)0.0174 (7)0.0162 (7)0.0041 (6)0.0074 (6)0.0008 (6)
C260.0192 (8)0.0187 (7)0.0173 (7)0.0047 (6)0.0061 (6)0.0005 (6)
C270.0235 (9)0.0249 (9)0.0175 (8)0.0057 (7)0.0078 (7)0.0047 (6)
C280.0182 (8)0.0245 (8)0.0174 (8)0.0060 (6)0.0055 (6)0.0016 (6)
C290.0189 (7)0.0226 (8)0.0156 (7)0.0043 (6)0.0085 (6)0.0008 (6)
C300.0202 (8)0.0208 (8)0.0171 (7)0.0062 (6)0.0092 (6)0.0032 (6)
Geometric parameters (Å, º) top
Zn1—N12.0411 (15)C4—C51.390 (3)
Zn1—N2i2.0577 (15)C4—C81.400 (3)
Zn1—S22.2967 (5)C5—C61.391 (3)
Zn1—S42.3332 (5)C5—H50.9300
Zn2—O62.0237 (13)C6—H60.9300
Zn2—N32.0422 (14)C7—C81.388 (3)
Zn2—N4i2.0457 (15)C7—H70.9300
Zn2—S62.2719 (5)C8—H80.9300
Zn3—O4W2.0924 (13)C9—C101.385 (3)
Zn3—O2W2.0927 (13)C9—H90.9300
Zn3—O3W2.1090 (15)C10—H100.9300
Zn3—N62.1446 (15)N3—C201.342 (2)
Zn3—N5ii2.1529 (15)N3—C111.349 (2)
Zn3—O1W2.1705 (14)N4—C171.339 (2)
S1—O3'1.364 (3)N4—C161.343 (2)
S1—O1'1.392 (4)N4—Zn2iii2.0457 (15)
S1—O21.4189 (17)C11—C121.388 (2)
S1—O31.4703 (19)C11—H110.9300
S1—O11.501 (2)C12—C131.397 (2)
S1—O2'1.662 (3)C12—H120.9300
S1—S22.0507 (6)C13—C191.398 (2)
S3—O41.4565 (14)C13—C141.486 (2)
S3—O51.4649 (14)C14—C181.393 (2)
S3—O61.4882 (13)C14—C151.394 (2)
S3—S42.0246 (6)C15—C161.384 (2)
S6—S52.0380 (7)C15—H150.9300
S6—S5'2.0405 (10)C16—H160.9300
S5—O71.444 (2)C17—C181.383 (3)
S5—O91.4643 (15)C17—H170.9300
S5—O81.476 (2)C18—H180.9300
S5'—O7'1.445 (2)C19—C201.386 (2)
S5'—O8'1.476 (2)C19—H190.9300
S5'—O9'1.4647 (17)C20—H200.9300
O1W—H1WA0.797 (17)N5—C211.339 (2)
O1W—H1WB0.794 (17)N5—C301.346 (2)
O2W—H2WA0.790 (16)N5—Zn3iv2.1529 (15)
O2W—H2WB0.773 (16)N6—C261.344 (2)
O3W—H3WA0.759 (17)N6—C271.351 (2)
O3W—H3WB0.794 (17)C21—C221.385 (2)
O4W—H4WA0.782 (17)C21—H210.9300
O4W—H4WB0.806 (17)C22—C231.394 (2)
O5W—H5WA0.799 (18)C22—H220.9300
O5W—H5WB0.805 (18)C23—C291.392 (2)
O6W—H6WA0.789 (18)C23—C241.481 (2)
O6W—H6WB0.789 (18)C24—C281.391 (2)
N1—C11.335 (2)C24—C251.395 (2)
N1—C101.347 (2)C25—C261.382 (2)
N2—C61.343 (2)C25—H250.9300
N2—C71.344 (2)C26—H260.9300
N2—Zn1iii2.0577 (15)C27—C281.382 (2)
C1—C21.384 (3)C27—H270.9300
C1—H10.9300C28—H280.9300
C2—C31.387 (3)C29—C301.384 (2)
C2—H20.9300C29—H290.9300
C3—C91.392 (3)C30—H300.9300
C3—C41.484 (2)
N1—Zn1—N2i106.09 (6)C5—C4—C3122.70 (17)
N1—Zn1—S2109.97 (5)C8—C4—C3119.13 (17)
N2i—Zn1—S2114.43 (5)C4—C5—C6119.59 (17)
N1—Zn1—S4112.50 (5)C4—C5—H5120.2
N2i—Zn1—S4103.77 (5)C6—C5—H5120.2
S2—Zn1—S4109.976 (18)N2—C6—C5122.28 (17)
O6—Zn2—N394.60 (6)N2—C6—H6118.9
O6—Zn2—N4i101.60 (6)C5—C6—H6118.9
N3—Zn2—N4i104.10 (6)N2—C7—C8123.31 (18)
O6—Zn2—S6105.76 (4)N2—C7—H7118.3
N3—Zn2—S6129.71 (5)C8—C7—H7118.3
N4i—Zn2—S6115.56 (5)C7—C8—C4118.47 (18)
O4W—Zn3—O2W173.45 (6)C7—C8—H8120.8
O4W—Zn3—O3W95.53 (6)C4—C8—H8120.8
O2W—Zn3—O3W90.93 (6)C10—C9—C3119.14 (17)
O4W—Zn3—N688.04 (5)C10—C9—H9120.4
O2W—Zn3—N693.18 (5)C3—C9—H9120.4
O3W—Zn3—N688.69 (6)N1—C10—C9122.36 (17)
O4W—Zn3—N5ii89.89 (5)N1—C10—H10118.8
O2W—Zn3—N5ii89.21 (5)C9—C10—H10118.8
O3W—Zn3—N5ii88.53 (6)C20—N3—C11118.47 (15)
N6—Zn3—N5ii176.36 (6)C20—N3—Zn2120.34 (12)
O4W—Zn3—O1W87.19 (6)C11—N3—Zn2121.17 (12)
O2W—Zn3—O1W86.32 (5)C17—N4—C16118.05 (16)
O3W—Zn3—O1W176.60 (6)C17—N4—Zn2iii121.95 (12)
N6—Zn3—O1W93.44 (6)C16—N4—Zn2iii119.91 (12)
N5ii—Zn3—O1W89.45 (6)N3—C11—C12122.53 (16)
O3'—S1—O1'123.1 (2)N3—C11—H11118.7
O2—S1—O3113.62 (12)C12—C11—H11118.7
O2—S1—O1111.94 (13)C11—C12—C13119.21 (16)
O3—S1—O1109.26 (15)C11—C12—H12120.4
O3'—S1—O2'105.6 (2)C13—C12—H12120.4
O1'—S1—O2'104.4 (2)C12—C13—C19117.81 (16)
O3'—S1—S2112.51 (16)C12—C13—C14120.72 (15)
O1'—S1—S2107.60 (15)C19—C13—C14121.44 (15)
O2—S1—S2110.50 (8)C18—C14—C15118.06 (16)
O3—S1—S2107.77 (9)C18—C14—C13120.72 (16)
O1—S1—S2103.17 (8)C15—C14—C13121.22 (15)
O2'—S1—S2100.98 (11)C16—C15—C14118.93 (17)
S1—S2—Zn1105.59 (2)C16—C15—H15120.5
O4—S3—O5112.67 (8)C14—C15—H15120.5
O4—S3—O6109.76 (8)N4—C16—C15122.89 (17)
O5—S3—O6110.01 (8)N4—C16—H16118.6
O4—S3—S4110.70 (6)C15—C16—H16118.6
O5—S3—S4106.06 (6)N4—C17—C18122.77 (17)
O6—S3—S4107.45 (6)N4—C17—H17118.6
S3—S4—Zn199.31 (2)C18—C17—H17118.6
S3—O6—Zn2125.46 (8)C17—C18—C14119.29 (17)
S5—S6—Zn296.39 (7)C17—C18—H18120.4
S5'—S6—Zn288.01 (15)C14—C18—H18120.4
O7—S5—O9112.51 (15)C20—C19—C13119.60 (16)
O7—S5—O8112.3 (2)C20—C19—H19120.2
O9—S5—O8110.41 (12)C13—C19—H19120.2
O7—S5—S6106.48 (13)N3—C20—C19122.37 (16)
O9—S5—S6111.08 (17)N3—C20—H20118.8
O8—S5—S6103.62 (14)C19—C20—H20118.8
O7'—S5'—O8'112.2 (2)C21—N5—C30117.36 (15)
O7'—S5'—O9'112.44 (18)C21—N5—Zn3iv119.98 (12)
O8'—S5'—O9'110.35 (14)C30—N5—Zn3iv122.49 (12)
O7'—S5'—S6112.4 (5)C26—N6—C27116.84 (15)
O8'—S5'—S6108.7 (4)C26—N6—Zn3120.36 (12)
O9'—S5'—S6100.0 (6)C27—N6—Zn3122.77 (12)
Zn3—O1W—H1WA116.8 (19)N5—C21—C22122.98 (16)
Zn3—O1W—H1WB116.9 (19)N5—C21—H21118.5
H1WA—O1W—H1WB103 (2)C22—C21—H21118.5
Zn3—O2W—H2WA120.5 (18)C21—C22—C23119.48 (16)
Zn3—O2W—H2WB112.4 (18)C21—C22—H22120.3
H2WA—O2W—H2WB113 (2)C23—C22—H22120.3
Zn3—O3W—H3WA126 (2)C29—C23—C22117.74 (15)
Zn3—O3W—H3WB122.9 (19)C29—C23—C24121.92 (15)
H3WA—O3W—H3WB110 (2)C22—C23—C24120.33 (15)
Zn3—O4W—H4WA122.5 (18)C28—C24—C25117.71 (15)
Zn3—O4W—H4WB121.1 (18)C28—C24—C23122.60 (15)
H4WA—O4W—H4WB107 (2)C25—C24—C23119.68 (15)
H5WA—O5W—H5WB105 (2)C26—C25—C24119.06 (16)
H6WA—O6W—H6WB108 (2)C26—C25—H25120.5
C1—N1—C10118.27 (16)C24—C25—H25120.5
C1—N1—Zn1124.93 (13)N6—C26—C25123.69 (16)
C10—N1—Zn1116.79 (13)N6—C26—H26118.2
C6—N2—C7118.03 (16)C25—C26—H26118.2
C6—N2—Zn1iii124.64 (13)N6—C27—C28123.11 (16)
C7—N2—Zn1iii117.30 (12)N6—C27—H27118.4
N1—C1—C2122.77 (18)C28—C27—H27118.4
N1—C1—H1118.6C27—C28—C24119.56 (16)
C2—C1—H1118.6C27—C28—H28120.2
C1—C2—C3119.18 (18)C24—C28—H28120.2
C1—C2—H2120.4C30—C29—C23119.02 (16)
C3—C2—H2120.4C30—C29—H29120.5
C2—C3—C9118.25 (17)C23—C29—H29120.5
C2—C3—C4121.90 (17)N5—C30—C29123.36 (16)
C9—C3—C4119.80 (16)N5—C30—H30118.3
C5—C4—C8118.16 (16)C29—C30—H30118.3
Symmetry codes: (i) x, y, z+1/2; (ii) x1/2, y+1/2, z; (iii) x, y, z1/2; (iv) x+1/2, y1/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1WA···S4v0.80 (2)2.71 (2)3.4264 (14)150 (2)
O1W—H1WB···O3vi0.79 (2)1.91 (2)2.700 (2)175 (3)
O2W—H2WA···O5Wvii0.79 (2)1.87 (2)2.649 (2)171 (3)
O2W—H2WB···O8viii0.77 (2)1.94 (2)2.699 (3)165 (2)
O3W—H3WA···O4ii0.76 (2)2.09 (2)2.8354 (19)168 (3)
O3W—H3WB···O9viii0.79 (2)1.89 (2)2.678 (4)173 (3)
O4W—H4WA···O2vi0.78 (2)1.95 (2)2.719 (2)167 (3)
O4W—H4WB···O5ii0.81 (2)2.05 (2)2.815 (2)160 (3)
O5W—H5WA···O20.80 (2)2.06 (2)2.815 (3)157 (3)
O5W—H5WB···O5ix0.81 (2)1.94 (2)2.744 (2)174 (3)
O6W—H6WA···O10.79 (2)2.04 (2)2.828 (3)175 (3)
O6W—H6WB···O7x0.79 (2)1.95 (2)2.722 (3)166 (3)
Symmetry codes: (ii) x1/2, y+1/2, z; (v) x1/2, y+3/2, z1/2; (vi) x, y+1, z; (vii) x, y+1, z1/2; (viii) x1, y+1, z1/2; (ix) x1/2, y1/2, z; (x) x1, y, z.

Experimental details

Crystal data
Chemical formula[Zn(C10H8N2)(H2O)4][Zn2(S2O3)3(C10H8N2)2]·2H2O
Mr1109.12
Crystal system, space groupMonoclinic, Cc
Temperature (K)292
a, b, c (Å)16.6521 (8), 15.5103 (7), 17.8922 (8)
β (°) 115.340 (2)
V3)4176.4 (3)
Z4
Radiation typeMo Kα
µ (mm1)2.08
Crystal size (mm)0.22 × 0.10 × 0.08
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2001)
Tmin, Tmax0.657, 0.851
No. of measured, independent and
observed [I > 2σ(I)] reflections
29188, 11611, 11255
Rint0.019
(sin θ/λ)max1)0.714
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.021, 0.051, 0.90
No. of reflections11611
No. of parameters601
No. of restraints33
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.57, 0.41
Absolute structureFlack (1983), 5223 Friedel pairs
Absolute structure parameter0.006 (4)

Computer programs: SMART-NT (Bruker, 2001), SAINT-NT (Bruker, 2001 ), SAINT-NT, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL-NT (Bruker, 2001), SHELXTL-NT and PLATON (Spek, 2003).

Selected bond lengths (Å) top
Zn1—N12.0411 (15)Zn2—S62.2719 (5)
Zn1—N2i2.0577 (15)Zn3—O4W2.0924 (13)
Zn1—S22.2967 (5)Zn3—O2W2.0927 (13)
Zn1—S42.3332 (5)Zn3—O3W2.1090 (15)
Zn2—O62.0237 (13)Zn3—N62.1446 (15)
Zn2—N32.0422 (14)Zn3—N5ii2.1529 (15)
Zn2—N4i2.0457 (15)Zn3—O1W2.1705 (14)
Symmetry codes: (i) x, y, z+1/2; (ii) x1/2, y+1/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1WA···S4iii0.797 (17)2.71 (2)3.4264 (14)150 (2)
O1W—H1WB···O3iv0.794 (17)1.909 (18)2.700 (2)175 (3)
O2W—H2WA···O5Wv0.790 (16)1.865 (17)2.649 (2)171 (3)
O2W—H2WB···O8vi0.773 (16)1.943 (18)2.699 (3)165 (2)
O3W—H3WA···O4ii0.759 (17)2.088 (18)2.8354 (19)168 (3)
O3W—H3WB···O9vi0.794 (17)1.889 (18)2.678 (4)173 (3)
O4W—H4WA···O2iv0.782 (17)1.952 (18)2.719 (2)167 (3)
O4W—H4WB···O5ii0.806 (17)2.045 (19)2.815 (2)160 (3)
O5W—H5WA···O20.799 (18)2.06 (2)2.815 (3)157 (3)
O5W—H5WB···O5vii0.805 (18)1.942 (18)2.744 (2)174 (3)
O6W—H6WA···O10.789 (18)2.042 (18)2.828 (3)175 (3)
O6W—H6WB···O7viii0.789 (18)1.950 (19)2.722 (3)166 (3)
Symmetry codes: (ii) x1/2, y+1/2, z; (iii) x1/2, y+3/2, z1/2; (iv) x, y+1, z; (v) x, y+1, z1/2; (vi) x1, y+1, z1/2; (vii) x1/2, y1/2, z; (viii) x1, y, z.
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds